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J. B. Keller 
Departments of Mathematics 

and Mechanical Engineering, 
Stanford University, 

Stanford, Calif. 94305 

ÂR 2 6 1986 

Impact With Friction 
A theory of the impact or collision of two rigid bodies, taking account of friction, is 
presented. It determines how the direction of sliding varies during the impact, which 
must be known to calculate the direction of the frictional force and thence thefric-
tional impulse. This is accomplished by analyzing the equations of motion of the 
bodies during the collision. The normal impulse is determined by using a coefficient 
of restitution. When the direction of sliding is constant throughout the collision, the 
theory agrees with that given by Whiltaker, which is correct only in this case. 

1 Introduction 

In rigid body mechanics, a collision between two bodies is 
treated as instantaneous, with contact at a single point. Each 
body is assumed to exert an impulsive force on the other at the 
point of contact. In the absence of friction the impulse of this 
force can be calculated in terms of a coefficient of restitution. 
But in the presence of friction there is no satisfactory method 
of determining the impulse within the framework of rigid 
body mechanics. 

To develop one we give up the idea that the collision is in­
stantaneous, and assume instead that it has a duration tc small 
compared to a typical time scale T of the motion before or 
after the collison. From the equations of motion of the two 
bodies during the collision we determine their relative tangen­
tial velocity at the point of contact. This slip velocity and the 
law of friction yield the time varying frictional force exerted 
by each body on the other. The integral of this force is the fric­
tional impulse delivered during the collision. 

When the direction of slip remains constant throughout the 
collision, the frictional impulse is in the slip direction and its 
magnitude is just the coefficient of friction times the 
magnitude of the normal impulse. This result provides the 
basis for Whittaker's (1904) method of treating impacts with 
friction. However, he did not note that it holds only when the 
slip direction stays constant during the collision, and is incor­
rect otherwise. Its incorrectness became evident when Kane 
(1984) applied it to a compound pendulum striking a fixed sur­
face. He found that for certain parameter values, Whittaker's 
method led to an increase of energy. The explanation is that 
the slip velocity reverses its direction during the impact, so 
Whittaker's method is inapplicable. 

Our calculation has the intrinsic difficulty associated with 
the motion of two rigid bodies, and the added difficulty that 
the normal force is an unknown function of time. To over­
come the first difficulty, we take advantage of the fact that the 
positions of the bodies hardly change during the collision. 
Formally we do this by solving the problem asymptotically as 
tJT tends to zero. To overcome the second difficulty we use 

the normal impulse up to time / as the independent variable, 
instead of t itself. In this way we eliminate the normal force 
from the equations of motion. 

The problem is formulated and simplified via asymptotic 
considerations in Section 2. Then the normal impulse is in­
troduced as the new independent variable and the tangential 
impulse is expressed as an integral of the slip direction in Sec­
tion 3. The slip direction is found in Section 4. The resulting 
theory is summarized in Section 5, and it is applied to some 
special cases in Section 6. 

Some interesting problems of impact with friction are con­
sidered in the mechanics text of Kilmister and Reeve (1966). 
However, one of their analyses is marred by an error.1 

2 Formulation 

Let us consider two rigid bodies labelled j = 1 and j — 2 
which collide at the time t' =0 . Then their center of mass 
velocities Uj and their angular velocities Qy- will change discon-
tinuously from their values Uj and Qf just before the colli­
sion to their values [//and fi/ just after the collision. The goal 
of the theory of collisions is to determine the jumps 
[Uj] = Uf - Uj~ and [G,-] = 0 / - 0 / . 

To determine them we introduce the .contact force 
( ( - iy/tc)F(t'/tc) exerted on body,/' at the point of contact by 
the other body during the collision, which we assume to start 
at t' — 0 and to end at t' = tc. The factor ( - iy guarantees that 
the forces exerted by the bodies on each other are equal and 
opposite. The factor \/tc makes the magnitudes of the forces 
large enough to have a significant effect during the collision. 

The contact force depends upon the velocities of the bodies 
during the collision, so it is necessary to analyze them. 
Therefore, we denote by Mj the mass of bodyy, by Jj its cen­
tral moment of inertia tensor, by Fj(t'/T) the external force 
applied at its center mass, and by Gj(t'/T) the external torque 
on it. Here T is a characteristic time on which the external 
forces and torques vary. Then the equations of motion are 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y., 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, July 8, 1985; final revision, August 27, 1985. 

On pages 190 and 191 the authors treat the problem of a lamina falling ver­
tically, without rotation, in a vertical plane and hitting a fixed horizontal plane. 
They solve it correctly by Newton's method, but incorrectly by Poisson's 
method. Their error is to omit v' from the first equation on page 191, which 
should bem(V-v') = R', and to ignore the condition of zero normal velocity at 
the end of the compression phase, which is v' —o>'(ai-b2)Vl =0 . When these 
errors are corrected, the result is the same as that found by Newton's method. 
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1 dt' 
(- iy <i-)M-j)- <»> 

d(jjQj)_ j - i y 

dt' ' tr *.(&) 

X F ( T - ) + G ' ( - F ) ' J-1-2 <"> 
In (2.2) Rj(t'/T) is the vector from the center of mass of body 
j to the point of contact. 

The concept of impact or collision is based on the assump­
tion that e = tc/Tis small. To study the motion during the col­
lision we introduce the new dimensionless time variable 
t=t'/tc and rewrite (2.1) and (2.2) as 

M, 
di^ 

dt 
--(-iyF(t) + eTFJ(et), 

djJjQj) 
dt 

• (-iyRj(et)xF(t) + eTG](et). 

(2.3) 

(2.4) 

The quantities Uj(t, e), Qj(t, e), Jj(et, e) and Rj(et, e) depend 
upon e as well as upon t. We assume that they have limits as e 
tends to zero. Therefore, we let e tend to zero in (2.3) and (2.4) 
to obtain the following equations for these limits: 

dU, 

"J dt 
M,—J-={-\yF(t), 

JJ(0)^L = (-iyRJ(0)xF(t). 

(2.5) 

(2.6) 

We see that 7,(0) and Rj(0) are constant in (2.6) so we shall 
just write Jj and Rj. The external forces and torques do not 
occur in these equations, which hold only during the collision. 
Since t=t'/tc vanishes at t' = 0, the initial conditions are 

UJ(P)=UJ-, 0,(0) = 0,-. (2.7) 

Now t= 1 at t' = tc, so the values Uf and fi/" after the colli­
sion are given by 

Uf=Uj(l), 0 / = 0 / ( l ) . (2.8) 

Then the jumps in Uj and fl, during the collision, obtained by 
integrating (2.5) and (2.6) from t = 0 to t= 1 and using (2.7) 
and (2.8), are 

lUj] = (-iyM^I (2.9) 

[Qj] = (-iyjll(RjXl). (2.10) 

Here lis defined by 

[ F(t)dt, 
Jo 

(2.11) 

3 Determination of / 

To find / we denote by n the unit normal to the surfaces of 
the two bodies at the point of contact, pointing into body 2. It 
is independent of t in the limit e = 0. Then we write N(t)-n> 
F(f) for the normal component of/7. The integral of N(t) from 
0 to t is the normal component of impulse exerted upon body 2 
up to time t, which we denote by r(t): 

T(0 = I: N(s)ds. (3.1) 

In terms of T we can formulate Poisson's version of the 
theory of impact. First we introduce u(t), the relative velocity 
of the two bodies at the point of contact, defined by 

. u(t)=U2 + fi2x#2-([/,+ QiXR{). (3.2) 

Then we let t0 be the time when uN(t) =wu(t) vanishes: 

uN(t0) = 0 (3.3) 

(3.6) 

The interval from t = 0 to t = t0 is the compressive phase of the 
collision, and during it the normal impulse on body 2 is r(t0). 
The subsequent interval, from t=t0 to t= 1, is the phase of 
restitution during which the normal impulse on body 2 is 
T ( 1 ) - T ( / 0 ) . Poisson's hypothesis is that the latter impulse is e 
times the former, i.e., T(1) - r(Y0) = er(t0), where e is the coeffi­
cient of restitution. Thus 

r(l) = (l+e)r(/0) . (3.4) 
Since « ' / = T ( 1 ) , (3.4) yields the normal component of/. 

The tangential part of the contact force is due to friction. It 
is proportional to the normal force N when the two bodies are 
sliding relative to one another, so we shall write 

F(t)=N(t)[n+f(t)], n-f(t) = 0. (3.5) 

The tangential vector f(f) is given by the law of friction, which 
holds for N> 0: 

/ = -jaw?- if uT7±0, 

l/l < ix if uT = 0. 

Here n is the coefficient of sliding friction, uT is the tangential 
part of «(0, and uT is a unit vector along uT: 

uT 
uT = u-(ii'ri)n, uT = - r- if uT^0. (3.7) 

\uT\ 

Now use (3.5) for F with / = -\x.uT in (2.11). Since 
N{t)dt = dr, as (3.1) shows, we use T as the integration variable 
and write uT as a function of T. In this way we get, with 
T0 = r(t0), 

(•T(I) f( l+e)r0 

/ = T ( 1 ) « - U uT(T)dT = {\+e)TQn-u\ uT(r)dT. (3.8) 
Jo Jo 

Finally we substitute the result (3.8) for / in to (2.9) and (2.10) 
to get 

[UJ] = (-iyMfi\(l+e)T0n-^g
 +CT° uT(T)drj, (3.9) 

[Qy] = ( - iyjf' (Rj x [(1 + e)Ton - M j f l
 + ' ' " M r ) * ] ) . (3.10) 

4 The Slip Direction UT(T) 

Our results (3.9) and (3.10) involve the slip direction UT(T) 
and the normal impulse T0 imparted during the compressive 
phase. To find them we differentiate (3.2) and use (2.5) and 
(2.6)to get 

du 

~dT 
£ IMf lF+ (Jri[RjXF\)XRJ}. (4.1) 
j=i 

Next we use (3.5) in (4.1) and divide byN, to obtain 

1 rl 2 

T^C - 7 T = L f M / ' ( « + / ) + VT'IRj x (« +/ ) ] )xRj \ - (4-2) 
N(t) dt JTX

 J J J J 

From (3.1) we see that N~1d/dt = d/dT, so we introduce r as 
a new independent variable in place of t, and (4.2) becomes 

du 

~dV = E lMfl(n+f) + (Jfl[RjX(n+f)])xRj}-(4.3) 
y = i 

The initial value of U(T) is obtained by using (2.7) in (3.2) and 
"noting that t = 0 corresponds to T = 0. In this way we get 

w(0) = t/2" + Q2" x R2 - Ur - Of x /?!. (4.4) 

To solve (4.3) we split it into its normal and tangential parts 
by multiplying it by «• and (1 - nri'), respectively, which gives 

• 2 

^ = M r ' + M 2 - 1 + S " - ( ( ^ 1 [ ^ x ( « + y ) ] ) x j ? / ) , (4.5) 
dr J=1 

2/Vol . 53, MARCH 1986 Transactions of the ASME 
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du-i 

~d7 = L {Mflf+(l-nn.)(J^[RjX(n+f)])xRj), (4.6) p(T) = P(0)e^^'i/h^ (4.17) 

y=i 
The initial values wN(0) and «T-(0) are the normal and tangen­
tial parts of the right side of (4.4). 

When « r ( r ) ^ 0 , (3.6) y i e l d s / = -\>.uT. Upon using this in 
(4.5) and integrating from 0 to 7 we get 

2 

UN(T) = uN(0) + (Mr' + M2" ' )T + X) n 
7 = 1 

•((• / / r i[^ x("T- ' iS 0
r" r ( T 'W T ' ) ] ) x^]- ( 4- 7 ) 

By using (4.7) in (3.3) we obtain the following equation for 
r0 = T{f0): 

(Mr' + M2' )T0 + £ n • \ (jj-' [/?,. 

j = i L V L 

x (nTo-fi^0 uT(T')dT')yj xRjj = -uN(0). 

Next we s e t / = - \xiiT in (4.6) which becomes 

(4.8) 

du 

~~dr 
- ^ = - M M f 1 + M 2 - 1 ) " r W 

2 

+ D (1 -nn.)[(Jj'[*y x ( « - M U 7 ) ] ) x * ; 1 (4.9) 

From (4.4) we get the initial condition 

uT(0) = (\-nrf)(U2 +fi2" xR2~
ui ~ n f x ^ i ) - (4-10) 

These equations, (4.9) and (4.10), determine UT(T) for 
0 < T < ( l + e ) r 0 . 

To solve (4.9) we introduce the constant vector a and the 
two-by-two constant matrix B defined by 

2 

"= 2 ( l - w i O ( J 5 - ' l ^ x » ] ) x j ? ; ) , (4.11) 
y'=i 

fiur= - / t (Aff ' + M f ' ) « r 

2 

y=i 

Then (4.9) takes the form 

duT 

dr \uT\ 

(4.12) 

(4.13) 

Next we write uT = (pcosd, psind) where p = I « r I and 0 is an 
angle in the tangent plane at the point of impact. Then we can 
rewrite (4.13) as 

dp 

The solutions (4.16) and (4.17) determine 6(T) and p(r), and 
thus ur(r). They are valid provided that /?[0(O)]^O, because 
the integrals diverge in that case. However, then d(r) = 0(0) and 
p increases linearly in T, as we shall see in section 6. 

These results hold provided that UT(T) does not vanish. If 
UT(T*) = 0 for some T* satisfying T ( 1 ) > T * > 0 , we much check 
to see if UT(T) will remain zero for T>T*. T O do so we set 
duT/dr = 0 in (4.6) and solve f o r / . If the so lu t ion/sa t i s f ies 
(3.6), i.e., if 1/1 </*, then UT(T) will remain zero a n d / w i l l re­
main constant for T>T*. Then in the preceding equations 
(3.8)-(3.10) we must replace 

H j o
 +" T° uT(r)dT by n£ uT(r)dr + [(1 + e)r0 - r*]f. (4.18) 

A corresponding change must be made in (4.8) if T* < T 0 . 

5 Summary of the Theory 

We can now summarize our theory as follows: 

(1) Calculate the slip velocity UT(T) from (4.16) and (4.17) 
for 0 < v < ( l +e)r0, with T0 the solution of (4.8). 

(2) Evaluate the jumps [£/,-] and [Q,-] from (3.9) and (3.10). 
(3) If UT(T*) = 0, check to see whether or not UT(T) remains 

zero for T>T* by the procedure in the preceding paragraph. If 
uT does remain zero make the replacement (4.18) in the ex­
pressions for the jumps, and a corresponding change in (4.8) if 
T*<T°. 

The theory involves two material constants: the coefficient 
of the restitution e and the coefficient of friction /x. The main 
difficulty in using this theory arises in calculating uT. We shall 
now illustrate how to use the theory in some special cases. 

6 Appl icat ions 

(a) Constant Slip Direction. Suppose that (4.9) and (4.10) 
yield 

duT(0) 

dr 
parallel to uT(Q). (6.1) 

Then UT(T) remains parallel to uT(G) and the slip direction 
UT(T) stays constant until UT(T) vanishes at r = r*. Thus the 
solution of (4.9) is 

duT(0) 
UT(T) = UT(Q) + T f-—- , 0 < T < T * 

dr 

Then (4.7) also yields the simple result 

UN(T) = UN(Q) + T 
duN(0) 

dr 
, 0<T<T*. 

(6.2) 

(6.3) 

Now we can use (6.3) in (3.3) provided that T*>T0, and 
solve for T0 with the result 

uN(0) 
TO" -, T0<T*. (6.4) 

dr 
- = a [ cos0 + a2sin0 + BU cosz0 

+ (Bl2+B2l)sm8cosd + B22sm2e=g(6), 

dd 
p = -alsind + a2cosd-(Bn -5 2 2 )s in0cos0 

dr 
- Bnsm26 + B2l cos20 = h(0) 

(4.14) 

(4.15) 

duN(0)/dr 

To find T* we use (6.2) to write UT(T*) = 0, multiply by uT(0) 
and solve to get 

r* = - u%0)/uT(0)-duT(0)/dT. (6.5) 

If T*>(l+e)r0 , so that uT does not vanish during the colli­
sion, the jumps (3.9) and (3.10) simplify to 

By eliminating p from these two equations we get an equation 
for 6 which has the solution 

[ t / , ] = - ( - i y M / ' ( l + e ) M 0 ) 
duN(0)/dr 

(n-pUjiO)), (6.6) 

= /»(0)f 1 

«(o> h(6') 
ehm g(6"yH9')ct6"dQ>4 (4.16) 

Then we find 

IQj] =-(-iy(l+e) U"j® Jj' [Rj x (A - i iuAO))]. (6.7) 
duN(0)/dT J 

The right side of (6.6) is ( - l y M / 1 / , so we see that the 
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magnitude of the frictional impulse is ̂  times that of the nor­
mal impulse, in agreement with Whittaker's theory. 

(b) Slip Direction Changes Once. Let us now suppose that 
(6.1)-(6.5) hold, but that 

r 0 < r * < ( l + e ) T 0 . (6.8) 

Then for T>T*, duT/dr and uT will have constant. values 
duT(r* + )/dr and uT(r* + ) . They can be obtained from (4.9) 
by using the fact that wr(-r* + ) is parallel to duT{T* + )/dr. 
Then (3.8) yields 

/ = (1 + e)r0n - IXT*U(0) - /*[(l + e)r0 - T*]UT(T* +). (6.9) 

The jumps [Uj] and [0y] are given by (2.9) and (2.10) with this 
value of /. 

In the special case of a rigid pendulum striking a fixed sur­
face, we have T* = T0 because both the normal and tangential 
relative velocities become zero at the same instant. Further­
more, UT(T* + )= ~UT(0) because the tangential velocity 
reverses its direction at r*. Then (6.9) becomes 
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I=(\+e)Ton-(l-e)v,T0uT(0). (6.10) 
In this case the magnitude of the frictional impulse is 
ii{l-e)/(\+e) times that of the normal impulse. This is 
smaller than the ratio JX which holds when the slip direction re­
mains constant throughout the collision. 
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On the Understanding of Chaos in 
Buffings Equation Including a 
Comparison With Experiment 
The dynamics of a buckled beam are studied for both the initial value problem and 

forced external excitation. The principal focus is on chaotic oscillations due to 
forced excitation. In particular, a discussion of their relationship to the initial value 
problem and a comparison of results from a theoretical model with those from a 
physical experiment are presented. 

(1) 

Introduction, Background and Motivation 

In the present paper the following equation is studied 

A+yA- J(1-A2)=F(T) 

This is the particular form of Duffings equation (with a 
negative linear stiffness) studied by Moon [1]. It is known this 
equation has solutions with chaotic oscillations under certain 
conditions. Here we extend the earlier work on Duffings 
equation and provide an improved understanding of why the 
chaotic oscillations occur by first considering the initial value 
problem when F=0. These results are of substantial interest 
in their own right as well as leading to additional un­
derstanding of why chaotic oscillations occur. The present 
theoretical results are also compared to the physical ex­
periments of Moon. The opportunity to compare the present 
theoretical results with the experimental data of Moon is also 
an important motivation for this work. 

A physical model is helpful in the interpretation of 
Duffings equation. Following previous authors [1-4], we 
interpret equation (1) as describing a one mode oscillation of a 
buckled beam under the action of a prescribed lateral external 
force, F(T) . Other physical systems may also be described by 
this equation, but they will not be discussed here. As may be 
seen from equation (1), when F = 0 there are three static 
equilibrium solutions: A = 0, +1 and — 1. It is easily shown 
that the first of these (an unbuckled beam) is dynamically 
unstable and the latter two are stable with respect to in­
finitesimal disturbances. It is of great help in understanding 
the onset of chaos to consider next the stability of the static 
equilibria, A = + 1 or - 1, with respect to finite disturbances. 
This is done in the following section of the paper and then 
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Fig. 1 Phase plane trajectory 

chaos due to a harmonic force, F(T) , is considered directly in 
subsequent sections. 

The Initial Value Problem for the Homogeneous 
Duffings Equation ( F = 0 ) 

It is helpful to think first in physical terms. Consider the 
buckled beam at rest in one of its stable (with respect to in-
fintesimal disturbances) static equilibria, say A = + 1. With 
prescribed initial conditions, 

A(T^0)=A0 

A(T^0) = AO 

consider the transient solution and the final steady state 
solution as T—°o. Obviously .<4(T—<»)•— +1 or — 1. The 
question is which of these two solutions is the correct one for 
given A0, A0. As shall be seen, the answer is in a certain sense 
unknowable (or to use a more technical term, uncertain). 
Once the reason for this is understood, the occurence of chaos 
for certain F^0 becomes more understandable, perhaps even 
expected. 

It is possible to construct a diagram (which is called a shell 
plot because of its appearance) that summarizes compactly 
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SHELL PLOT 

Fig. 2 Shell plot 

which of the two static equilibria solutions will be reached for 
a given set of initial conditions, A0,A0. 

To anticipate the form of the shell plot, consider a specific 
example of initial conditions and the subsequent solution 
trajectory. This is shown as a phase plane trajectory in Fig. 1 
for A0 = 1 and A0 = l. Because A0 >0 , A increases for small 
time but then decreases for larger time because of the 
nonlinear restoring stiffness. Indeed, A subsequently becomes 
negative (the beam moves from one buckled configuration, 
A= + 1 , to the other, A= - 1 , and beyond). The damping 
term, yA, leads to dissipation of energy; thus the beam does 
not continue to oscillate between and about the two static 
buckled equilibria, but instead spirals into one of them as 
T— 00. 

From such phase plane trajectories, one can construct the 
shell plot, which shows the final state of the system as T-~OO, 
A = + 1 or - 1, for given initial conditions, A0 and A0. This is 
shown (partially) in Fig. 2. Here A0 is plotted versus A0 and 
various regions are identified with integral values, 0, 1, 2, 3, 
4, . . . Note there are two disjoint regions associated with 
each integer value. Consider first the integer zero (0) regions. 
For definiteness consider the region where ^40>0. If the 
system starts with A0, A0 within the zero region, the solution 
spirals into A = +1 as r—0 and crosses the A = 0 axis zero 
times. Consider now the 1 region. A solution begun there 
moves clockwise and crosses the A = 0 axis one time and 
enters the zero region for A < 0. Once there, it spirals into 
A=-\ as T—oo. To firmly establish the pattern, finally 
consider the 2 region. For initial conditions in the 2 region, 
the phase plane trajectory moves clockwise, crosses the A = 0 
axis the first time and moves into the 1 region for A <0 . It 
then continues to move clockwise and crosses the A = 0 axis a 
second (and final time) and moves into the 0 region for A >0 . 
Once there it spirals intoyl = +1 as T—OO. 

The pattern is now clear. For A0 >0 , initial conditions in an 
even integer region reach a final state of A = + 1. Those in an 
odd integer region reach a final state of A = - 1. The integer 
number corresponds to the number of crossings of the A=0 
axis during the completion of the motion (phase plane 
trajectory). For A0 <0, a similar sequence of events occurs. 
For initial conditions which lie precisely on a shell boundary, 
the final configuration would be ,4, A — 0 as T^OO. In practice 
this will never occur, of course, because the shell boundary 
curves are of vanishing thickness. 

It is interesting to note that a shell plot of any finite extent 
can be constructed from a single artfully chosen phase plane 
trajectory, once the zero region is known. The latter region is 
readily determined by direct calculation. 

Now comes the central point. If there is sufficient un­
certainty in the values of the initial conditions, A0, A0, it is 
clear from an examination of the shell plot that the final 
system state, A = + 1 or - 1, is unpredictable, unknowable or 
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Fig. 3(a) Phase plane trajectory (1 period motion) 
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uncertain. This point is made all the more powerful by noting 
that as the damping becomes even smaller the width of each 
region of the shell plot (excluding the 0 region) becomes even 
smaller and vanishes as 7—0. Hence for any (finite) un­
certainty inA0 or A0 the final system state is unpredictable as 
7 -0 . 

Two additional points are worthy of note in concluding this 
discussion. First, the boundary contours of the shell plot are 
curves of essentially constant total (kinetic plus potential) 
energy. Secondly as 7—0, the boundary curves for the two 
zero regions correspond to the separatrix of the undamped 
system. 

Although not concerned with chaos, the reader will find 
Ref. 5 on the initial value problem of interest. 

The Continuous Oscillation Problem for the 
Inhomogenous Duffings Equation (F ̂  0) 

Here a simple harmonic external force is considered, 

F=F0smut (2) 
where F0 is the force amplitude and a> its frequency of ex­
citation. This is not the only force-time history which might 
be studied. It is, perhaps, the simplest periodic force. 

As the reader may note, the initial value problem previously 
studied can be also thought of as an external force problem. 
For example, an initial velocity, A0, corresponds to an im­
pulsive force, 

F(T)=A08(T) (3) 
This suggests that a study of continual impulses, periodically 
or randomly spaced in time, would be of interest. Never­
theless, only a simple harmonic force will be considered here. 

The response of the system will be considered first for fixed 
frequency, w = 1, and increasing force amplitude, F0 , The 
frequency is normalized by the small amplitude natural 
frequency about the beam buckled equilibrium. For F0 
sufficiently small, it is expected that the response of the 
system will be a simple harmonic oscillation about one or the 
other of the two static equilibria, A = +1, or - 1 . For 
definiteness the initial conditions, A0 = l, A0=0 are chosen 
so that for small F0 the harmonic response oscillation is about 
A = + 1. It is anticipated that, as F0 increases and the response 
phase plane trajectory approaches the zero region boundary 
of the shell plot, interesting response behavior will occur. 

Note that for small F0 the phase plane trajectory is an 
ellipse indicating a simple harmonic response oscillation. As 
F0 increases additional harmonics beyond the fundamental 
are detected and the phase plane trajectory is distorted from a 
simple ellipse. See Fig. 3(a) for the result forF0 = 0.177. Also 
shown for reference is the boundary for the zero region from 
the previously discussed shell plot. 

For 0<F0<.177 the response is termed 1 period motion. 
By that is meant, as the force oscillates through one period, 
the response also oscillates through one period. For F0 = . 178, 
however, as the force oscillates through one period the 
response oscillates through only one half a period. For the 
response to go through one period, the force must oscillate 
through two periods. Thus this is called 2 period motion. See 
Fig. 3(b). This change from 1 to 2 period response as 
F0 = 0.177 — 0.178 appears to be a bifurcation. 

At a higher F0, 4 period motion occurs. See Fig. 3(c) for 
example, and at yet higher F0, 8 and 16 period motion occurs. 
Holmes [4] has suggested that 32, etc. period motions occur as 
F0 increases further. This may well happen but this behavior 
has not been observed by the present authors. Possibly this is 
because the range of F0 over which the higher period motions 
occur is very small. This period doubling behavior has been 
previously described and discussed by Feigenbaum [6] in a 
more general context. 

F0 8 

.? 

y = . l 6 8 CHAOS BOUNDARIES 

0 2 4 .6 .8 1.0 1.2 1.4 

Fig. 4(a) Force amplitude versus frequency of excitation 
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Fig. 4(b) Force amplitude versus frequency of excitation 

For F0 >0.205 chaos is observed, i.e., no periodicity is 
apparent. See Fig. 3(cf) which gives results for F0 = 0.21. As 
Holmes has indicated, for yet higher F0 the chaos no longer 
appears and periodicity returns. 

It is clear that for F0 just below the value where chaos first 
appears the periodic response phase plane trajectory ap­
proaches and slightly penetrates the boundary of the zero 
region shell plot. See Fig. 3(c). Moreover it is clear that for 
this frequency, 01 = 1, chaos occurs when the motion is no 
longer about only one of the static equilibria points, say 
A = + 1, but instead encircles both, A = + 1 and - 1. This is 
called snap-buckling. These observations suggest that the 
onset of chaos can be associated with periodic motions which 
penetrate the zero region boundary and thus lead sub­
sequently to motion about both static equilibria points. Moon 
in an earlier paper [1] suggested a more restricted notion of 
this sort when he took as an empirical criterion for the onset 
of chaos that the periodic response maximum velocity (in his 
calculation he assumed one period motion) must exceed the 
maximum velocity of the system separatrix. Recall it has been 
shown here that the zero region boundary of the shell plot 
corresponds to the system separatrix as 7—0. 

It is speculated, though it remains to be shown, that as 7—0 
any penetration of the zero region boundary by the phase 
plane trajectory leads to chaos. For small, but finite, 7 the 
phase plane trajectory may (slightly) penetrate the zero region 
boundary before chaos occurs. Hence the penetration of the 
zero region boundary by a phase plane trajectory at a certain 
force level may provide a lower bound criterion for the onset 
of chaos, at least for 01 near 1. 

For excitation frequencies well away from resonance, in 
particular for a> < < 1, chaos was found to occur even without 
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Fig.5(b) Poincare map; w= 1, "(= .0168, Fo= .09

snap-buckling. The minimum Fo for the onset of chaos occurs
for w==0.85. This is the characteristic frequency for free
vibration about both static equilibrium points.

were also the same across the frequency band. The lower and
upper plane portraits were not identical. Such identification
or association of results at several frequencies has led us to
connect some data points in Fig. 4(a) and 4(b) by straight
lines. Such results suggest that chaos lies in fragmented
pockets in the force-frequency plane. These pockets can also
hilVe smaller pockets of force-frequency combinations within
them that can lead to periodic phase plane orbits.

It is apparent from the situations simulated that chaos can
assume many forms. Some of the entries into the chaotic
region in the force-frequency plane for certain frequency
values were precipitated by beam snap-through; others were
not. At certain frequencies, the system went into chaos even
before the beam snapped through. Period doubling was
observed at some frequencies, e.g., w = 0.9 and 1.0, but not at
others. Chaos appeared at all frequencies simulated, though
this does not preclude the possibility of finding frequencies
that are chaos-free. A simple boundary cannot be drawn in
the force-frequency plane above which there is guaranteed
chaos; in fact, the simulations point to the opposite.

The simulations run at high damping levels gave the same
qualitative answer as the ones run at low damping. The major
difference is that the width of the chaotic band in the force­
frequency plane for the low damping case is much narrower
than its counterpart for higher damping. The limit of zero
damping may be pathological. Another difference is that the
higher damping case allows a much richer selection of
equilibrium periodic phase plane orbits. As the damping is
decreased, the Poincare maps also lose their ordered struc­
ture.

The correlation between data obtained from simulation and
the data obtained by Moon from his physical experiment also
appears to be generally good. See Fig. 4(b). The principal
difference is that at w== 0.65, the simulation predicts chaos at
much higher force levels, Fo ;c0.45-0.55, than those observed
by Moon in his physical experiment, Fo== .17. It is worthy of
note that the simulation predicts that snap-through of the
beam occurs at Fo == .12 and it is possible that this snap­
through was identified as chaos in the physical experiment. At
higher frequencies, snap-through and chaos occur at force
levels which are much closer together. Of course other factors
may enter in including the effects of higher beam modes.

For brevity, we have not shown the large number of phase­
plane portraits and Poincare maps that have been calculated.
The authors would be pleased to make these available to other
investigators who may wish to extend the present study. In
Fig. 5(a) and 5(b), two representative Poincare maps are
shown for w = 1 and the two damping values used in this
study.

Conclusions and Future Work

Among the conclusions reached based upon the present
work are the following:

(I) The initial value problem for a second order
homogeneous system is a key to the understanding of higher
order systems, including the inhomogeneous second order
system.

(2) Chaos is not difficult to find by numerical simulation,
however a Feigenbaum (period doubling) sequence may be
difficult to find for some parameter conditions.

(3) A comparison between theoretical results for Duf­
fing's equation and (physical) experiments for a buckled beam
shows generally good agreement.

(4) Future theoretical studies should consider
• investigating the limit as damping approaches zero;

setting the damping identically zero may lead to
pathological results

• multimode convergence studies (based upon the
results from panel flutter calculations [7, 8], it is
expected good convergence will occur)
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Comparison of Theory and Experiment

Calculations similar to those described in the previous
section have been carried out for several excitation
frequencies, w. From these a summary plot may be con­
structed of the force required to cause snap buckling, period
doubling, or chaos versus the excitation frequency. Such a
plot for the onset of chaos is shown in Fig. 4(a) and 4(b) for
I' = 0.168 and 0.0168, respectively. The uncertainty in the data
is less than a diameter of a circle.

Time integrations using the Runge-Kutta method were
performed for frequency values ranging from 0.1 to 1.5 for
varying force levels at damping levels of 0.168 and 0.0168.
Principal lower and upper force chaos boundaries were found
for a discrete series of frequencies by incrementing the first
from zero until chaos was observed. See Fig. 4. Force in­
crements of 0.01 and, where necessary, 0.001, were used. All
results shown are for simulations started from the initial
condition values of one for the displacement and zero for the
velocity. Other initial conditions were tried, but no observable
effect of initial conditions on chaos boundaries was detected.
Of course, the time history details do depend upon initial
conditions, particularly in the chaotic regime.

The types of chaos found in the simulations varied from
frequency to frequency. However, the form of the Poincare
map for a given set of frequencies tended to be of the same
type when the lower force steady· state periodic phase plane
portraits were shaped the same and possessed the same
periodicity and when the corresponding upper force portraits
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(5) Future experimental work should attempt to study 
8 various damping levels 
• determination of period doubling conditions 
• identification of entire pockets of chaos 
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Some Stability Results for General 
Linear Lumped-Parameter Dynamic 
Systems 
A technique is presented for stability of equilibrium of general, linear, lumped-
parameter dynamic systems. Liapunov functions are used to develop stability 
conditions that are direct in terms of the mass, damping, and stiffness matrices. The 
significance of what is presented here is twofold. First, this technique can be applied 
to general asymmetric systems. Second, it offers direct conditions that can easily be 
programmed on a digital computer to handle high-order systems. Many previously 
developed results, such as the KTC theorem and its extensions, are mentioned. 
Next, it is shown that the present study may provide broader applications because 
general systems are included and a more convenient approach is offered. Examples 
are used to illustrate the validity and applications of the presented results. 

Introduction 

Stability of the equilibrium of linear, lumped-parameter 
dynamic systems described by the vector differential equation 

Mx + C\+Kx = 0 (1) 
has received extensive attention for many decades. Here, M, 
C, and K are n X n real matrices referred to as mass, 
damping, and stiffness matrices, and the vector x is a real 
n X 1 vector of generalized coordinates. Routh in his famous 
essay of 1877 [1] solved the problem of determining necessary 
and sufficient condition for the asymptotic stability of the 
general form of the foregoing systems, where no restriction is 
placed on the coefficient matrices. However, his conditions 
require the knowledge of the coefficients in the characteristic 
polynomial of the system and the evaluation of certain 
determinants, which may be rather difficult to apply when the 
order of the system is at all large. Another approach is the 
equivalent result of Liapunov [2, 3]. This method also in­
volves solving a 2nth order matrix equation and the 
evaluation again of some determinants. As a result, alter­
native methods such as those which provide simpler con­
ditions directly in terms of the coefficient matrices prove to be 
more attractive. 

The development of such stability conditions dates back to 
the time of Lord Rayleigh [4], He proved that for the systems 
with positive definite mass and stiffness matrices if the 
damping matrix is positive definite, the equilibrium is 
asymptotically stable. The equilibrium becomes unstable if 
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either the damping or the stiffness matrix is not nonnegative 
(i.e., C or K has at least one negative eigenvalue). In later 
studies it was shown that, under certain conditions, the 
equilibrium can still be asymptotically stable when C is only 
positive semidefinite (denoted C ^ 0). Moran [5], illustrated 
that the necessary and sufficient conditions for the system (1) 
to be asymptotically stable are that none of the eigenvectors 
of the corresponding conservative system lies in the null space 
of the damping matrix. In another study by Walker and 
Schmitendorf [6] a controllability approach was taken to 
prove that the equilibrium is asymptotically stable if and only 
if the n2 x n matrix 

C{M-lK) 

(2) 

has rank n. 
If gyroscopic forces (e.g., Coriolis, Lorentz forces) are 

added to a symmetric system, then the equation of motion 
modifies to the more general form 

Mx + (C+G)x+Kx = 0 (3) 
where G is a skew symmetric matrix (i.e. G = —GT). In this 
case the well-known Kelvin-Tait-Chetaev (KTC) theorem can 
be applied. According to this theorem if C is positive definite 
(denoted C > 0), then the system (3) is asymptotically stable 
(unstable) if the corresponding nondissipative nongyroscopic 
system, which can be characterized here by C = G = 0, is 
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stable (unstable) [7]. In a later study, Zajac introduced the 
notion of pervasive-damping,1 associated with positive 
semidefinite damping matrix, and proved that for a per­
vasively damped system, the equilibrium is still asymptotically 
stable if the corresponding nondissipative nongyroscopic 
system is stable [8, 9]. This extends the application of the KTC 
theorem, particularly in space mechanics. Other studies, such 
as the ones by Miiller [13] and Hughes and Gardner [14] have 
suggested an "observability" approach for determining the 
stability of a gyroscopic system with positive semidefinite 
damping matrix. 

Finally, considering the effects of constraint damping2 

and/or circulatory forces3 modify the equation of motion to 
its most general form, described by 

Mx + (C+G)x + (K+E)x = 0 (4) 
where E is a skew symmetric matrix. Obviously, this class of 
systems does not fall within the scope of the KTC theorem 
and its extensions. Mingori [18] generalized the KTC theorem 
to include these systems. He demonstrated that if the matrices 
in equation (4) satisfy the following three conditions: 

EClM=MC~lE (5a) 

(5b) 

(5c) 

(6) 

EC'lG = GC-lE 

EC~iK=KC-'E 

and if a matrix H is defined as 

H=EC~lMC-iE-GC-,E+K 

then the equilibrium of (4) will be asymptotically stable if all 
of the eigenvalues of H are negative. The equilibrium is 
unstable if at least one of the eigenvalues of H is positive. 
Although this approach includes a broader class of systems 
than the KTC theorem, it has limited applications due to the 
restrictive nature of the conditions in equation (5). However, 
if one is willing to sacrifice generality for simplicity, it is 
possible to develop less restrictive conditions for a subclass of 
general systems. According to [19], if the asymmetric matrices 
(C+G) and (K+E) are,symmetrizable and possess positive 
eigenvalues, then the stability is determined by stability of the 
matrix 

P=Mi(C+G)S + S(C+G)TM- (7) 

where 
S=ST = R(K+E) (8) 

and R is an arbitrary positive definite matrix. Due to the 
assumption on symmetrizability of (K+E), it is always 
possible to find a matrix R to satisfy the equation (8) [20]. 
However, to the best of our knowledge, no simple, effective 
method for finding R has been introduced yet. The methods 
available presently require long, tedious computations which 
prove to be inefficient for most cases. 

The main object of the present study is to develop stability 
conditions that include general asymmetric systems, avoid 
restrictive conditions, and can be programmed on a digital 
computer to handle systems with many degrees of freedom. 

Damping is pervasive if the dissipative function R = 1/2 x Cx is non-
negative and can be identically zero only when the system is at the equilibrium 
state for / > 0 [10]. Roberson [11] and Connell [12] have proposed different 
methods for determining whether or not a system is pervasively damped when 
C > 0. 

Constraint damping results when the linear approximation of the 
dissipation forces are derivable from a dissipative function of the form 
Rc = 1/2 x Cx + x Ex. This type of dissipation may happen in a dissipative, 
gravity-oriented satellite [15]. A complete discussion of this type of dissipation 
can be found in [15-18]. 

Circulatory forces are linear generalized forces which can be expressed by 
the vector f = — Ex, where E is a skew symmetric matrix. Such forces arise in 
contemporary mechanical, aeronautical, and missle engineering. 

Results 

Assuming a nonsingular mass matrix (i.e., det (M) ^ 0), 
one can reformulate the general linear system presented in the 
equation (4) as 

x+,4x + £x = 0 (9) 

where 

and 

A=M~\C+G) (10a) 

B = M1(K+E) (106) 
are both real asymmetric matrices. Consider the function V 
given by 

V=xT(B+BT)x+[xTAT + xT][Ax + x]+xTx. (11) 
Differentiating V and substituting 

x=-Ax-Bx (12) 

into V results in 
V= -xT(ATB+BTA)x-xT(BT -B)x-xT(B-BT)x 

~xT(A+AT)x 

which can be presented as 
V= -zTQz 

where 

-) — 
I — 

G, QiT~ 

_Qi Qi . 

Ql=Q{=ATB + BTA 

Qi=Ql=B-BT 

23 = Ql=A+AT 

(13a) 

(136) 

(13c) 

and 

x] 

X 

Lemma 1. The matrix Q is positive definite if and only if 
Qi and the matrix 

Qi-QiQr'Ql 04) 
are positive definite. 

Lemma 2. The matrix Q is positive semidefinite if and only 
if Qi is positive definite and the matrix (14) is positive 
semidefinite. 

The proof is established in the Appendix. 
Theorem 1. For the system (9), the equilibrium is stable if 

the symmetric matrices 

B+BT (15) 

and Qi are positive definite and the symmetric matrix (14) is 
positive semidefinite. 

Proof: By assumption, V is positive definite and V is 
nonpositive. Therefore, according to [2], (theorem 4.1, pp. 
14), the equilibrium is stable. 

Theorem 2. The equilibrium is asymptotically stable if the 
symmetric matrices (14), (15), and Qx are all positive definite. 

Proof: Considering the assumptions, Vis positive definite 
and Kis nonpositive (i.e., V > 0 and V = 0). In addition, the 
function V cannot remain zero, unless x and x are both zero. 
Consequently, the results in [21] suggests that every motion of 
the system (9) is either asymptotically stable (tends to z = 0) 
or unstable (unbounded). But no motion can be unstable, 
since according to theorem 1, it is at least globally stable. 
Therefore, the equilibrium is asymptotically stable. 

Theorem 3. The equilibrium is unstable if (15) is not 
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nonnegative (i.e., (15) is negative definite, negative 
semidefinite, or indefinite) and Ql and (14) are both positive 
definite. 

Proof: The assumption on (15) implies that V may be 
negative. Furthermore, the assumption on Qx and (14) in­
dicates that Kis nonpositive and is identically zero if and only 
if x and x are both zero. According to [21], every motion of 
(9) either is asymptotically stable or unstable. But any motion 
starting at a point x0, x0 such that V(x0, x0) < 0 becomes 
unbounded since V is nonpositive along the motion [2, pp. 
19]. 

Alternatively, a different set of conditions may be obtained 
by choosing a different function V. For the function 

V=xr(ATB + B-BTB)x + (xTBT + xT)(Bx + x) (16) 
the first time derivative is 

V=xT(ATB+B~BTB)x + xT(ATB+B-BTB)x 

(xTBT + xT)(Bx + x) + (xTBT + xT)(Bx + x) (17) 

Assuming the matrix 

ATB + B~BTB (18) 

to be symmetric and substituting equation (12) into the 
equation (17) gives 

V=xT(ATB+B~BTB)x + xT(BTA+BT-BTB)x 

+ {xTBT-xTAT-xTBT){Bx + x) 

+ (xTBT + xT)(Bx-Ax-Bx) 

or 
V=-2xTBTBx-xT(A+AT-B-BT)x (19) 

Based on the functions V and V, the following theorems can 
be stated for the system in the equation (9): 

Theorem 4. The equilibrium is stable if the matrix (18) is 
symmetric and positive definite and the matrix 

A+AT-B-BT (20) 

is nonnegative. 
Theorem 5. The equilibrium is asymptotically stable if the 

matrices (18) and (20) are both positive definite. 
Theorem 6. The equilibrium is unstable if (18) is not 

nonnegative and (20) is positive definite. 
Validity of these theorems follow directly from the proof 

stated for Theorems 1-3. 
It is worthwhile to mention that, although there are many 

systems where the matrix (18) is symmetric (one such system 
will be presented in example 1), it is possible to find systems 
where (18) is not symmetric. For such systems theorems 4-6 
fail to provide any results and, therefore, theorems 1-3 must 
be used alternatively. 

Examples 

The purpose of the following examples is to illustrate the 
presented approach, thus a small number of degrees of 
freedom are used. However, the power of the method is hoped 
to be in defining the stability of systems with many degrees of 
freedom. 

Example 1: Consider the system 

x + 
"10 -3 .25 

-1 4 

the conditions (18) and (20) give 

ATB + BT-BTB= 

A+AT-B-BT = 

x + = 0 

"26 

- 9 

12 

- 1.25 

- 9 ^ 

4 

-1.25" 

4 

Fig. 1 Discretized model of a damped, flexible, rotating shaft 

Since the foregoing matrices are both positive definite, 
theorem 5 indicates that the equilibrium is asymptotically 
stable. In addition, substituting A and B into equations (13), 
(14), and (15) results in 

e,= 
and 

78 - 3 5 

-35 29 
B + BT = 

19.9248 

-2.2162 

-2.2162 

7.9720 

which are all positive definite. Therefore, therorem 2 also 
indicates that the equilibrium is asymptotically stable. 

One way to verify the validity of these results is to form the 
associated lambda-matrix and obtain the latent roots of the 
system. Doing so results in 

\ i , 2 = -1.12385 ±1.2745 i 

X3,4= - .761503±2.3985/ 

where / = V ^ l , which is in agreement with the prediction of 
theorems 2 and 5. 

Example 2: As another example, consider the discretized 
model of a damped flexible, rotating shaft presented in [22] 
and shown in Fig. 1. The mass is attached to a coordinate 
system which rotates at a constant angular velocity fi. To 
make the problem more comprehensive, we assume the 
existence of a conservative force that is proportional to the 
radial distance of the mass from the origin and perpendicular 
to the radius vector. Such a force can be visualized as arising 
in a rotating fluid or in an electromagnetic field. 

The governing equation of motion for the shaft is 

m 

0 

0 

m 
ii + 

C\ 

ImQ, 

-2mQ 

c2 

+ 
ki-mQ2 

1Q2 
« = 0 

(21) 

where u - [uu u2]
T represents the displacements in the 

directions of the two rotating coordinate axes. Without loss of 
generality let m - 1 and rewrite equation (21) as 

u + 
-212 

2fl c2 

u + 
k{ - Q2 F 

k,-Q2 
u = Q 

(22) 

This allows one to use the results presented here to determine 
the way each parameter affects the stability of the given 
system. For instance, upon substituting A and B into the 
matrices (13-15), the conditions required by theorem 2 can be 
reduced to the following inequalities 
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(kx-Q
2)>0 

( A : 2 - O 2 ) > 0 

P i > 0 

PlPi~P2>0 

p4>0 

PiP6-P$>0 

(23a) 

(236) 

(23c) 

(23d) 

(23e) 

(23/) 

where 

p, =2(c,(A:,-02)-2OF) 

p2 = (ClF+ 2fi(A:2 - fi
2) - 2fl(fc, - Q2) - c2F) 

p3=2(c2(k2-Q
2)-2QF) 

p4 =Cl -4/*(c,(*, -fi2)-20F)/(p1/73 -p^) 

p 5 = -2F2(clJF+2fi(Ar2~n2)-2fi(A:1-fi2)-c2F) 

p6 = c2 -4F*(c2(k2-Q
2)-2nF)/(pxp3 -p\) 

Now, one can easily investigate how each parameter affects 
the foregoing conditions and, therefore, the stability. This 
may be used also to determine the stability boundaries. 

It is worthwhile to mention that the results in [18] fail to 
provide any answer to the preceding problems, since the 
commuting conditions, shown in (5), are not satisfied. 
Although the approach in [19] may provide an answer, the 
symmetrizability of the matrices A and B needs to be 
determined first. The approach used here eliminates that step. 

Observations 

The results presented here can be applied directly to the 
mass, damping, and stiffness matrices. Consequently, for 
systems with few degrees of freedom, an approach similar to 
that presented in example 2 can be used to determine the effect 
of parameter variations on the stability of system or to design 
a system. When dealing with high-order systems, one can 
show the effect of parameters on the stability by repeatedly 
changing the parameters and testing the conditions through 
an iterative routine. This requires eigensolution of the 
matrices Qx, (14), and (15) if theorems 1-3 are used, or 
matrices (18) and (20) if theorems 4-6 are employed. 
However, since all these matrices are symmetric, many well-
known classical methods, such as Jacobi's method, Given's 
method, Householder's method, QR method, can be used 
effectively [23-25]. 

It is known that the additional damping and stiffness 
matrices, resulting from velocity and displacement feedback, 
can stabilize an unstable system or in some cases destabilize an 
otherwise stable system. The approach presented here can be 
used to investigate the influence of the feedback gains on the 
stability of an actively controlled system. To illustrate this 
more clearly, consider the actively controlled system described 
by 

ax a2 

_«3 «4_ 
X + 

~b, b2 

b-i V 

0 

0 

g\ 

Si_ 
x + 

"0 

M 

hi' 

0 

for this system, the conditions (18) and (20) can be reduced to 
4(fl, + bx)(a4+b4+g2) 

-(a2+a3-b2-b3+gx-hx-h2)
2>0 

ax(b2+h2) + a3b4+b3+h2 = 

(a2+gx)bx+(.a4+g2)(b3+h2) + b2+hx 

Journal of Applied Mechanics 

axbx + a3(b3+h2) + bx - b 2 - (b3 + h2)
2 >0 

[axbx + a3b3 + a3h2 + bx - b \ - (b3 + h2)
2]x 

[(a2+gx)(b2 + hx) + (a4 + g2)b4 + b4 

~(b2+hx)
2-b4]-[(a2+gx)bx+(a4+g2)(b3+h2) 

+ {b2+hx)-bx(b2+hx)-(.b3+h2)b4\
2>0, 

which can be employed to find how the gain constants gx -g4 
affect the stability of a given system (where ax-a4 and bx 
-b4 are known). The importance of feedback control in 
stability of dynamic systems and different ways of measuring 
their effects have been discussed in many studies, such as [26] 
and [27]. However, the significance of the approach presented 
here is that it extends the results in these studies to asymmetric 
systems. 

Conclusion 

For general linear lumped-parameter systems, which can be 
described by a second-order vector differential equation, 
different stability conditions were established. These con­
ditions are directly in terms of the coefficient matrices, thus 
they can be used to determine the effect of system parameters 
on stability or to design a controller for an actively controlled 
system. Examples were used to illustrate the validity and the 
utility of the presented approach. A number of previously 
developed studies such as the KTC theorem and its extensions, 
the results on systems with constraint damping, and those on 
symmetrizable systems were mentioned. Although for systems 
with few degrees of freedom, the present approach is not 
necessarily advantageous over the Hurwitz stability criterion, 
it may prove to be more effective for systems with many 
degrees of freedom. 
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A P P E N D I X 

Lemma 1. The In x In real symmetric matrix 

Q= 
e . Q2

T" 

_G2 G3 . 
(Al) 

is positive definite if and only if both Qx and Q3 - Q2Q\ " ' 
Q2

 T are positive definite. 
Proof: The matrix Q is positive definite if and only if 

V=zTQz 

is positive definite for all z^O. The vector z can be presented 
as 

z=7>, 

where 

and 

T= 
-Q~lQ2T 

I 

y2 

Therefore, Kcan be written as 

V=y1 
I 

_-Q2Qrl 

o~ 
/ 

"Q, 

Q2 

QzT-

Q3 . 

I 

0 

-QrlQ2 

i 

or 

v=y\ TQxyi + ^ 2 r ( G 3 - Q 2 Q 1 - , Q 2 7 > 2 -

The function V, and as a result the matrix Q, is positive 
definite if and only if Q{ and Q3-Q2 Q\ " ' QiT are both 
positive definite. 

Lemma 2. The In x In matrix Q, presented in the 
equation (Al), is positive semidefinite if and only if Q, is 
positive definite and Q3 - Q2 Qi'1 G2 r is positive 
semidefinite. 

Proof: Same as Lemma 1 except the term "positive 
definite" is replaced by "positive semi-definite" for the 
matrix Q3-Q2Q1

i QiT• 
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Differential Kinematics of Spherical 
and Spatial Motions Using 
Kinematic Mapping 
This paper develops the basic framework for studying differential kinematics of 
spherical and spatial motions using a mapping of spatial kinematics. Relationships 
are derived relating the intrinsic properties of the image curves corresponding to a 
mapping of spherical and spatial kinematics and the instantaneous invariants of the 
corresponding spherical and spatial motions. In addition, in the case of spherical 
motions, the equations for the inflection cone and cubic cone of stationary geodesic 
curvature, important in spherical mechanism synthesis, are derived in terms of the 
curvature and torsion of corresponding image curves. Similar relationships defining 
the polhodes of spherical motions and their curvature at the reference instant are 
recast as well. A simple example involving a special spherical four-bar motion is 
also presented. 

1 Introduction 
The set of rigid rotations of the three dimensional 

Euclidean space E3, and the set of rigid displacements 
(rotations and translations) of Ei both form differential 
manifolds known as Lie groups, see Herman 1966. Con­
tinuous curves in these manifolds are known, respectively, as 
spherical and spatial rigid motions. By choosing coordinate 
systems for the fixed and moving spaces, we may represent a 
spatial motion as a parameterized set of rotation matrices 
A(t) and postion vectors d (0 ; T(t): (A(t),d(t)). Ravani 
and Roth 1984 showed that by using Study's parameters 
(Study 1891), a geometric mapping can be defined that carries 
a spatial motion T(t) into a special curve in a projective space 
of three "dual" dimensions. They went further and showed 
that the real part of the same mapping carries A(t) into a 
curve in a three dimensional real projective space; see also 
Bottema and Roth 1979. Using such a mapping, a motion can 
be studied by studying its image curve in the image space of 
the mapping. Ravani and Roth applied the mapping1 to the 
study of spatial motions and mechanisms and in this way 
generalized a technique which has been highly developed in 
the study of planar rigid motion; see Blaschke and Muller 
1956, Bottema and Roth 1979, DeSa and Roth 1981 a,b, and 
Ravani and Roth 1983. 

It should be pointed out that many other mappings can also be defined. In 
this paper, we are only referring to the mapping defined in Ravani and Roth 
(1984). 
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In this paper, we develop the basic framework for applying 
this geometric mapping to the study of local properties of 
spherical and spatial motions. The study of local properties of 
rigid body motion is a highly developed branch of kinematics 
known as Instantaneous Kinematics. Important tools in this 
area are the canonical coordinate systems and unit angular 
velocity parameterization; see Veldkamp 1967, Kirson 1975, 
Roth and Yang 1977, Bottema and Roth 1979. The use of the 
canonical coordinate system and the unit angular velocity 
parameterization results in a set of unique constants that 
characterize the motion-the so-called Instantaneous In­
variants. It is clear that the shape of the image curve of a 
mapping of a rigid motion also provides a set of constants 
which characterize a motion. In fact Blaschke and Muller 
1956 have used this idea to study the differential kinematics of 
planar motions. In this paper, we generalize this technique to 
the study of differential kinematics of spherical and spatial 
motions. We will use the mapping introduced by Ravani and 
Roth 1984 and relate the differential properties of the image 
curves of spherical and spatial motions to the instantaneous 
invariants characterizing such motions. In the case of 
spherical motions, we go further by relating the local or 
differential properties of point paths of such motions to the 
local properties of their corresponding image curves. In 
addition, the inflection cone and cubic cone of stationary 
geodesic curvature important in spherical mechanism syn­
thesis are derived in terms of the curvature and torsion of the 
corresponding image curve. The relationships defining the 
polhodes of spherical motions and their curvature at the 
reference instant in terms of the local properties of the 
corresponding image curves are also derived. Finally, we 
examine the motion of a special spherical four-bar mechanism 
for which an image curve is known and obtain its in­
stantaneous properties throughout the motion. 
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2 Euler Parameters of Orthogonal Matrices and the 
Mapping 

A 3 x 3 orthogonal matrix characterizing a spherical 
displacement can be written in terms of it Euler parameters: 

displacement depends on three independent dual parameters, 
namely the ratios c,/cQ (i = 1,2,3), we can map it into a point 
of a dual three-dimensional projective space £ ' . A spatial 
motion characterized by a parameterized set of orthogonal 

A = Q-

where 

(cl+c\-c2
2-cl) 2(c ic 2 -c 0c 3 ) 2(ciC3+C(,c2) 

2(c2c, +c0c3) 

2(c3c, -c0c2) 

(cl~c\+c\-cl) 2 (c 2 c 3 -c 0 c , ) 

2(c3c2+c0c1) {cl-c2
x-c\+c]) 

Q2 --cl + cj+4+c] 

(1) 

(2) 

and c, (;' = 0,1,2,3) are the Euler parameters of the or­
thogonal matrix A. Since the matrix A depends on three 
independent parameters, namely the ratios ct/c0 (/ = 1,2,3), 
we can map it (Ravani and Roth 1984) into points of a three-
dimensional projective space E ' . A spherical motion 
characterized by a parameterized set of orthogonal matrices 
A{t) is then mapped into a curve in the image space E ' . In 
view of the fact that the Euler parameters, ch can always be 
normalized such that 

cl+c\+c\+cl = \, (3) 

the image of ^4(0 can be considered as a curve, K, on a 
hypersphere of unit radius in a four dimensional affine space. 

The differential geometry of curves on the surface of a 
hypersphere has been studied by McCarthy 1983; see also 
Flanders 1963 and O'Neill 1966. Such results can therefore be 
used to relate the local properties of spherical motions, that is 
the distribution of velocities, accelerations, change of ac­
celerations, etc., of each point in the body, to geometric 
parameters which characterize the shape of the image curve, 
K, of the motion. 

A spatial displacement is characterized by a 3 x 3 or­
thogonal matrix A and the position vector d. These two 
quantities can be combined to construct an orthogonal 3 x 3 
dual matrix A characterizing a spatial displacement. The dual 
matrix A is driven by 

A=A + eDA (4) 

where 

D = 0 -dx 

0 

and e is the dual unit defined such that e2 = 0. The dual 
matrix A can be written in a form identical to equation (1) 
using dual Euler parameters c,- = c, + ec* (/ = 0,1,2,3) where 
the dual parts c* of the parameters are defined by the 
relations 

c0' 
1 

(dxci + dyc2+dzc3) 

c * = 2 (~dyCo+dzc2-dyCi) 

el = ^ ( -dyc0-dtci + dxc}) 

c* = » ( - d z c 0 + d y c i ~dxc2) 

(5) 

and 

Q2=c2
0 + cj+c2

2+cj. (6) 

Since the 3 x 3 dual matrix A characterizing a spatial 

matrices A(t) (with t being a real parameter) is then mapped 
into a special curve in the image space t ' . For more details on 
this mapping see Ravani and Roth 1984. 

In the view of definition (5) of the dual parts of the Euler 
parameters, we can write 

c0c0*+c1c1*+c2c2*+c3c3*=0 (7) 

If normalized (real) Euler parameters are used, then this last 
equation implies that 

fi2=cg+c?+c! + c1 = l (8) 

This means that the image of A(t) can be considered as a 
curve K on a dual hypersphere in an affine space of four dual 
dimensions. Ravani and Roth 1984 have shown that fl2 

remains invariant under the group of transformations arising 
in the E' space from different choices of the moving and fixed 
frames in the real space. This, in the view of elliptic geometry 
of E' space, means that all choices of moving and fixed 
frames in the real space, result in mappings which differ by 
only E' displacements. The final conclusion is that the in­
trinsic properties of the image curve K of a motion are in­
dependent of the coordinate system and the parameterization 
used to define the motion. 

Spherical Motion. A continuous rigid motion of Euclidean 
three-space which maintains a fixed point has the property 
that the trajectory of every point in the moving body lies on 
concentric spheres about the fixed point. This motion termed 
spherical motion is represented by a parameterized set of 3 x 3 
orthogonal matrices A(t). If p: (x,y,z) is a point in the 
moving reference frame M then its trajectory ap (t): (X(t), 
Y(t), Z(t)) is the set of points in the fixed frame F with 
which p coincides as F(t) varies with t, given by the motion 
equation 

ap(t)=A(t)9 

To study the instantaneous properties of the motion in the 
vicinity of a reference position, which we denote with the 
parameter value t = 0, we expand A (t) in a Taylor series 

A(t)=A0+Alt+A2— + (.9a) 

The subscript denotes the nth derivatives evaluated at the 
reference position. The coefficient matrices A , i = 0,1,2,. . . 
are not unique to the motion since the reference frames M and 
F are chosen arbitrarily. Bottema and Roth show how a 
canonical set of reference frames may be chosen such that (9a) 
is unique up to the choice of the motion parameterization. 

The motion parameter t defines the speed at which the body 
moves through a sequence of positions; it does not affect the 
shape of trajectories traced by the moving body. By choosing 
the standard unit angular velocity parameterization, we 
obtain a unique representation of the motion 

A (4) =I+A14>+A2^~- +A3~ + 
2 6 

(9*) 

where <f> is the new motion parameter, <f> = 0 denotes the 
reference position. / is the 3 X 3 identity matrix and Ait i = 
1,2,3 are given by 
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A,= 

-1 0 

0 0 

0 0 

A2 = 

A,= 

0 

(1+e2) 

-1 

0 

-e 

(1+e2) 

0 

(\e + yx) 

0 e 

-1 0 

0 0 (16) 

7> 

( | e - 7 j f ) 

0 

The second order term A2 is now computed to be 

2co2"~2c31
 _ 2c 3 2 2c22 

A2 = 2c32 2cm-2cli -2cn 

-2c22 2c12 2co2+2c3
2, 

This is simplifed by means of the restriction which (6) places 
on the functions c, ( 0 / = 0,1,2,3: 

1 = E \c'o + (2c,oC;,)?+ (2c/0c;2 + 2c2,)-^-

The constants e, 7 x , 7y define the spherical motion to third 
order. Each additional order of the expansion (9) adds three 
more constants. These constants are called the instantaneous 
invariants of the spherical motion. 

The matrix function A(t) is also prescribed by the four 
Euler functions ct(t), i = 0,1,2,3. The Taylor series ex­
pansion of A (t) about t = 0 may be computed in terms of the 
series expansions of c,- (?): 

t2 ? 
CiV)=Cjo+Cilt + Ca—+Ci3 — + . . . (11) 

+ (6cnci2+2ci0ci3)—- + 
o 

Since 
r Ci0 " '• CQO + Cio + c2o + c3o — c0o

 : 1 

(17) 

(18) 

the coefficient of every other term in (17) must equal zero. 
The first order term simply restates the requirement that cm 

= 0. The second order term introduces the identity 

= 0. 2 C 0 2 + 2 C 3 V (19) 

We will relate the instantaneous invariants e, yx and yy to 
constants c,„, / = 0,1,2,3, n = 0,1,2, . . . by determining the 
values of the cin in the canonical coordinate system. In the 
computations which follow it is useful to note that 

Cj(t)Cj(t) =Ci0CjQ + (Cj0Cji +CnCJ0)t 

We further simplify (16) by rotating the reference frames F 
and M about w so that c12 = 0 and^42 becomes 

A,= 

+ (c,-o cJ2 + ca cJ0 +2cnCji)— 

+ (C;0Cj3 + CflCyo + 3C/, CJ2 + 3ci2Cji)-

(12) 

2c32 

-2c22 

-2c32 

-4c?, 

0 

The angular acceleration matrix E at t 

2c22 

0 

0 

0 is given by 

E(0)=—[AAT]=AAT+AAT=A2+A1Af 

By choosing the reference frames F and M of the fixed and 
moving bodies so they coincide at the instant ( = 0we have 

which yields 

A0 = 

1 0 

0 1 

0 0 

0 

2c32 

2c22 

-2c 3 2 

0 

0 

2C22 

0 

0 

(20) 

(21) 

(22) 

Coo + c i o ~ c2o -"C30 

2(C20C10 +C00C30) 

2(C3QCIO — C00C20) 

2 (C]QC20 _CoflC3o) 

coo — c10 + c2o - c30 

2(C3oC20 +Coo c l o ) 

2(C1 0C3o+C0 0C2o) 

2(C2Oc30 — COQCIO) 

cO0 
c i o CM + C30 

(13) 

from which we conclude that Coo = 1 and c,0 = 0, / = 1,2,3. 
The angular velocity matrix Q(0 = AAT(t) of the motion at 
the instant t = 0 is given by 

0 0 = ^ 4 1 ^ 0 ^ = ^ 1 

2coi — 2c31 2c2i 

2c31 2c0I -2cn . (14) 

- 2 c 2 i 2c 11 2c0 , 

The angular velocity matrix is skew symmetric (flr = -Q) ; 
therefore c0i = 0. The vector w = (2c u , 2c2i, 2c3i) is the 
angular velocity vector of the motion at this instant and we 
orient the reference frames F and M such that the z-axes of 
both frames is directed along w. This forces both cn and c2i 
to be zero and we have 

Q 0 = / l i = 

0 

31 

0 

-2C 31 

0 

0 

0 

0 

0 

(15) 

In vector form we obtain w = e = (0, 2c22, 2c32) thus the 
choice of the canonical coordinate frame is such that the 
angular acceleration vector lies in the y-z coordinate plane. 
We specify the sense of the 7-axis to be such that the y-
component of e is positive. The canonical frame is now 
completely prescribed. 

The third order term A 3 is given by 

(2C03-6C31C32) -2(c33+3Co2C3l) 2C23 

A3= 2(c33+3co2C31) (2c 0 3-6c 3 1 c3 2 ) 2(3c33c3l-cl3) 

- 2 C 2 3 2(3C22C31+C13) (2C03+6C31C32) 

(23) 

The third order term of the normalization condition (17) 
yields 

6c31<?32+2c03=0 (24) 

Using this relation as well as (19) we obtain 
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-12c3 iC3 2 

2c 3 3 -6c | , 

-2c 2 3 

- 2 c 3 3 + 6 c | , 

-12c 3 lc 3 2 

6C22C31 +2c13 

2c23 

6C22C3,-2C13 

0 

(25) 

So far we have the constants c31, c22, c32, c13, c23 and c33 

which defined (/) to the third order. Each additional order of 
the expansion adds four constants, one of which may be 
eliminated using the normalization relation (17), thus only 
three of the four are independent. 

The unit angular velocity parameterization is defined such 
that the magnitude of the angular velocity is unity throughout 
the motion. This is equivalent to requiring that 

- - trace (fl2) = 1 (26) 

where fl is the angular velocity matrix and the trace operator 
computes the sum of the diagonal terms. A series expansion 
of Q(t) yields 

n(t)=U0 + Et+\r-nl+ -(Q0E-EQ0)\t
2/2+ . . . (27) 

where fl0 and E are given by (15) and (22) and T is 

(28) 

The requirement of a unit angular velocity adds further 
constraints on the values of the constants c,„, one for each 
order of the expansion of fl2: 

0 

2c33-6cj, 

-2c 2 3 

-2c33+6c3
,
1 

0 

2c13 

2c23 

-2c 1 3 

0 

- - trace ($]jj) = 4c2, =1 

1 
trace (Q0E+EQ0) = 4c3, c32 = 0 

(29) 

(30) 

- ~ trace ( ( £ 2 - f i 2 ) + ^ (fl0r + m 0 ) ) = 

-2c 3 1 . ( -2c33+6ci 1 ) + (2c22)2+(2c32)2+(2C31)4=0 ( 3 1 ) 

These relations yield the results that c31 = 1/2, c32 = 0 a n d 

C33 = - ( 2 c i 2 + ^ ) (32) 

The coefficients matrices of A (4>) in the canonical coordinate 
system are thus obtained in terms of the coefficients of the 
Euler functions as: 

A0 = [I\,Ai 

A,= 

,At 

0 -

1 

0 

- 1 0 

0 - 1 

-2c 2 2 0 

0 

-(4cl2 + l) 

-2c 2 3 

1 0 

0 0 

0 0 

2c22 

0 

0 

(4C§2 + 1) 

0 

3 < ^ -2ci3 

2c23 

3C22 ~2c13 

0 

A, 

Comparing (33) to (10), we see immediately that 

C22 = Y . c n = — and c23 = — • 

(33) 

In summary, 

Coo = l Cio=0 c 2 0 =0 c 3 0 =0 

c 0 1 =0 c , , = 0 c 2 i=0 c 3 1 = l / 2 

c 0 2 = - l / 4 c 1 2 =0 c 2 2 =e/2 c 3 2 =0 

c 0 3 =0 c , 3 = 7 x / 2 C 2 3 = Y / 2 c 3 3 = - ( e 2 / 2 + l / 8 ) . 

(34) 
Image Curves of Spherical Motions—Differential 

Properties. Using the Euler functions c,(t), i = 0,1,2,3 we 
obtain a curve c (t) on the unit hypersphere which is the image 
of the matrix function A(t). In canonical coordinates c(t) 
takes the form to the third order 

c(4>) 

r°i 
0 

0 

1 

- + -

' 0 ^ 

0 

1/2 

0 

• 4> + -

" 0 " 

e/2 

0 

-1/4 J 

4>2/2 

+ < 

7x/2 

7/2 

(M) 
</>3/6 (35) 

0 

where <t> represents the unit angular velocity parameter. The 
differential geometry of hyperspherical curves such as c(</>) is 
developed in detail in McCarthy 1983. Two functions 
characterize the shape of these curves analogous to the cur­
vature and torsion of curves in three dimensional space. 

The geometric properties of curves on the hypersphere are 
studied by means of the Frenet reference frame (T,N,B,E) and 
the arc-length parameterization <j>(s). The directions E and T 
of the Frenet frame are chosen along c(<£) and c ( 0 ) . These 
directions are mutually perpendicular since c«c=l implies 
2c»c' = 0. The direction ./Vis chosen along the component of 
dT/ds which does not lie in the E-Tplane; in the same way B 
is chosen along the component of dN/ds not contained in the 
E-T-N subspace. The important result of these definitions is 
the Frenet equations for hyperspherical curves. 

dE „ 
— =T 
ds 

dT 
— =-E+KN 
ds 

= - KT+ TB 
ds 

dB 

~ds 
= -TN (36) 

The functions K and T measure how c bends out of the E-T 
plane and how it bends out of the E-T-N subspace. We will 
refer to these functions as the curvature and torsion of the 
curve c(<j>). The Frenet equations prove that K and 7 com­
pletely define the shape of hyperspherical curves. 

Formulas for K and 7 in terms of c($) and its derivatives 
with respect to </> are given in McCarthy 1983 as 

, *[c'AcAc)A*(c'Ac'Ac)] 

and 
(c'-c)3 

*(c'Ac'AcAc) 

(C»C)3K2 
(38) 

18/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Equations (37) and (38) use the algebra of multi-vectors, 
Flanders 1963, in order to generalize the vector cross product 
to four dimensional space. 

The dual of the rank three multi-vector c'AcAc is computed 
to be the four dimensional vector 

*(c'AcAc) = 

-el A 

0 

0 

0 

(39) 

The combination of operations in the numerator of (37) is in 
essence the dot product of (39) with itself; thus we have 

, (e/4)2 

= 4e2 (40) 
(1/4)3 

The canonical coordinate frame is defined in such a way such 
that e > 0; thus we have K = 2e. This is the curvature of c (</>) 
at the reference instant 0 = 0. 

The numerator of (38) is the determinant of the 4 x 4 matrix 
formed from the vectors c, c, c and c, thus ris given by 

e KT)(?)/[(J)'H- (41) 

pansion of A (0) for spatial motion is also given by (9) and 
(10). We now define the origin of F such that the series ex­
pansion 

d ( 0 ) = d o + d , 0 + d 2 ^ - + - d 3 ^ + . . . (46) 
l 6 

takes a particulary simple form. First, we require that the 
origins of M and F coincide at the reference instant t = <j> = 
0, thus d0 = 0. Now, as is described in Bottema and Roth 
1979, the origin of F i s restricted to lie on the line coinciding 
with the instantaneous screw axis (ISA) of the motion of M 
relative to F. The ISA is the unique line in the direction of the 
angular velocity vector w with the property that points in M 
lying on it have velocities in the direction parallel to w. This 
defines dj to be dj = {0fi,dzl) since the direction of w has 
been chosen as the Z axis of F, 

Finally, on the ISA there is a unique point with the property 
that its accleration vector lies in the Y—Z plane of the 
reference frame F. This point is the striction point at the 
reference position of the ruled surface generated by the in­
stantaneous screw axis. Choosing this point as the origin of F 
we have d2 = (0,dy2,dz2). Each additional order of expansion 
o fd (0 ) adds more constants, for example d3 = (dxi,dyi,dz3). 
Thus in the canonical coordinate system of spatial motion we 
have to the third order 

An expression for K' is also given in McCarthy 1983 which in 
our case becomes 

dK _ (C'C){ *[(cAcAc)A-(cA cAc)]) -3(c«c)['[(cAcAc)A*(cAcAc)] j 

ds (c'.c')1/2 (C«C')4K 
(42) 

the dual of the multi-vector c'A c'Ac is the vector 

' - 7 / 4 

*(cA'c'Ac)= •{ 7x /4 

0 

0 

(43) 
d0 = 

"°1 
0 

0 

, d , = 

' o -

0 

1**1 J 

-, d2 = -
' ° 1 

dyl 

ldz2 J 

thus (42) simplifies to be 
and d, = -

(mm 
•Jyl (47) 

= 47„ 

Equations (40), (44), and (41) give the curvature K, rate of 
change of curvature K' and torsion T of the image curve c(0) 
of a spherical motion in terms of its instantaneous invariants 
e, 7* and 7^. 

Spatial Motion. The spatial motion of a general rigid body 
in Euclidean three space is represented by a parameterized set 
of orthogonal matrices A(t) together with a vector function 
d ( 0 • Choosing a reference frame M in the moving body and 
another F in the fixed space defines the pair 
T(t):(A(t),d(t)) such that is p:(x,y,z) is a point in M its 
trajectory ap(t) = (X(t),Y(t),Z(t))mF\s&\tnby 

ap(t)=A(t)p + d(t). (45) 

A (t) defines the orientation of M relative to F and d(/) the 
position of its origin relative to the origin of F. A canonical 
pair of reference frames M and F and a special motion 
parameter 0 may be chosen so that the Taylor series ex­
pansions of A(4>) a n d d ( 0 ) contain a unique set of constants 
known as the instantaneous invariants of the spatial motion. 
The orientation of these two frames and the special motion 
parameter are defined in exactly the same way as was done 
previously for spherical motion. Therefore, the series ex-

The instantaneous invariants of spatial motion to the third 
(44) order are the constants e, yx, yy and dxl, dy2, dz2, dx3, dyi, 

dzi; each additional order adds six more invariants, three 
from A (4>) and three from d (<j>). 

The spatial motion T(t); (A((j>), d ( $ ) ) is also prescribed 
by the four dual Euler functions c, (</>), / = 0,1,2,3. The series 
expansion of these functions about t = <l> = 0 is given by 

c,(*)=c,(«)+«:?(*) 
/ <t>2 </>3 \ 

= [c/o+CjiQ + Cn y +c f 3 - + . . .J 

+ e{cf0+cf1 +cf2 — +c% — + . . .), 

i = 0,1,2,3 (48) 

The real part of (48) depends only on the matrix ^4(0), and 
the relationship between the invariants e, yx and yy of A (<j>) 
and the constants c,„, /' = 0,1,2,3, n = 0,1,2,3 has already 
been determined. The result is that the real part c(</>) of the 
dual curve c(0) representing the spatial motion is exactly 
equation (35) and what remains is the evaluation of the dual 
part c* ( 0 ) . This we compute from the defining equations (9). 
Since the series expansions of c(</>) and d(0) in the canonical 
coordinate system are both known, equations (34) and (47), 
respectively, we obtain c* (0) by direct computation to be to 
the third order 
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c * W 

f (T 

0 

0 

0 

- + -

r ° ^ 
0 

dzi 

2 

0 

-</> + • 

r ° ] 
-dyi 

2 

da 
2 

dzl 

2 

4>2/2 

3dz,e 

4 

3d, 

3d y2 

Jyl 

dx3 

2 

03 /6 (49) 

3d,. 

The constants dzl, dy2, dz2, dxi, dy2, da in (49), together with 
e, yx and yy are the instantaneous invariants of the spatial 
motion. 

Image Curves of Spatial Motions - Differential Properties. 
The dual Euler functions c,(</>) = c,(</>) + tc*(4>), i = 
0,1,2,3 define a dual curve <?(</>) which is the image of the 
spatial motion T(t):(A(<j>), d(</>)). In canonical coordinates 
c(t) is to the third order 

c(<£) = 

0 fo 

> + < 1 dzl 

2 ~ ^ 

\ <t> + 

0 

e 

Y~e 2 
dz2 

72 

+ -l 

2 

1L 
2 

+ e ;edz] •ly2- "f) 
•*y3 

"(T + i ) - ( !*• -¥) 

(50) 

3 , 
e^dz2 

where <j> is the unit angular velocity parameter. 
The curve c(<f>) is a four dimensional vector function over 

the set of dual numbers. Vector functions similar to c($) but 
having only three dual number components have been used 
extensively to study ruled surfaces (see Dimentberg 1965 and 
Veldkamp 1976). In those works a complete dual vector 
calculus is developed and it is seen to be formally identical to 
the usual vector calculus over the set of real numbers. This 
may be attributed to the fact that algebraically dual numbers 
have all the properties of real numbers with the exception that 
division by pure dual numbers (those of the form c = 0 + eb) 
is undefined. If we avoid this singular situation all com­
putations using real numbers may be made using dual 
numbers as well. With this justification we move ahead with 
the "dualization" of equations (36), (37) and (38) to obtain 
results concerning the differential geometry of c (<j>). 

In order to study c(<f>) we require the dual Frenet reference 

frame (T,N,B,E) and the dual arc-length parameterization. 
This will allow us to obtain the dual Frenet equations. We 
define the arc-length s((/>) of c(0) by the equation 

s(4>) - s : (c»c )i/2dct> (51) 

the dot denotes differentiation with respect to 4>. As long as 
the integrand of (51) is not a pure dual number, this function 
can be inverted to yield 4>(s). In practice we compute 
derivatives with respect to s by noting f ( 0 ( i ) ) = s 
therefore 

from which we obtain 

ds d(j> 

d(j) ds 

d<t> 
~df 

(52) 

(53) 

where v = (c»c) 1 / 2 . 
Finally we see that for any dual function/($) we obtain/( s) 
such that 

(54) 
ds d<$> ds v d4> 

The dual Frenet reference frame for c(</>) is defined in a 
manner formally identical to the way the Frenet frame of 
hyperspherical curves is obtained. E is chosen in the direction 
c, and t in the direction dc/ds. The direction N is chosen 
along the component of df/ds which does not lie in the E-f 
plane; in the same way B is ^chosen along the component of 
dN/ds orthogonal to the E-f-N subspace. The result of these 
definitions is the dual Frenet equations for dual hyper­
spherical curves: 

dE ~ 
— =T 
ds 

dT 

dS 

dN 

~dJ 

dB 

dl 

= -E+kN 

= - kT+ TB 

:-TN (55) 

The dual function k and f together with the dual function 
v(4>) characterize differential geometry of c(<£). From (53) 
we compute 

v0=(6i'Cl)
i 1 dzl 

2 " e ^ 

v1=(crc1)/v0= -e- (56) 

1 
v2 =(c"i «c3 +c2>c2)/v0 =-e[dzle

2-2edy2-dz3] 

Furthermore using (37) and (38) we compute 

k = 2e + e2(dy2+2dzie) (57) 

and 

f = - — -e-Il2yx(dz]e + dy2) + 3dzle
2-(3dJ,2+2dx3)e] 

e e 

(58) 

and finally (42) yields 

k' =4yy + e2[4dziyy + ldz2e-dy3]. (59) 

These computations were facilitated using the symbolic 
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computation software MACSYMA with functions defined to 
manipulate dual numbers and wedge products. 

In order to completely characterize a general motion to 
third order nine independent instantaneous invariants are 
required. The geometric parameters defining the curve c($) 
to third order also provide nine independent constants: the 
three dual parts of v(4>) and the six constants which form the 
real and dual parts of k, f and k'. The equations (56)-(59) 
define the relationships between these two sets of constants. 

Up to this point, we have derived the relationship between 
the instantaneous invariants and the intrinsic properties 
(curvature, torsion, rate of change of curvature) of image 
curves of spherical and spatial motions. These relationships 
allow determination of instantaneous invariants of a motion 
from its image curve without the need for transforming the 
motion to the canonical coordinate system. 

In the next few sections, we take a different view point. We 
study the instantaneous kinematics of a motion directly in 
terms of the intrinsic properties of its image curve. We do this 
only for spherical motions. 

Local Properties of Point Trajectories of Spherical 
Motions. Having obtained geometric parameters which 
characterize the local properties of the image curve c($) (K, 
K' and r), we substitute these back into the series expansion of 
the orthogonal matrix A((t>) and study geometric properties 
of point trajectories generated by spherical motion. The A2 

and A3 terms in (9b) are now given by 

-1 

0 

-K/2 

0 K/2 

and 

A* = 

0 ( 1 + K 2 / 4 ) 

- (1 + K 2 / 4 ) 0 

- K ' / 4 K ( 3 - T ) / 4 

K ' / 4 

K(3 + T) /4 

0 

If ap(4>) is the trajectory of p:(x,y,z) fixed in the moving 
frame then we have to the third order 

Oin(<t>)= ' 

X 

y 

z 

- + • 

-y 

X 

0 

• <j)+ < 

-H 

-X+(K/2)Z~ 

( K / 2 ) * 

\l+K2/4)y+(K'/4)z 

- ( 1 + K 2 / 4 ) X + -£-(3 + T)Z 

- ( K ' / 4 ) X + - ( 3 - T ) . V 

<£2/2 

(62) 

We can now determine the geodesic curvature y of ap which is 
defined by the relation 

a - a X a _ z(x2 +y2)-(K/2)X(X2 +y2 +Z1) 
y»~ ( a -a ) 3 / 2 ~ (x2+y2y>2 ( ' 

The set of points p:(x,y,z) in the moving frame with the 
property that yp = 0 satisfy the relation 

2z(x2+y2)-icc(x2+y2+z2) = 0 (64) 

which is the well-known inflection cone now written in terms 
of the curvature K of the image curve c (4>). 

The rate of change of geodesic curvature yp of the 
trajectory ctp is given by 

, ( a 1 «)(((• i X "a) - 3(a X «)(a- a x a) 
yp= ( * . 6 )5 /2 

(x2 +y2 +z2) 
(65) 

; [K'X + K(3 - r)y](x2 +y2) - ln2xyz] 
4(x2+y2)s/2 

The set of points for which yp = 0 is given by 

[K'JC+K(3 - r)y](x2 +y2) - 3ic2xyz = 0 (66) 

which is the well known cubic cone of stationary geodesic 
curvature now written in terms of K, K' and r of the image 
curve c ((/>). 

Equations (64) and (65) form the link between the geometric 
properties of the image curve and those of the curves traced 
by points in the moving body. For example if K = 0 the image 
curve locally follows a great circle of the hypersphere to the 
third order. Motions with this property have degenerate loci 
yp = 0 and y'p = 0: the first locus becomes z = 0, the second 
x — 0. If K' = 0 the image curve has constant curvature to the 
third order and (66) divides into the two loci y = 0 and x2 + y2 

- ( 3 K / ( 3 - T ) )xz = 0, a plane and a circular cone respec­
tively. The value T = 3 does not seem to have any special 
geometrical meaning for the image curve though it causes (66) 
to degenerate into the plane x = 0 and circular cone x2 +y2 -
(3n2/K')yz = 0. Finally, if K' = 0 and T = 3, (66) becomes the 
three planes x = 0, y = Oandz = 0. 

The curves (64) and (66) are important in the instantaneous 
synthesis of spherical four bar linkages since they identify 
points which may be used for the moving pivots. All the 
results of instantaneous spherical kinematics can be cast into 
form which links the results directly to geometric properties of 
the image curve. 

The Axodes of Spherical Motion. The axodes of spherical 
motion are cones with vertices at the origin. One irF is fixed in 
the fixed reference and the other irM is fixed in the moving 
frame. The spherical motion may be considered to be 
generated as wM rolls without slipping over irF. The in­
tersections of the axodes with the unit sphere are called the 
polhodes. In this section, we derive the equations for the fixed 
and moving polhodes; we will also use irF and irM to denote 
the respective polhodes. 

Points on the moving polhodes irM are those which have 
zero velocity at some time during the motion. From the 
velocity equation 

etp((l>)=Ap (67) 

we seek p in M such that ap = 0. This is easily obtained by 
multiplying (67) by A T and setting ap = 0 to yield 

0=ArAp = MQ(<j>)p. (68) 

Since Mfl is skew-symmetric the solution of (68) for p is simply 
the vector formed from M 0 . Carrying out this computation 
we obtain to the second order 

T M ( 0 ) = 

7 T 

0 

1 

- + • 

' 0 " 

K/2 

0 

• c/>+< 

"K(1 - T) /4 

K ' / 4 

- K 2 / 4 

<j>2/2 (69) 

The equation for the fixed polhode is obtained in a similar 
way. We substitute A Tp for p in (67) and set ap = 0 to yield 

0 = AATP=FQ(<p)P (70) 

The solution for P is the fixed polhode: 

7l>(</>) = 

'0 

o !- + <! 

i i j 

" o 

K/2 

0 

- K ( 1 + T ) / 4 

K'/A 

- ( 1 + K 2 /4 ) 

2 
(71) 
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The geodesic curvatures yTM and yvp of these two curves are 
easily computed using (63) and we have 

- ( 1 - T ) (1 + T) 
y*M

 = a n d 7 x F = — — . (72) 

Analytically Defined Spherical Motion. Bottema and Roth 
(1979) survey a wide class of motions which are defined by 
setting the independent parameters of a motion equal to 
various functions of a single parameter t. An example of this 
is the particular case of a symmetric spherical motion defined 
by setting the Euler parameters c, ( 0 , i = 0,1,2,3 equal to the 
functions 

c 0 (O=0 

Cl(t)=a(l-t2) 
c2U)=2bt 
c,(t)=c(\+t2) 

where a, b and c are constants. This is the coupler motion of a 
special spherical four bar linkage. 

We introduce this example to illustrate the generality of 
local analysis using the image curve c(t) = (ci(0> c2(t), 
CiU), c 0 (0)- Equation (73) defines c(0 as a curve in the 
projective space £ ' . In order to examine c(t) on the hyper-
sphere we normalize it 

X(') = W (74) 

and compute its curvature 

and torsion 
T ( 0 = 0 . (76) 

The torsion r(t) of X (t) is zero as a result of the fact that c 
= 0, (see equation 38). At the instant t = 0, we have 

T c2 + a2 1 V2 ac 
K(0)=8flH4W^)J - F - (77) 

and we conclude that the instantaneous invariants at this 
instant are: 

lac 
e = ~£T ' ^ = 0 ' Tv = 0 (78> 

We can also determine, for example, the curvature properties 
of point trajectories at the instant t = 0, in view of equation 
(63) are given by 

yP = [z(x2 +y2)- (^l)x(x2 +y2+z2)]/[x2 +y2]3/2 (79) 

The rate of change of geodesic curvature of point paths of the 
motion at this instant then becomes (see equation 65): 

x2+y2+z2 r 3ac , . 3a2c2 1 y »= ^2
+y

2r2 L^(* 2 + ^- -^H 

We can also determine the polhodes of the motion and the 
geodesic curvatures of the moving and fixed polhodes at any 
instant. 

Conclusions 
In this paper, we have shown that kinematic mapping can 

be used as an elegant geometric tool to study local kinematics 
of spherical and spatial motions. Similar to instantaneous 
invariants of a motion, the mapping curve also provides 
constants that uniquely characterize a motion. We have 
applied the results to the study of instantaneous kinematics of 
spherical motions and have cast important results of spherical 
curvature theory in terms of the intrinsic properties of image 
curves of spherial motions. 
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Point Control of a One-Link 
Flexible Manipulator 
An alternative approach to the control of nonrigid, distributed parameter systems is 
presented. Transfer functions that relate the response of points on the system to a 
controlling force or torque are used in place of ordinary differential equations, 
which represent an approximation to the system dynamics. The implications of this 
"point control" approach are discussed with regard to plant modeling accuracy, 
uncontrolled regions, open-loop and closed-loop control strategies, system iden­
tification, and feedback estimation. Sample optimal control histories are illustrated 
for a single-link manipulator member with end load. 

Introduction 
Recently, efforts have been made to control maneuvers of 

mechanical systems which cannot be adequately modeled 
using a rigid body assumption for all or some of the system 
components, especially in the fields of satellite attitude 
control [1, 2] and robotics [3]. With few exceptions (e.g., [4]) 
these efforts deal with the distributed nature of such systems 
by attempting to develop an approximate model of the entire 
system using a finite number of time-dependent variables that 
are influenced by the control(s) according to a set of ordinary 
differential equations (ODEs). This general approach (which 
includes lumped parameter methods and controlled-modes 
methods) has two primary advantages and three significant 
disadvantages when compared with an alternative approach 
developed herein. The advantages of conventional 
discretization schemes are (1) that a large body of theory 
already exists to produce both optimal open-loop trajectories 
and closed-loop control laws for systems governed by ODEs, 
and (2) that, if control is successful, it is complete (in the sense 
that the entire system is modeled and controlled rather than a 
few regions or points within the system). The three disad­
vantages of the finite-dimensionalization approach are related 
to (1) the difficulty of adequately modeling a distributed 
parameter plant using a small number of variables, (2) the 
difficulty of acquiring from a few sensors accurate, real-time 
estimates of the controlled variables for state feedback, and 
(3) the difficulty of system identification. 

An alternative method described below makes use of 
transfer functions which relate the response of one or more 
points (or rigid regions) within a distributed parameter system 
to the controlling input(s). The preferability of this system 
description from the standpoints of plant model accuracy, 
state estimation, and identification is discussed as the method 
is introduced immediately below. The issue of constructing 
optimal open-loop trajectories that control points of interest 
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L = MANIPULATOR ARM LENGTH 
EI = " " BENDING STIFFNESS 
p •= " " MASS/LENGTH 
I0 = RIGID BASE MASS MOMENT OF INERTIA 
m = MASS OF END LOAD 
6 = ANGULAR POSITION OF BASE 
y = DEFLECTION FROM EQUILIBRIUM 
z = POSITION LOCATION ALONG ARM 
t = TIME (MEASURED FROM BEGINNING OF MANEUVER) 

Fig. 1 Manipulator arm model 

within the distributed parameter system is examined at length. 
(A similar approach is used to generate open loop trajectories 
for a second order system in [5].) Examples of optimal open-
loop trajectories are provided. The availability of closed-loop 
control laws using the convolution integral descriptions of 
motion is discussed next. Finally, the problem of uncontrolled 
regions within the system is examined empirically from the 
open-loop test cases. 

The Control Response Description 

Rather than a set of linear ordinary differential equations, 
the present method makes use of a convolution integral 
description of the response of controlled points on a flexible 
system to one or more controlling inputs. Such convolution 
integrals are derivable for the single-member manipulator 
arm model of Fig. 1, the several system configurations 
discussed in [6, 7], and a great many other linear, nonrigid 
systems. The general forms of the integrals are 

x(.t)=\'u(\)g(t-\)d\ (1) 
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x(t) = \'QuWg(t-\)d\ (2) 

where 

['](f) = d/dt[ ](/) (3) 

and where g(t) is of the general form 

CO 

g(t) = C0t + J}c„exp[s„t] + Cnexp[s„t] (4) 
« = i 

The constants C„ and s„ are complex. If x is the deflection of 
some point on the system measured with respect to a reference 
point moving with the same system, C0 is generally zero. If x 
is an absolute position, C0 is nonzero and real. In the absence 
of damping, the s„ are purely imaginary. 

The function g of equation (4) is the inverse Laplace 
transform of a transfer function X(s)/U(s). This function is 
derived below for any point of interest on the system of Fig. 1. 
The derivation represents an exact solution to the governing 
partial differential equations. No order truncation of the 
system dynamics is required until the actual trajectory is 
determined. Furthermore, a large number of terms can be 
retained in the response descriptions (equation (4)) with little 
incremental computational cost. Hence, the "spillover" 
problem inherent in the controlled-modes methods [1] is 
avoided. 

For the case of actual systems in which the first several 
parameters of equation (4) must be identified experimentally, 
sensors would, in principle, be required only for the purpose 
of measuring the input force and the corresponding ac­
celeration of points to be controlled. This contrasts with the 
more demanding identification requirement of lumped 
parameter models in which sensors must be located at each of 
the modeled degrees of freedom [8]. Similarly demanding 
identification measures are needed for systems modeled with 
modal amplitude ODEs. Such requirements may be im­
practical, for instance, on an orbiting satellite. 

The Manipulator Arm Integrals 

Consider the system of Fig. 1. Along the length of the arm 
(0<z<L) , the modulus of elasticity (£), the transverse area 
moment of inertia (7), and the mass per unit length (p) are 
constant. Although the radius of the base axis of rotation is 
assumed for convenience to be zero, a motor armature and 
gear box are modeled by way of nonzero rigid mass moment 
of inertia, J0, located at this base axis. The end mass, m, 
(located at the opposite end of the arm) is considered to oc­
cupy a point. The control torque, u, is continuously variable. 

The variable y(z, t) is the deflection of the arm at a point 
located a distance z from the torqued end, measured relative 
to the undeformed position of the arm. The angular 
displacement, Bit), is the angular position of the base 
measured from its original or reference position. 

To achieve point control of this system, four convolution 
integral types are required, given by 

e(t) = l,
0u(\)g(t-\)d\ (5) 

m = i'0u{\)Hf-\ydk (6) 

Xz,Q = l'0u(\)gzV-\)d\ (7) 

Mz,Q = l'0u(k)gz(t-\)d\ (8) 

It should be emphasized that gz and gz in equations (7) and (8) 
will vary depending upon the choice of the point location z. 
As will be seen, these convolution integrals are useful not only 
for determining optimal control solutions, but also for the 
exact monitoring of the response to any given input of un­
controlled points in a system. 

If the deflections are assumed to be small, the angular 

velocity low, and the member narrow, the governing partial 
differential equation is linear and given by 

EI(d*y/dz4) + p[d2y/dt2 + z(d26/dt2)] = 0 (9) 

Also, 

I,(d26/dt2) + mL(d2y(L,f)/dt2) + pj£ z(d2y/dt2)dz = u (10) 

where 

I,=I0 + pL3/3 + mL2 (11) 

The geometric boundary conditions at the torqued end are 

M0,/) = 0 (12) 

dy/dzlz=0=0 (13) 

The natural boundary conditions at the free end are 

d2y/dz2\z=L=0 (14) 

EI(d3y/dzi)-m(Ld26/dt2 + d2y/dt2) \Z=L=0 (15) 

The required transfer functions are found by taking a 
Laplace transformation of equations (9)-(15) in the time 
domain as follows: 

EI(d4Y/dz'i) + ps2(Y+zQ) = 0 (16) 

I,s2e + mLs2Y(L) + ps2\^zYdz=U (17) 

V(0) = 0 (18) 

dY/dz l z = 0 = 0 (19) 

d2Y/dz2\z=L=0 (20) 

ms2 Y{L) + mLs2Q-EId* Y/dzl l 2 = i =0 (21) 

where Y(z), 6 , and U are the Laplace transforms of y(z,t), 
6(f), and u(f), respectively. 

A general solution to equation (16) is 

Y{z) = exp(/fc)[,4 cos fc + B sin fiz] 

+ exp(-Pz)[C cos Pz+D sin Pz]-9z (22) 

where 

P4 = ps2/4EI (23) 

The constants A, B, C, and D are evaluated using equations 
(18)-(21). The resulting solution for Fis then substituted into 
the definite integral of equation (17), which is evaluated 
analytically. From this result and equation (22) the transfer 
functions G(s) and Gz(s) are found, where 

G=B/U (24) 

Gz = Y(z)/U (25) 

Both of these rather long expressions have the same purely 
imaginary poles. Summing the residues about these poles [9] 
yields g and gz in the series form of equation (4). In the case of 
both series, the s„ are imaginary, and, in the case of gz, C0 = 
0. 

Optimal Open-Loop Trajectories 

Although the following development is applicable to any 
system for which the response of points of interest are related 
to the control input according to equations (1, 2), the method 
will be illustrated in the context of the single member 
manipulator of Fig. 1 and equations (5)-(8). 

Central to any optimal control problem is the performance 
index selection. The selection made here for controlling the 
flexible manipulator is based upon a trajectory planning 
strategy that has been offered for rigid manipulators [10]. In 
particular, the suggested trajectory for a rigid version of the 
single-degree-of-freedom model would interpolate in time 
between the initial angular position 60 at time t0 and the final 
desired angular position df at time tf according to 
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Table 1 Physical properties of the system Table 2 Trajectory comparisons 

Arm length (L) 
Cross-sectional dimensions 
End mass (m) 
Base mass moment of inertia (To) 
Mass per unit length (p) 
Bending stiffness (EI) 

7.5 

- j 5.0 

w 2.5 
ZD 

o-
° 0.0 
g -2.5 
o 

-7.5 

-10.0 0 

POINT CON 

z = 2.5 -
z = 3.0 -
z = 0.0 -

STR'D 

--

3.0 m 
1 cm x 6 cm 
1.0 kg 
0.2 kg-m2 

0.54 kg/m 
27.8 N-m2 

""\ 

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5 
TIME (sec) 

Fig. 2 Optimal control histories 

0 

0(f) = C0 + C, t + C2t
2 + C3t

3 + C4t
4 + C5f

5 

The six constants in this polynomial are evaluated such that 
the desired angular positions are realized initially and finally, 
and such that initial and final velocities and accelerations are 
zero. A seldom observed fact is that the resulting smooth 
trajectory represents the minimum of 

u2(\)d\ (26) 

where, for the rigid case, the control torque u is related to 0 by 

u = I,6 

Because of its association with a recommended rigid-
manipulator trajectory plan, because it tends to yield smooth 
control histories, and because it allows for the initial and final 
specification u(t0) = u(tf) = 0 (such that initial and final 
control discontinuities are avoided), the performance index of 
equation (26) is selected for the flexible control problem. 

To develop the necessary conditions for an optimal 
maneuver, we begin with an assumption that the system is 
initially at rest. A control function u*{t) is sought that, over 
the interval t0 = 0 to tf, will bring the base of the arm from an 
initial state of rest at the position 8 = 0 to a desired final 
angular position, 6f, and velocity, 8f, such that / i s minimum. 

Case Description" 

1 Deflec 'nau = 2.5 
constrained @ tf 

2 Deflec'natz = 3.00 
constrained @tf 

3 No extra constraints 

"Final conditions of 9(tf) = ir, 6(tf) 

Residual 
energy (J) 

1.77 

1.17 

9.67 

= 0 specified for 

"max (N-m) 

8.8 

9.0 

5.0 

all three cases. 

/= Jo7 I"2W +K{ [u(\)gZl Uf-\)] +K2[u(k)gZl (tf-\)] 

+ . . . + K2N_, [u(X)gZN(tf- X)] + K2N[u(\)gZN(tf- X)] 

+ K2N+2[u(\)g(tf-X)- ef/tf\]d\ = \'f F(ii,u,\)d\ (27) 

Applying the Euler-Lagrange necessary condition to equation 
(27) 

dt \dii/ du 
(28) 

ii*(t)=-[Klgzi(tf-t)+K2gZi(tf-t)+. 

results in the requirement 

1 

+ K2N+lg(tf-t) + K2N+2g(tf-t)) (29) 

Integrating equation (29) yields 

u*W=l\'0 \] {KigZx(tf-Z) + K2gZl(tf-i) +. . . 

K2N+lg(tf-^)+K2N+2g(tf-md^d\+Clt + C2 (30) 

Requiring that «*(0) = u*(tf) = 0 leads to 

C2=0 (31) 

c\ = -\\'f0 \Q\K,gZx(tf-i) + . • .+K2N+2g(tf-mdZd\ 

(32) 

Thus, the optimal control may be written in the form 

u*(t)=KJl(t) +K2fl(t) +. . . +K2/v+zf2N+2(t) (33) 

where, for instance, 

/iw=iOo*'i('/-a^-'tfJo**!(tf-smd\)/2 (34) 
The multipliers K{ are found by substituting equation (33) 
into the appropriate forms of equations (5)-(8) evaluated at 
t=tf. The result is a matrix equation of the form 

" / ! (*)*„( ' / -*) /2(X)^.(f/-X) 

J,(\)g(tf~\) 

• flN+lQ^gz^tf-X) 

f2N+lWg(tf-\) 

d\ 

K2 

K2l 

(35) 

In addition, TV previously selected points (z\, z2, • . . ZN) 
along the length of the arm may be brought simultaneously to 
a condition of zero deflection and zero rate of deflection. To 
this end, the performance index of equation (26) is augmented 
using 2TV + 2 constant Lagrange multipliers, Klt in con­
junction with equations (5)-(8). 

from which Kx through K2N+2 may be found. 
To illustrate this method, consider three cases of a 180 deg 

rotation of the manipulator arm. In each case the total 
maneuver time, tf, will be five seconds, with 6f = 0 and 6f = 
IT. The physical properties of the system provided in Table 1 
are consistent with an aluminum arm. In case 1, a point 2.5 
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FINAL CONSTRAINT ON LOADED END 

NO APPENDAGE CONSTRAINT 

Fig. 3 Mid-trajectory arm positions 

meters from the base of the 3-meter arm is controlled; in case 
2, the end point is controlled; and in case 3, only the angle and 
angular velocity of the base are controlled. 

The optimal control histories which result from these three 
cases are illustrated in Fig. 2. It is interesting to note that in 
the unconstrained case 3 no braking control is required. It is 
optimal, in fact, for the elastic member itself to supply the 
braking torque for the hub. Because only positive work is 
done on the arm for this case, the residual (elastic plus kinetic) 
energy in the system is high compared with the other two 
cases. This comparison is illustrated in Table 2 along with a 
comparison of the peak torque required for each case. The 
residual energy is computed by integrating the product ud over 
the maneuver time. 

Figure 3 illustrates an additional comparison between cases 
2 and 3. A sequence of member positions determined (via 
equations (5)-(8)) each 0.5 seconds through the maneuver is 
shown for these two cases. Certain of the frames indicate the 
velocity distribution along the member. As is clear from the 
final velocity profile in each case, most of the residual energy 
is kinetic rather than elastic. The relatively small deformation 
at t = tf probably occurs because u*(tf) = 0. 

The control of a second appendage point reduces the final 
velocity distribution to the extent that it cannot be detected 
using the velocity profile scale of Fig. 3. Fifteen terms were 
required in each infinite series expression in u* to produce 
adequate solution convergence. 

Closed-Loop Control 

An interesting observation that can be made upon 
examination of the preceding open-loop control cases is that 
uncontrolled regions can be "brought into line" by con­
trolling only a few points within a system. Many applications 
of the point control method, however, would require feed­
back to accommodate possible disturbances, modeling errors, 
or control errors. One closed-loop control approach which 
makes use of the convolution integrals, published first in [7], 
minimizes 

r=^uH\)d\ (36) 

The resulting trajectories tend to be unsmooth. The coun­
terpart to this control law which minimizes 

I=^u2Wd\ (37) 

is developed below. The goal is as it was for the open-loop 
case; starting from a state of rest, bring the base and N ap­
pendage points to a prescribed position and velocity at t = tf 

while minimizing / . Now, however, the angular acceleration 
of the base, f)'m(/), is continuously available. (It should be 
noted that a similar development to that given below could be 
used for cases of angular position or angular velocity feed­
back.) 

Consider the mid-maneuver time t=T, 0<T<tf. Clearly, 
" / " will be minimum if u{t), T<t<tf, is selected such that 

/ (7) = j'/w2(X)tfA (38) 

is minimized subject to the final requirements on 9(tf), 6(tf), 
and the like. In addition, u must be selected such that u(tf) = 
0 and u(T) is continuous. 

The necessary condition for minimizing equation (38) gives 
rise to equation (29) and equation (30) as before. However, Cx 

and C2 are no longer determined simply, as in equations (31) 
and (32). Furthermore, the value of the multipliers will change 
depending upon the prior acceleration history, 6,„(t), sensed at 
the base. 

To illustrate this, consider the following form of the in­
tegral in equation (5) evaluated at t = t/. 

e / = P9(7) + l'/M(X)g(//-X)rfX (39) 

where 

Pg(T) = $T
0ua(\)g(tf-X)d\ (40) 

and where «„(X) (0<X<T) is the "actual," sensed, control-
plus-disturbance torque acting at the base. This "actual" 
torque can be determined from the measured acceleration 
dm (0 according to 

ua(t) = \l
0dm(\)g(t-\)d\ (41) 

where g may be found from equation (24) such that 

g = £^{[s2G(s)}-'} 

The sinusoidal form of g allows for the rearrangement of 
equation (41) into two integrals with time-varying coefficients 
of the form 

««W= LihM'JmWPnW^ + rMl'JmWQ,MdM (42) 
n = l 

Equations (40) and (42) may be integrated numerically 
throughout the maneuver to continually produce new updates 
for Pe. Analogous quantities (Pg, Py{, Py{ , Pyi, etc.) can be 

computed for the other controlled quantities 0(tf), y(z\, tf), 
y(.Zi,tf),y(.z2,tf), etc.). 

At time T, then, the multipliers K,, along with the in­
tegration constants C, and C2, can be reassessed using the 
matrix equation 

r-^m " 
-P>ST) 

0f-P,{1) 

Bf-PtU) 

II(7) 

0 

= [Q{T)\ 

' Kx 

K2 

KlN+l 

K2N+2 

c, 
. c2 _ 

The elements of [Q{T)\ in equation (43) are given by 
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r/d,(X)g,1(f/-X)dX \t(d2(\)gZi(t/-\)d\ \'f\gZ](tf-\)d\ $'fgZl(tf-\)d\ 

rfi(7) 

where, from equation (30), 

d2(0 = OU^tf-ZWdX 

(45) 

(46) 

and so on. 
The frequency with which the multipliers are updated may 

vary depending upon the computational facilities which are 
available. The matrix [Q{T)\ is the same for any given 
maneuver regardless of the measured Sm(t). Thus, [Q(T)]~l 

may be developed well in advance of time T, making plausible 
a real time implementation of the algorithm. The optimal 
closed-loop control takes the form of equation (30) in which 
the most current values for K, and C, are used. 

This control law is, as stated, predicted upon the assump­
tions that all disturbances act on the rigid base, and that the 
rest of the system is modeled perfectly. Further investigation 
is required to determine the behavior of the algorithm when 
these assumptions do not hold. 

Discussion 

An alternative approach to the maneuver control of 
nonrigid systems is introduced. Rather than attempting to 
achieve a desired final distributed state of the system, the 
method makes use of transfer functions to control only a few 
points within the system. As demonstrated in an open-loop 
maneuver simulation, a judicious selection of the number and 
location of these points can result in acceptably good 
alignment of the uncontrolled regions at the end of the 
maneuver. 

The approach offers certain inherent advantages over 
conventional finite-dimensionalization schemes in the areas of 
system modeling accuracy, system identification, and 
feedback estimation. The principal disadvantage of the ap­
proach lies in the absence of proven, stable, and robust 

T 

(44) 

feedback control algorithms that are based upon the con­
volution integral descriptions of motion. 
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A Time-Domain Method for 
identifying Modal Parameters 
A time-domain method for identifying the modal parameters of a vibration system is 
presented. It is shown that system eigenvectors can be effectively estimated through 
the multivariate AR model representation of the system response to white noise ex­
citation. In contrast to the usual ARMA model approach, in this method only a 
linear least square algorithm is required, so that a great amount of calculation 
is saved. Results of digital simulations support the identification method. 

1 Introduction 

Modal parameter identification is crucial for linear system 
identification (Berman, 1979). The key point in identification 
is to determine the relationship between the system parameters 
and the measured dynamical data. There are different ways to 
relate the modal parameters to the measured data, which leads 
to different identifying methods. 

Modal parameters can be identified either by a frequency-
domain method or by a time-domain method. These two 
methods are often complementary to each other. Each of them 
has its own features and merits. They not only provide dif­
ferent approaches to the problem, but also reveal deeper 
knowledge from different respects. The frequency-domain 
method for system identification is relatively mature and has 
been widely used in engineering research. The time-domain 
one is still developing. 

Because in practice the system input data are often 
unavailable, in recent years attention has been paid to system 
identification when only output data are available. Two main 
methods have appeared in time-domain identification in this 
respect. One is the ITD method (Ibrahim et al., 1977a, 1977b), 
by which the system parameters are identified from the free 
vibration data. Another one is the ARMA model method 
(Gersch, 1975; Wu, 1977), which regards the random response 
as the time series of an ARMA process and identifies the 
system parameters by the ARMA model. Yet the latter has 
been applied mainly to identifying the eigenvalues, i.e., 
estimating the natural frequencies and damping of the system 
(Gersch and Liu, 1976; Pandit and Wu, 1983). 

In this paper a new method is presented for identifying the 
system eigenvectors by the ARMA model. Since eigenvectors 
must be identified in a multidimensional space, usually one 
has to use a multivariate ARMA model. However, determin­
ing a multivariate ARMA model is laborious, since a 
nonlinear least-square estimation or two-stage least-square 
procedure is required. In our approach, a multivariate AR 
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model is determined first from the random response data. 
Then it is used to estimate the Green function matrices of the 
corresponding ARMA model. Based on their relation to these 
Green functions, the modal parameters are then identified. In 
this approach it is not necessary to determine the ARMA 
model itself, so that the laborious computation for its model­
ing is saved. Results of digital simulations support this iden­
tification method. 

2 The Multivariate ARMA Model and Its Main 
Properties 

Consider a zero mean-valued A:-dimensional (k may be any 
finite positive integer) stationary random sequence^,, satisfy­
ing the following equation: 

yt- E a-yt- • w, a) 
where «,- and Cj are k X k matrices, and wt is a Ar-dimensional 
white noise sequence. It is assumed that w, is uncorrelated to 
yj when ,/'<?, and has the properties: 

E[w,] = 0, E\y/tyiJ\=mtt 

where D is a kxk real positive-definite matrix, and ote is a 
Kronecker symbol. 

By defining a backward shift operator B as 

and letting 

Byt=y,-

A(B)=I~TI
 aiBi 

/ = i 

C{B)=I-
j * = i 

equation (1) may be written as 

A(B)yt = C(B)w, (2) 
The random sequence y, is said to be stationary (Priestly, 
1981), if and only if "all the zeros of det4 (B) lie outside the 
unit circle" (3a) and yt is said to be invertible, if and only if 
"all the zeros of detC(B) lie outside the unit circle" (36). 
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Satisfying equation (1) and the stationary and invertible con-
diton (3), y, is called a A>variate ARMA sequence, or said to 
be governed by a £-variate ARMA model. 

The roots of det4 (B) = 0 are defined as the eigenvalues of 
the £>variate ARMA model. 

It can be proved (Wang, 1984) that, similar to the univariate 
one, the multivariate ARMA model also has its transfer form 
and inverted form: 

y,=A-l(B)C{B)w,= £) Gjw,_j 
j=o 

= E GjBiwt = G(B)w„ G0=I (4) 
y=o 

v, = C-l(B)A(B)y,= -'£ Lj. y<-
j=a 

= ~ E LjBiyt=L(B)y„ L0=-I (5) 

Some important properties of the Green functions and Inverse 
functions are as follows: 

1. Gj in equation (4) is called the Green function matrix 
(or Impulse response matrix), which describes the "memory" 
effect of the system to the impulse, which acted at the instant 
(t—j). The convergence of {Gj} decribes the stability of the 
system. 

Substituting equation (4) into equation (2), we have 
A(B)G(B) = C{B) 

Comparing the terms on the both sides with the same power in 
B, we have 

A(B)Gj = 0, j>q (6) 
The general solution of equation (6) has the form: 

kxp 

Gj^ E E,R\, j>q 
1 = 1 

(7) 

where Rt'& are inverses of the eigenvalues of the ARMA 
model, and coefficient matrices Ej's are determined by the in­
itial conditions, G/s, j&q. Since Gj = 0, for y'<0; when 
q<kxp, the solution of equation (6), satisfying the initial 
conditions, may be written as 

f kxp 

E EM 
1 = 1 

o 

wheny>0 
(8) 

, when j < 0 

2. Lj in equation (5) is called an Inverse function matrix. 
From equations (4) and (5), we obtain 

G(B)L(B) =A~l (B)C{B)C-l(B)A(B) =1 

or 

(I+GlB + G1B
2 + . . . )(I-LtB-L2B

2-. . . ) = / 

Comparing the terms on the both sides with the same power in 
B, we obtain 

Gl—Ll, G2—LlGi+L2 

i i - 1 

G„= E LH_jGj+Ln (9) 
J = I 

3 The Relation Between Damped Linear System and 
Its ARMA Model 

Suppose that the differential equation of motion of a 
damped linear system may be written as 

my(t)+cy(t)+ky(t) = w(t) (10) 
where matrices m, c, and k are all assumed to be nxn real 
symmetrical positive-definite matrices. 

The transfer function matrix of the system (10) can be ex­
pressed as 

H(s)='£ulUT/sl(s-sl) 

where S/'s are the system eigenvalues, and Uj's are corre­
sponding eigenvectors, which are complex in general. 

The impulse response matrix of system (10) can be expressed 
as 

r 2« 

i = i h(t)=£~1H(s)-

0 t<0 
The stationary response of system (10) is 

{
Oo 

h{u)w(t-u)du 
o 

Putting it in discrete form, we have 

y>= E hiw<~j 

where 
y, =y(tv), v: sampling time interval 
w,_j =w(tv-jv) 

(11) 

* - i : 
• (i+i)u 

h,- - \ h(u)du 

= £ ^ 1 / ^ ( ^ - 1 ) / ^ (12) 

under the assumption that w(t) is constant over the sampling 
time interval. 

It is known that the correlation function of the response of a 
damped linear system under white noise excitation is asymp­
totically stationary. Hence, there always exists a stationary 
random response, for which the discretized version is a sta­
tionary random sequence. 

Since the discretized random response of system (10) is a 
stationary time series, it satisfies the following /z-variate AR­
MA model (Hanna, 1970): 

A(B)y, = C(B)w, 

Its transfer form may be written as 
oo 

y^Y^GjBiw, 

The .y,'s in the above equation and in equation (11) express the 
same response sequence of the system, so that the corre­
sponding Green function matrices should be equal. We have 

In nxp 

J>^£/,.t/7V.»-l)A?= £ R{E, 
1=1 ; = i 

Comparing the corresponding parameters on both sides of the 
above equation, we obtain 

p = 2 

R^e5'" 

E^UfUj(<?>"-\)/s2 

Equation (13) gives the relation between the parameters of a 
vibration system and the corresponding ARMA model. 

(13) 
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4 Identifying the Modal Parameters of a Vibration 
System 

It is easy to see from equation (13) that, having estimated all 
the Rj and the corresponding coefficient matrices Et of the 
ARMA model, we can identify all modal parameters of the 
vibration system. The identifying process consists of the 
following three steps. 

1 Estimating Eigenvalues of an ARMA Model Based on 
Correlation Function Data (Zhang and Qiu, 1983). From 
equation (2), we have 

detA(B)y, = {adjA(B))C(B)w, (14) 

Noting that det4 (B) is a polynomial of B, we choose a z„ any 
one of the components of yt, and write down the corre­
sponding equation in equation (14): 

detA(B)z, = Q(B)wt (15) 

where Q(B) is the corresponding row vector in 
[adjA(B)\C(B). 

Equation (15) may be regarded as a higher order univariate 
ARMA model. According to the definition of eigenvalues of 
an ARMA model, system (15) and (2) should have the same 
eigenvalues. Therefore, the estimation of eigenvalues of a 
multivariate ARMA model may be reduced to that of a higher 
order univariate one. 

Assume that the order of det4 (B) is m, and the order of 
Q(B) is q. Let 

det4(B) = l - / 1 B - / 2 5 2 - . . . -fmB» 

The autocorrelation functions, uk's, of a univariate ARMA 
model satisfy the following difference equation: 

det4 (B)uk=0, k>q 

Since m>q, the above equations may be written as 

N>m 
um-\f\ + "m-

UN-lfl+"N-
or in the matrix form 

where 

QN=\Um • 

PN = 
UN_ 

-2/2 + 

2/2 + 

• • • +UJm = "m 

• • + uN-mfm =UN 

PNFm = QN 

fmV 
•uN]T 

. . . u0 

• • • uN-m _ 

(16) 

The least square solution of equation (16) is 

Fm = \PT
NPN\-xPjQN 

Then we find the zeros of deL4 (B) for the ARMA model. 

2 Determining the Multivariate AR Model. We know that a 
multivariate ARMA model has its inverted form: 

w,= -^LjBJy„ L0=-I 

We can always find a finite order multivariate AR model to 
approximate this infinite order model with sufficient ac­
curacy. We might as well let its order be J, and write it as 

A{B)y,= (l-f^AiB
i)y, = w, 

Postmultiplying yj_s to the above equation and taking ensem­
ble averages, we have 

ro=E Ajr,_jAr + D 

where 

rs=E\ytyts\ 

Equation (17) is known as Yule-Walker (Y-W) equation. Let 

ajj= [Al A2 . . . Aj]T 

VJJ = 

rn 

O-i O-2 

v,= /•, 

O-i 

O-2 

• r0 

• rjY 
Equation (17) may be written in the matrix form: 

Therefore, we may obtain the Y-W estimation for the 
multivariate ARMA model. We shall take 

1 N 

^=-x7 E yrf-s 
ly t=s+l 

for the estimation of rs. One of the merits is that this estima­
tion has the property of positive-definiteness, which is 
necessary for determining the AR model. Since vn is positive-
definite, its inverse, vjj, does exist. From equation (17a),we 
can obtain a unique an: 

OjJ^VJj1 Vj 

In practice, it is more convenient to use the well-known recur­
sive algorithm for Y-W estimation: 

p p 
aP+\,p+i =(rp+i ~ Li a

Pjrp+i-j) (ro ~ LJ cPjrA ~ 
y=i )=\ 

ap+ij = apj ~ ap+i,p+icp,p+i -j 
c n = r i ro 

cp+i,P+i~(rp+\ 2japjrp+i-j) (ro LiaPirj} 
y=l y=l 

cp + lJ~cpj cp + l,p+iap,p+l-j 

7=1 

(17) 

3 Estimating Modal Parameters of a Vibration System. 
Having found the eigenvalues of the ARMA model, Rf', 
written as 

Rf^ai+jbi 

and letting the eigenvalues of the vibration system be 

si = Re(si)+jlm(si) 

we have 

Re (j,.) = ~(l/v)lns/af + bj 

lm(Si) = - ( l / y ) t a n - ' (6,/a,-) 

Then the natural frequencies and modal damping ratios may 
be obtained as 

wf = Re2(s,) + lm2(Si), f,- = -Re(*;)/w,-

Having obtained the approximate estimation of inverse func­
tions of the stationary random sequence, we find by equation 
(9) the approximate estimation of the Green functions: 

G0,GX G,„ 
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Table 1 Results of digital simulations (£/„ = Un = 1.00000) 
\ ^ \ ^ 

•Sl 

fl 
0 ) , 

1 

•52 

fc 
co2 

u22 

•Si 

fi 

« l 

^ 2 1 

2 

•52 

fc 
u2 

^ 2 2 

Single-point excitation 

Accurate 
correlation 

-1.56010 
+7'21.5777 

0.07211 

21.63403 

1.87981 

-4.27323 
+735.5487 

0.11935 

35.80462 

-3.54648 

-0.23374 
+721.9363 

0.01066 

21.93750 

1.99008 
-7'0.10852 

-1.80793 
+735.2813 

0.05117 

35.32760 

-3.34316 
-70.29415 

Pseudo­
random 

-1.53904 
+721.5069 

0.07138 

21.56190 

1.92788 
+70.00639 

-4.54904 
+735.2260 

0.12808 

35.51851 

-3.72934 
-70.02734 

-0.25055 
+721.9321 

0.01142 

21.93353 

2.01963 
-jO. 17497 

-2.24729 
+735.3364 

0.06347 

35.40779 

-3.31824 
-70.37061 

Theoretical 

-1.56010 
+721.5777 

0.07211 

21.63399 

1.87980 

-4.27324 
+735.5487 

0.11935 

35.80462 

-3.54647 

-0.23374 
+721.9363 

0.01066 

21.93750 

1.99008 
-70.10852 

-1.80793 
+735.2813 

0.05117 

35.32760 

-3.34316 
-7'0.29415 

Multi-point 

Accurate 
correlation 

-1.56010 
+7'21.5777 

0.07211 

21.63403 

1.87980 

-4.27323 
+7'35.5487 

0.11935 

35.80462 

-3.54648 

-0.23374 
+7'21.9363 

0.01066 

21.93750 

1.99008 
-70.10852 

-1.80793 
+735.2813 

0.05117 

35.32760 

-3.34316 
-7'0.29415 

excitation 

Pseudo­
random 

-1.62435 
+721.5535 

0.07515 

21.62462 

1.83692 
+7'0.01058 

-4.64640 
+7'35.2484 

0.13069 

35.55332 

-3.55660 
-7'0.02359 

-0.22154 
+7'21.9687 

0.01008 

21.96982 

2.01550 
-7'0.10784 

-2.01896 
+7'35.2737 

0.05714 

35.33143 

-3.33370 
-70.36933 

with m > (2n - 1). Letting the sth column vector of Gj be Gjs), 
we define a matrix gis) as follows: 

,(s) 

S (*) : W 
Letting 

e<*>=[£{s> E!f> 

1 Rt R] 

El*] 

. RT 

(18) 

_1 R2n R\n . . . J?g, 

from equation (8) we have 
p(s) =g(s)/-

Therefore, the least square estimation of e(s) may be obtained 
as 

e<J>=g<*>rr[/T7']-1 

Moreover, from equation (13) we have 

e<*>=[C/1l/,1(Ci«'-l)/sf UuUaM(eK»''-l)/sL] 

= [«i «2«1 

Up to an aribitrary multiplier, «, is the complex eigenvector 
associated with st. 

5 Digital Simulations 

The following digital simulations have been made to verify 
the effectiveness of the above method for identifying modal 
parameters. Two illustrative systems are used in the simula­
tions. Their differential equations of motion may be written as 

mx+cx+kx=w(t) = [w1(t) w2(t)]
r 

where for system 1, 

rioo 01 • _ r 500 - I O O I 
Lo i 5 j ' c L-100 IOOJ' w = 1 0 15. 

and for system 2, 

:150c 

m-

76915 
14415 

75 
50 

14415' 
14415. 

-50' 
50 

Although the two systems have similar natural frequencies, in 
system 1 damping is proportional, or classical, so that system 
1 has classical normal modes, i.e., its eigenvectors are real. 
While in system 2 damping is non-proportional, so that system 
2 has non-classical modeshapes, i.e., its eigenvectors are all 
complex. The excitation, w(t), is treated either as zero-
meaned ideal white noise in case 1, or as zero-meaned pseudo 
random white noise in case 2. In each case, both single-point 
excitation, i.e., w^Q and vc2 =0 , and multi-point excitation, 
i.e., Wj 5*0 and w2^0, are used. 

Case 1 Ideal White Noise Excitation. In this case, ideal 
white noise excitation is used in order to examine the iden­
tification program. Accurate correlation function matrices of 
stationary random responses are obtained by modal analysis 
method (Fang and Wang, 1985). Then, multivariate AR 
models are determined based on the accurate time series data. 
Finally, modal parameters are obtained. The results are 
satisfactory and they are listed in Table 1. This simulation is 
actually a deterministic one, because the correlation function 
matrix obtained for response to ideal white noise excitation is 
an auccurate one. 

Case 2 Pseudo Random White Noise Excitation. To verify 
the effectiveness of our approach in practice, the pseudo ran­
dom white noise is used to carry out the random simulations. 
The excitation we used is a pseudo random sequence with 
uniform spectrum, namely a time series, which is the IFFT of 
a uniform spectrum with random phases. The wx(t) and 
w2(t) are generated independently in the experiments. The 
responses are obtained by numerical integration. In order to 
ensure the numerical integration has sufficient accuracy, we 
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resort to the conventional modal analysis method. However, 
the responses are random due to the random nature of the ex­
citation. In every trial we use different random numbers to 
generate different time-histories of pseudo random noise. Fur­
thermore, in every trial we discard the first few hundred of 
sampled response data to ensure a stationary state (Caughey, 
1963), and then use the succeeding 1000-1500 sampled data to 
estimate the response correlation function matrix. The sam­
pling interval is taken as 0.02 s for system 1, and 0.04 s for 
system 2. The results shown in Table 1 are based on the 
average outcome of 20 trials. The experiments reveal that both 
the eigenvalues and the eigenvectors can be estimated within 
reasonable accuracy, no matter whether the system is single-
point excited or multi-point excited. 

All the above experiments were conducted on the SIEMENS 
7760 computer with a double precision algorithm. For brevity 
the results listed in Table 1 are only shown to the fifth decimal 
point. 

6 Conclusions 

A new approach for identifying modal parameters is 
developed. The method has the following features: 

1. It is based only on response data for white noise excita­
tion. Thus it is applicable even when precise excitation data 
are unavailable, but the excitation is approximately white in 
nature, e.g., in low-level ambient vibration tests of structures. 

2. Since only a multivariate AR model for response data is 
required to determine the Green function matrix, it saves com­
putational effort. 

3. Not only eigenvalues, but also eigenvectors can be iden­
tified with reasonable accuracy. 

Digital simulations support this time domain identification 
method. 
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ERRATA 

Errata on "Beams in Receding/Advancing Contact: Dunders Problems" by T. P. Pawlak, N. J. Salamon, 
and F. F. Mahmoud, published in the December 1985 issue of ASME JOURNAL OF APPLIED MECHANICS, Vol. 
52, pp. 933-936. 

On p. 934, line 2 of Table 1 should read as follows: 
Moment of inertia = 1.041 x 10~7 m4 

On p. 935, line 21 in the Results section should read as follows: 
" . . . where D is the center of deflection for P= 2.224 X 105 N. In comparison . . . " 
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A Natural Modes Model and 
Modal Identities for Damped 
Linear Structures 
A modal model is derived for a passive elastic structure with linear viscous damping, 
from a first-order state variable arrangement of the physical parameters model. The 
state variable form of the model is composed using the equations Kq — Kq = 0 and 
Mq' + Cq + Kq = f. An attribute ofthe particular formulation is that itfacilitates 
a straightforward derivation of mass-properties-related modal identities for the 
associated damped natural modes. Transfer functions and normalizations used in 
experimental modal parameter estimation are also given special attention. 

1.0 Introduction 

For currently developing modal test and analysis technology 
that is based on curve-fit type of parameter estimation tech­
niques, such as the complex exponentials method, a modal 
model corresponding to a passive linear elastic structure with 
general linear viscous damping is of value and interest, and in 
use to some extent. This type of model is also referred to as a 
"damped natural modes model." 

A derivation of the basic modal model for passive non-
gyroscopic systems from a first-order state variable arrange­
ment of the physical parameters model, in the spirit of the 
classical normal modes analysis, was published by Foss (1958) 
and is well known and extensively used (Meirovitch, 1967; 
Ewins, 1984). An alternate modal derivation that involves 
Laplace Transformation of the physical parameters model and 
analysis of the resulting second-order algebraic matrix equa­
tion is also available (Richardson, 1974). Derivations using 
state variable formulations different than Foss's have also 
been given (e.g., Beliveau, 1977, Brandon, 1984). Analyses of 
modal properties applicable to active gyroscopic systems are 
given by Nelson and Glasgow (1979) and Fawzy (1977). These 
works are complementary and contribute a visibility into the 
structure of the system that is needed, particularly for efficient 
parameter estimation. 

Foss's (1956) state variable arrangement of the physical 
parameters model, composed using Mq — Mq = 0 and Mq + 
Cq + Kq = f, has parameter matrices that are not positive 
definite. Consequently certain mass-related modal identities 
cannot be established conveniently from the formulation. The 
modal identities are the damped natural mode equivalents of 
those recently documented by Hughes (1980) for the un­
damped case. The identities have significance to future 
research in analytical and experimental techniques of assessing 
mode set completeness and modal truncation procedures. In a 
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formulation put forth for a more general category of modal 
analysis by Meirovitch and Baruh (1981) and Vigneron (1981), 
Kq - Kq = 0 is used to compose the state variable form and 
this results in the presence of a positive definite parameter 
matrix. As a result it turns out to be evident that certain modal 
vectors constitute a basis in a Euclidean inner product space, 
and further that Bessel's equations can be conveniently ob­
tained and used to establish the modal identities. 

This paper first derives the modal model from the latter 
state variable arrangement, with the intent of adding further 
visibility into the structure of the passive linear damped case 
and clarifying certain normalization factors and other rela­
tions used in parameter estimation. Then the appropriate form 
of Bessel's and Parseval's equations are established, and the 
modal identities obtained. 

2.0 Model in Terms of Physical Variables 

To obtain modal identities in the form to follow in Chapter 
4, a physically-based definition of the structure and reference 
coordinate system are needed. One appropriate for this pur­
pose, and for experimental modal parameter estimation, is 
outlined in this Chapter. 

The structure, depicted schematically in Fig. 1, is defined by 
N points, relative to a coordinate system Qxyz. In parameter 
identification, where a finite number of points are in­
strumented, N is finite. A mass, m', is associated with each 
point. The coordinate system, Qxyz, is considered to be chosen 
such that rigid body translations and rotations between it and 
the structure are not possible due to physical restraints, or 
have been mathematically eliminated. Define the deformation 
matrices, of order N X 1, as 

U= 
u2 

V= 

r vi -
V2 

V* 

_ vN _ 

W= 

' wl -
w2 

W* 

L ™N _ 

(2-1) 

and the corresponding position matrices of order N x 1 as 
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POINT i, DEFORMED-

POINT i, UNDEFORMED-

( l l ' , V', W') 

(x1, y\ z') 

X= 

Fig. 1 Coordinates of the structure 

Z = (2-2) 

x" j L y" 

The model for this structure has the form 

Mq + Cq + Kq = f, (2-3) 

The order of equation (2-3) is 37V, and is further denoted 
herein by n; C and K and M are each of order n X n. The 37V 
x 1 column matrices, q and f, are 

q = 
u 
v 
w i (2-4) 

The structure is considered to be passive, non-gryoscopic and 
with general linear viscous damping. Therefore, M, C, and K 
are symmetric and positive definite. 

For the above choice of deformation variables and coor­
dinates, M turns out to be diagonal and of the form 

M = 
~MN 0 0 

0 MN 0 
0 0 MN MN = 

m 
0 

0 

(2-5) 

where the dimension of MN is TV x TV. 
When TV is taken to infinity the model is exactly 

synonymous with the continuum representation of linear 
elasticity theory. The mathematical formulation to follow in 
Chapters 3 and part of 4 also applies for equations having the 
form of equation (2-3) with M non-diagonal. To obtain the 
form of the identities to follow in Chapter 4, the physical 
coordinates (and thus the diagonal M of this particular 
physical model) are employed. 

3.0 Transformation to Damped Natural Modal 
Variables 

Structural Model in State Variable Form. Equation (2-3) 
may be arranged in the first order state variable form, 

AQ+BQ=F 

Q 
fq " 

q _ 
, F = 

[f ~ 

0 
, A = 

\M 0 " 

0 K 
, B = 

c 
-K 0 

(3-D 

K 

where Q and F are of order 2w x 1; A is of order 2n x In and 
rank 2n, and is positive definite and symmetric; B is order 2n 
X 2/7, and is the sum of a symmetric part involving C and a 
skew symmetric part involving K. As noted in the Introduc­
tion, the above state variable form is different than the usual 
one of Foss (1958). 

Eigenproblem Analysis. The eigenproblem corresponding 
to equation (3-1) is 

(\kA+B)Tk = 0. (3-2) 

The eigenvalues X ,̂ are solutions of 

d e t ( X ^ + f i ) = 0 . (3-3) 

Since A and B are of dimension 2n, equation (3-3) is of degree 
2n. The equation yields In eigenvalues which are real or com­
plex. Since the rank of B is also 2«, the eigenvalues are non­
zero. The complex eigenvalues occur in complex conjugate 
pairs 

\ t = - °k + i»k V = - < * * - '"* • (3-4) 
The eigenvalues are assumed distinct. The X's that are complex 
can be converted to the conventional natural modal frequen­
cies and modal damping ratios, u and f by the formula 

The converse is 

•Mil-

--4 + °l 

- * * ) • 

(3-5«) 

(3-5b) 

A matrix column, tk, is calculated (and determinable to 
within a complex scalar constant) by solving equation (3-3) for 
a particular X .̂ Also a matrix row, YJ, can be calculated for a 
particular XT from 

YT(\A+B)=0. (3-6) 

Taking the transpose of equation (3-6) and recognizing that A 
= A T yields 

(\TA+BT)TT = 0. (3-7) 

Tk and rk are right and left eigenvectors of dimension 2« X 1, 
and are complex in general. 

Premultiply equation (3-2) by rj: 

\kT^Ark + r^Btk = 0. (3-8) 

Post-multiply equation (3-6) by Tk: 

\TY^Atk + Y^Btk = 0. (3-9) 

Subtract equation (3-9) from equation (3-8) to obtain, 

<kk-\)TTA1k = Q. (3-10) 

Therefore, for two non-equal eigenvalues XT and X ,̂ 

r ^ T t = 0; Y^Btk = 0 T^k. (3-11) 

It follows from equation (3-8), and from equation (3-7) after 
multiplication T{, that 

r£Bt* tlBTYk 

YT
kAt, 

X,t and \k are two distinct eigenvalues, and consequently 
rk*

TATk and Tk*
TBTk are equal to zero. 

To demonstrate the structure of T^, consider the upper and 
lower internal columns, t"k and t'k, each of order n x 1: 

-m- (3-13) 

Substitute equation (3-13) and the parameter values for A and 
B into equation (3-2): 

\kM 0 

0 X ^ 

lk 

In J 
+ 

" C K^ 

[_-K 0 J 

TTjf ^ 

r' 
) reduces to 

X kMt«k + C n+Kfk= 0 

= 0. (3-14) 

(3- 15a) 
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\kKr'k-Kru
k = o. (3-156) 

From the latter equation, t"k = \kT'k. Then equation (3-13) 
becomes 

(3-16) 

<bk is complex in general, and of dimension n x 1. Equations 
(3-15) can be further arranged to obtain 

{\kM+\kC+K)*k = Q. (3-17) 

A similar parallel development where rk is partitioned into 
upper and lower parts and equation (3-7) is decomposed in a 
similar manner yields T'k' = -\kT'k and Q\2

kM+\kC+K)T'k = 
0. Thus r^ equals $k, and 

r-M* (3-18) 

Vector Space Corresponding to Damped Natural Modes. 
The quantities, T̂ . and t k , k = 1 to «, are a set of In distinct 
column matrices (each of dimension In x 1). The set can be 
shown to be linearly independent, and each eigenvector can be 
shown to be unique in the sense that there is only one T^ for 
each \k by proofs similar to one given in Wilkinson (1965). 
Thus the quantities (T* + T£) and i(tk - T^), k = 1 to n, are 
also In linearly independent column matrices and are real-
valued, and define a vector basis of a real vector space of 
dimension 2n. For any vector G (i.e., real-valued column 
matrix of dimension 2n x 1) contained in the space, 
GTAG>0 since A is positive definite. Thus GfAG2 defines a 
real inner product for two arbitrary vectors, G, and G2, con­
tained in the space. Thus the vector space is a real inner 
product space (a Euclidean Space). The corresponding dual 
basis consists of (Tk + Fk) and i(Tk — rk), k = 1 to n. A real-
valued vector, G, may be represented in terms of the basis vec­
tors by 

G = £«*(T* + Tt*) + V ( T t - r ; ) , (3-19) 

where ak and bk are real-valued scalars. The above expression 
rearranges to the form 

G= £ (aktk + ctiti) (3-20) 
* = i 

where ak = ak + ibk. Thus one may regard the basis vectors 
of real vector space as tk and t k , if at the same time ap­
propriate pairing of complex and complex conjugate quan­
tities is maintained to ensure that the total expression is real-
valued. It proves convenient to work directly with the complex 
T's and T's and the representation in the form of equation 
(3-20) as oppp.osed to the real-valued basis vectors and the 
form of equation (3-19). 

System Model in Terms of Complex Modal Variables. The 
real-valued column matrix, Q ( 0 . of equation (3-1), can thus 
be represented as 

Q(0= E[T*P*(0+T**P**(0], (3-21) 

The denominator, FkATk, can be reduced by substituting into 
it A of equation (3-1) and tk and Tk of equations (3-16) and 
(3-18), to obtain 

-\l*T
kM*k + *T

kK*k. (3-24) 

Multiplication of equation (3-17) by <J>J* and combination with 
the above gives the final result, 

T{Ark=-\k4>Z(2\kM+C)<t>k. (3-25) 

Likewise, the numerator of equation (3-23) becomes rj¥ = 
-\kilf. Substitution of these results into equation (3-23) 
gives 

*£f(0 
pk(t)-\kpk(t) 

*H2\kM+C)*k 

A similar procedure with T*T as the premultiplier leads to 

(3-26fl) 

P * ( O - X ; P ; ( O = 
*!TW) 

*2 
(3-266) 

rk
 r(2\*kM+C)**k 

Equation (3-26a) or (3-266) is the differential equation of the 
system in terms of complex modal variables. 

Transfer Matrix and Residues. The transformation between 
q and p may be deduced from equations (3-21), (3-1), and 
(3-16) to be 

q(')= £ {**P*(O+**•/>;(/)). (3-27) 

Equations (3-26) and (3-27) are next transformed by the 
Laplace Transform. In this context the two-sided transform of 
a complex variable is implied with q(?) taken to be zero at t0 

= - oo. Then p( — oo) is zero. The transformed modal equa­
tion is 

Pk(s)-
*IHS) 1 

(3-28) 
* f ( 2 X t M + C ) * t (s-\k) 

Substitution of equation (3-28) into a transformed version of 
equation (3-27) yields 

q(s) = 
" r i 

l(2\kM+C)ik 

* ; r ( 2 X ^ M + C ) * ^ 

(s-\k) 

1 

(s-\D 
Us). (3-29) 

From the above equation follows the definition of the residue 
matrices, Rk and Rk, as 

R„ 
*r(2X,M+C)#, 

Ri 
****; r 

s^ax^M+o*; 
and the 'transfer matrix', H(s), as 

Rk H(s) = E 
s — \k s 

Rk* ] 

(3-30) 

(3-31) 

H(s) can be inverted to the time domain, to yield the unit im­
pulse response function, H(t): 

H(t)= £ (Rke
Kk'+R*e

>-k'). (3-32) 

where pk (t) is a complex-valued scalar variable 

PkV)=Zk(t) + ir,k(t). (3-22) 

To transform the state variable differential equation, equation 
(3-1), to be equivalent modal variable differential equation, 
substitute equation (3-21) into equation (3-1), premultiply by 
TJ, and use the orthogonality properties of equations (3-11) 
and (3-12), to obtain 

Pk~\Pk~-
i W ) 
nAtk 

(3-23) 

Rk and H(s) are complex-valued and of order n x n. H(t) is 
real-valued and of order n x n. 

Normalization Constant. The normalization constant, Qk, 
is consistent with experimental modal analysis conventions of 
Brown (1984) and with Fawzy (1977) when defined as 

Qk= *J(2\kM+C)*k • ( " 3 ) 

Qk is a complex scalar. Its numerical value and units depend 
on numerical value and units of the mode shape, or vice-versa. 
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With this definition of normalization constant, the residues 
assume the form, 

** = Q****J; Rt = Qt*t*ST, 
and H(s) takes the form 

*T, <- s-\t s-\! J 

(3-34) 

(3-35) 

Three of several possible ways of assigning the arbitrary cons­
tant associated with each mode shape, and hence Qk, follow. 

(a) Choose the numerical scaling for each mode so that the 
scalar element of the mode shape at the main exciter's driving 
point in a modal survey test is 1 + /0. This implies that Qk 

equals the scalar value of the residue associated with the driv­
ing point. This choice of normalization is compatible with ex­
perimental modal analysis conventions (Brown (1984)). 
(b) Choose the scaling for each mode so that 
$l(2\kM+ C)$k equals 2\k. This degenerates to $kM$k = 1 
when damping is zero, and is thus consistent with the unity 
modal mass convention of finite element and experimental 
modal engineering practice (Brown (1984)). For this choice, 
Qk = 1/2X*. 
(c) Choose the numerical scaling of each mode so that YlATk 

equals 1 + /0. This then implies that Qk = —\k. This choice is 
the most convenient one for theoretical work because it 
simplifies algebra a great deal. Unfortunately, this normaliza­
tion has no counterpart in the classical undamped or 
proportionally-damped modal theories, and consequently is 
not compatible with current engineering practice and 
developed software (e.g., SDRC (1985)). 

Procedures for establishing the Qk and mode shape scale 
factor from experiment-derived modal data (where M, C, K 
are not known) are described in Brown (1984) and in Vigneron 
(1985). 

System Model in Terms of Real Modal Variables. The 
system model can be expressed in terms of real-valued modal 
variables, %k(t) and r\k{t), as an alternate to p(t) andp*(0-
Substitution of equation (3-22) into (3-27) results in 

q ( 0 = 2 ^ { R e ^ . ^ W - I m i f i f c U ) ] (3-36) 

Substitution of equations (3-22) and (3-4) into equations 
(3-26o) and (3-266), and successive addition and subtraction 
of the two equations leads to 

ik + °k£k + VkVk = siT f (3-37«) 

Vk + akVk ~ v£k = JI f. (3-376) 

where Sk and TJ" are the real and imaginary parts, respective­
ly, of <$>l/m(2\kM + C)$k j . Equations (3-37) are two first-
order modal differential equations that are the damped-
natural-modes counterpart of the familiar single uncoupled 
second order modal equation 

Pk + 2tkUkPk + u2kPk = KTi- (3-38) 

of the proportional-damping theory. Of significance, 
however, is the fact that equations (3-37) cannot be put into 
the form of equation (3-38), except for the special cases of 
proportional and zero damping. Because of this, the physical 
concepts of "modal mass," "modal damping," and "modal 
stiffness" are not rigorously-applicable in the damped natural 
modes theory. The transformation of equations (3-37) from 
variables ( ^ , r\k) to (rk< pk) by 

rkU) = 

PkW-

°k HkiO+VkU) 

4 + 4 hit), 

(3-39«) 

(3-396) 

together with appropriate substitutions and use of equations 
(3-5) lead to: 

Pk + KkUkPk + «lPk = o>\ ( J ^ ~ T * ) f + s * f • (3"4°) 

The above equation is different in structure from equation 
(3-38) as noted above, because of the presence of the term in f. 

Modal mass, modal stiffness and modal damping for the 
damped natural modes model can be established from the pro­
perties T%TAtk = 0 and T^TBtk = 0. Additional informa­
tion on the real modal variables formulation is available in 
Vigneron (1981) and Vigneron (1985). 

4.0 Modal Identities 
Bessel's and Parseval's Equations. Bessel's and Parseval's 

equations offer a convenient means of establishing certain 
modal identities that are useful for validating completeness of 
mode sets and modal truncation. The form of the equations 
that appear in standard references is not general enough for 
the situation at hand. The desired forms are briefly outlined 
below. 

A real-valued arbitrary vector G of the Euclidean inner 
product space may be represented in the form 

G= E(«*Tt + «;r;). (4-1) 

The Fourier coefficients, ak, are obtained by multiplying 
equation (4-1) by T^A and use of the orthogonality relation­
ships, equations (3-11). Likewise an expression for ctk is ob­
tained by multiplication by T*TA. The following are 
obtained. r ^ G . _ T^AG 

a"~ TlA"tk ' a*~Tk*
TATk*

 ( 4"2 ) 

Similarly, G may be represented in terms of Tk as 

Gr= £ os^rf+/s;r;o. (4-3) 

The corresponding Fourier coefficients, derived by post-
multiplication by Atk and ATk as above, are 

GTAVk GrATZ 

rlATk rxTAT? 
(4-4) 

Consider the inner product, 

v * - = i J v k=\ J 

(4-5) 
The expression equals zero if the basis and dual, T*. and Tk, 
are complete. If they are incomplete, due to modal trucation 
for example, then the inner product is real and greater than or 
equal to zero, because A is positive definite and the right and 
left multiplying vectors are equal and greater than zero (if 
truncation is done, the dependence between the bases tk and 
Tk must be taken account of). The following result is achieved 
by multiplying equation (4-5) out, and simplifying with the or­
thogonality relations and the relationship rlATk = TlATk: 

GMG> £ ( ( T M T ^ a ^ + ^ M T f K l E (4-6) 

The above is a form of Bessel's inequality. If the bases are 
complete, the equality holds and the relation is referred to as 
Parseval's Equation. 

A second different arbitrary function G, may be further 
defined by 

G = D (a*T* + a;x;), (4-7) 
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cr= E wkn+far;r), (4-8) Ei^A+^ew ! )^ . (4-18a) 

where ak, ak, $k and $k are as per equation (4-4) with G 
replaced by G. It may further be shown that 

GMGa-i-£ lTlATk(akl3k + ai!Pk) 
z *-=i 

+ r ; r > i T ; ( a ; i 8 ; + a ^ ) ] . (4-9) 

Equation (4-9) is referred to as the general form of Bessel's 
Inequality. 

Identitites Involving Modal Linear Momentum. $k may be 
expressed in terms of components: 

* ? = [ M . * f l . (4-10) 
where 6k,4>k, and i/k are each TV x 1 column matrices and cor­
respond to the U, V, and IF coordinates of the displacement. 
Then 

r[ = [ - \M, - \k4>L - \kVkH^lM\ (4-i \a) 
n = l\8L\<t>L\VkMMM\ (4-iiz.) 

TT
kA*k=-\k/Qk. (4-llc) 

Let the arbitrary G of equation (4-1) assume the value, 3X, 
where 

Jj=[E7 ' ,0r,07 'J0
7 ' ,07 ' ,07 '], (4-12) 

each 0 is understood to be an N x 1 column matrix, and E is 
a n N x 1 column matrix, 

E r = [ l , l , l 1]. (4-13) 
The Fourier coefficients for the above Jx , obtained from equa­
tions (4-2), (4-4) and (4-11), are 

ak = QkI,
TMNek = QkYdm%; 

i=l 

n 

ak* = Qk*LrM%* = Qk* £ m'O?1 

i=l 

n 

1 = 1 

n 

Pk = -Q*kV
TM»6*k = -Qk*J^ »»'«*'• (4-14) 

i = i 

Likewise 

Equation (4-18a) thus states that the sum of the squares of the 
model linear momentum coefficients in the Ox direction 
(multipled by scale factors) is bounded, and is less than the 
total mass of the structure. In equations (4-14) to (4-17), MN 

corresponds to the physical model of Chapter 2 and is 
diagonal. 

For the normalization option (b) of the previous chapter Qk 

= l/2\k, Qk = \/2\k, and equation (4-18a) becomes 

^—{Plk+P^^m. (4-19) 

For damping set equal to zero, Pxk = P*k, in which case equa­
tion (4-19) compares to equation (25) of Hughes (1980). 

A similar procedure with the general form of Bessel's ine­
quality (equation (4-9)), and G = J , and G = J„ = [0 r , £ r , 
0T,0T,0T,0T]T leads to 

E !KQ kP x kP y k + X**Q*kP*xkP*yk) * 0 . (4-186) 

With other combinations of 3X< Jy, and Jz, and the ap­
propriate forms of Bessel's Equation, the following may 
likewise be obtained: 

n 

E lhQkP
2
yk + X ; Q ; P # ) < m (4-18c) 

tl 

E iKQ kPl k + KQkP*zk
2)*m (4-18d) 

k = \ 

n 

E i ̂ kQkPxkPzk + ^QkPxkP*zk1 s 0 , (4-18e) 

A - = l 

n 

E {\kQkPykPzk + \*kQ*kP;kP*zk)^0, (4-18/) 

The above six relations can be expressed in a single matrix 
relation 

E ixte*p*pf+x;Q;p;pt*
r} 

m 0 0 
0 m 0 
0 0 m 

(4-20) 

jTAJx = LTMNZ='Elm
i = m (4-15) 

where m equals the total mass of the structure. Substitution of 
equations (4-14) and (4-15) into Bessel's Inequality, equation 
(4-6) results in 

m a E {KQkV
rMNdk)* + \*kQ*kV

TMNe*k)
2\. (4-16) 

k=\ 

Define the quantities, Pxk, Pyk, and Pzk by 
N N 

Pxk = LTMN6k = E m% Pyk = LTMN<t>k = E «''** 
i = l 1=1 

N 

^ = ̂ M%=£m'ft. (4-17) 
/ = i 

Pxk, Pyk, and Pzk are complex scalars and are the Ox, Oy and Oz 
components of the modal linear momentum coefficient of the 
kth vibrational mode of the structure. Then equation (4-16) 
may be written 

where PjjT = {Pxk, Pyk, Pzk}. Pk has dimension 3 x 1 , and is 
complex in general. 

Identities Involving Modal Angular Momentum. Further 
appropriate assignments of the arbitrary G and G of Bessel's 
Inequalities lead to the following identities amongst modal 
angular momentum coefficients and moments of inertia. 

E [\kQknku];+\k'Qk*nk*niT) 
I I I 
*xx ±xy lxz 

xy '•yy \yz 

*xz yz zz 
(4-22) 

where the components of H^, the modal angular momentum 
coefficient vector, are 

N 

Hxk = y T M " ^ - ZTMN4>k = E m' (?Pk ~ z!Vk) (4-23fl) 
/ = i 

N 

Hyk = ZTMN6k -XTMN^k = E m' (z'O'k -x'M) (4-236) 
i = i 

N 

Hzk = XTMN<fk - YTMNek =Emi(xi<j>l
k-y

iei
k) (4-23c) 
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and Ixx, Ixr, etc, are the moments of inertia of structure, given 
by 

N 

IXX = ZTMNZ+ YTMNY=y£im
i{ya+za) (4-24a) 

Ixy = -XTMNY= - j ] m'x'y1' (4-246) 

and so forth. In equations (4-23) and (4-24), MN corresponds 
to the physical model of Chapter 2 and is diagonal, and Hxk, 
Hyk, and Hlk are complex-valued scalars. 

Identities Involving Modal Linear and Angular Momentum. 
The following identities may also be established. 

£ {\kQknkn+nQ*km
Tv*k

T\^m ~cz 
c. 

C7 - r 

0 

(4-25) 
In the above, the c's are coordinates of the center of mass, 

N N N 

cx='s£im
ixl/m; cy=2^m'y'/rn; cz=2^m'z'/m (4-26) 

/ = i / = i ; = i 

Discussion of Identities. The physical model of Chapter 2, 
upon which the foregoing derivation is based, becomes the 
familiar continuum mechanics model when N is taken to in­
finity. In the limiting case, P^ and Hk are defined by \$kdm 
and jr x ikdm, respectively, where dm is an elemental mass 
and r is its position. Thus the identities given in equations 
(4-20), (4-22), and (4-25), when specialized to zero damping 
and Qk = l/2Xfc {<blM$k = 1) and generalized to Nequal to 
infinity, are exactly equal to equations D, E, and F of Hughes 
(1980). 

The identities in the form presented herein possess the at­
tractive features of having a physical interpretation, and of be­
ing a generalization of earlier published ones. This form of the 
identities is applicable to results obtained by finite element or 
substructure coupling models, if the results are put into the 
form of the physical variables model, or through 
mathematical transformation to diagonalize M. 

The technique outlined in foregoing for derivation of iden­
tities (i.e., use of Bessels Inequalities, equations (4-6) and 
(4-9), which are applicable for M non-diagonal), can be used 
to derive equivalent identities directly for a general equation 
of the form of equation (2-3), without reference to a physical 
model and coordinates. The resulting algebraic forms turn out 
to be more complicated and lack the physical interpretation. 
The form presented herein seems to be more desirable. 

6.0 Discussion and Conclusions 

The foregoing has developed the natural modes and modal 
model for an elastic structure with linear viscous damping, via 

a formulation that is comparable to that of the classical nor­
mal modes formulation of the undamped case. Transfer func­
tions and normalizations of use for experimental modal 
parameter estimation are given special attention. Mass-
properties-related modal identities are obtained. 

Complex numbers and variables are used herein in order to 
be compatible with earlier obtained equations. However, it 
should be noted that the formulation could be done in terms 
of real-valued modal vectors and real-valued modal variables 
(or stated another way, the appropriate vector space for this 
case is a real-valued inner product space). The use of complex 
quantities is a matter of convenience and not necessity. 

The arrangement of the physical-variable equations in state 
vector form employed herein offers two advantages: it leads 
naturally to a relatively uncomplicated derivation of mass-
properties-related modal identities, and it can be easily 
generalized further to include gyroscopic forces if desired. 
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On the Transverse Vibration of 
Beams of Rectangular 
Cross-Section 
An exact solution for the natural frequencies of transverse vibration of free beams 
with rectangular cross-section is used as a basis of comparison for the Timoshenko 
beam theory and a plane stress approximation which is developed herein. The 
comparisons clearly show the range of applicability of the approximate solutions as 
well as their accuracy. The choice of a best shear coefficient for use in the 
Timoshenko beam theory is considered by evaluation of the shear coefficient that 
would make the Timoshenko beam theory match the exact solution and the plane 
stress solution. The plane stress solution is shown to provide excellent accuracy 
within its range of applicability. 

Introduction 
In a recent paper by these authors [1] an exact solution for 

the vibrations of a solid isotropic linearly elastic rectangular 
parallelepiped with traction-free boundaries was developed. 
The flexural vibrations of beams of rectangular cross-section 
represents an important subset of that exact solution. The 
exact solution is used in this paper to evaluate the accuracy 
and range of applicability of the Timoshenko beam theory as 
well as a plane stress approximation which is developed 
herein. 

The Timoshenko beam theory, in which shear and rotary 
inertia effects are included, has been the subject of many 
papers, with particular emphasis placed on evaluation of a 
correct shear coefficient. A 1975 review paper by Kaneko [2] 
lists some twenty different values of shear coefficients which 
have been used by various authors for beams of rectangular 
cross section. Kaneko concludes that for rectangular beams 
the shear coefficient implied in Timoshenko's 1922 paper [3] 
gives the best match to the experimental results. That value of 
shear coefficient is (5 + 5y)/(6 + 5v) where v is Poisson's ratio. 
In this paper that particular shear coefficient will be referred 
to as Timoshenko's shear coefficient, even though 
Timoshenko himself used other values in his work. The 
general shear coefficient in the Timoshenko beam equation 
will simply be referred to as the shear coefficient. 
Timoshenko's shear coefficient was derived by matching with 
the plane stress solution for long wavelengths. Another shear 
coefficient which will be used for comparison is 7r2/12 derived 
by Mindlin and Deresiewicz [4] in 1954. They derived their 
shear coefficient by matching the three-dimensional equations 
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for simple thickness-shear motions of infinite beams. In this 
paper their shear coefficient will be referred to as Mindlin's 
shear coefficient. 

In a 1981 paper [5] by the senior author an exact solution 
for the vibrations of a traction-free solid isotropic linearly 
elastic circular cylinder was used to evaluate both the 
Timoshenko beam theory, for free-free beams with circular 
cross section, and an approximate solution which was 
developed by Pickett [6]. It was found that the Pickett for­
mulation led to highly accurate solutions in its range of ap­
plicability. In the Pickett solution the governing equations are 
satisfied identically in the domain and the boundary con­
ditions on the lateral surfaces are also identially satisfied. The 
boundary conditions on the ends are then approximated by 
setting the resultant moment and shear to zero. 

Because of the success of the Pickett solution for beams of 
circular cross section a similar type of solution was attempted 
for beams of rectangular cross section. For beams of rec­
tangular cross section it is not possible, in general, to combine 
solution forms of the governing equations so as to satisfy 
identically the traction-free boundary conditions on the 
lateral surfaces of the beam. It was found to be possible, 
however, to find a plane strain solution for which the 
boundary conditions could be identically satisfied on the 
upper and lower beam surfaces and then the end boundary 
conditions could be satisfied as Pickett had done. The plane 
strain solution is then converted to a plane stress solution by a 
simple change in the elastic constants as suggested by 
Timoshenko in his 1922 paper. The range of applicability of 
this plane stress solution is shown to be the same as for the 
Timoshenko beam theory, but its accuracy is greater. 

A plane strain solution was previously evaluated by 
Fromme and Leissa [7] in 1970. They compared the plane 
strain solution to the Timoshenko beam solution using a 
shear coefficient of 5/6. They found excellent correlation for 
v = 0 but for v = 0.3 there was a discrepancy in the frequencies. 
If they had converted their plane strain solution to plane stress 
by a change of elastic constants and had used Timoshenko's 
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Table 1 Plane strain solution forms. The dimensionless wave numbers j3, 8, 
/3, and 5 and the frequency parameter u are related by /32 + S2 = co2 

(1 - 2P)/(2 - 2v) and /32 + P = co2. 

« 

V 

M> 

»* 

°> 

^ 

Txy 

Jyz 

Tzx 

Form 1 

0 

( cos(&5) 
cos (/3^)^sin(az)j 

2sin03y)r-sin(5z)/6-) s 0 [ cos(&) j 

2 / ^ \ sin(,37) f cos(5z5) 
00 l i - J is l5 s i n ( & ) i 

[ 2 / " V , « 2 l S i * ) | ' C0S(&» 

0 

, f-sin(&)/5~) 
2« cos(^)^ cos(5z) J 

0 

Form 2 

0 

cos (Py)[dsm(5z)j 

- r-sin(&)/5") 
-/3sin(gy)[' cos(&) j 

0 

,a - ( cos(fe)) 
z p sinCgy) ̂  5sin(fe)J 

,5 , , . 1 COS(&3) 

^sinC/^&in^j 

0 

-T ST - (- sin(&)/<5~) 
(52-/32)cos03y)[ cos(&J j 

0 

elementary beam solution (i.e., the Euler-Bernoulli beam 
solution) and the Timoshenko beam solution appear in many 
references, for example, see [5]. For this reason their 
derivations will not be given here. As pointed out in the in­
troduction a shear coefficient K, appears in the Timoshenko 
beam equation and has been the subject of many papers. In 
this paper the Timoshenko beam equation is solved to 
determine the value K would have to obtain in order to cause 
the Timoshenko beam solution to produce identical 
frequencies as the exact solution and the plane stress solution. 

The coordinates and dimensions for the beam are shown in 
Fig. 1. The length direction is considered to be z. The 
direction in which the transverse beam motion is taking place 
is the ^-direction. The length of the beam is thus 2c, the depth 
is 2b, and the width is 2a. Choice of the centered origin allows 
a convenient splitting of the problem into even and odd 
functions of x, y, and z. Since we are considering only beam 
motion we limit the solution to forms where v, the 
displacement in the y direction, is an even function of both x 
an&y. 

The exact solution is derived in detail in [1] but will be 
briefly discussed. 

Exact Solution. The exact solution is a series solution in 
which each term of the series identically satisfies the linear 
elasticity equations. There are four types of solution forms 
which can be derived from the Helmholtz Displacement 
Potential. These forms were tabulated in Table 1 of [1]. 
Linear combinations of the four solution types were chosen in 
three double series. Then by an appropriate choice of wave 
numbers and constants the boundary conditions on the shear 
stresses were identically satisifed. The boundary conditions on 
the normal stresses were then satisfied by orthogonalization 
on the boundary. This process leads to a matrix of coefficients 
whose determinant must be zero. The coefficients are trans­
cendental functions of the natural frequency, and the order of 

>fi^- J Q 

Fig. 1 Coordinates and dimensions of beam 

shear coefficient they would have found the same excellent 
correlation for p = 0.3 as they found for v = 0. The solution of 
Fromme and Leissa can be viewed as an exact solution of the 
plane strain problem; whereas, the solution we have proposed 
herein only approximates the end boundary conditions. The 
new method is, however, computationally simpler, is easily 
modified to allow for arbitrary end boundary conditions, and 
produces excellent results. 

Solutions 

The solution forms for the various analytic solutions 
considered in this paper are discussed in this section. Both the 
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the matrix is determined by the numer of terms retained in the 
infinite series. 

The convergence of the solution to known experimental 
results, as more and more terms in the series were retained, 
was demonstrated in [1]. The convergence was monotonic 
from above. It was noted, however, that when the rectangular 
parallelepiped was a cube the convergence was excellent, but 
as one or two of the dimensions became large compared to the 
other(s) the rate of convergence diminishes. That is, it takes 
more terms, hence larger matrices, for equivalent accuracy, as 
the rectangular parallelepiped becomes less cube-like. Since 
all computations were performed on a minicomputer this 
precluded evaluating the exact solutions for long beams. The 
minicomputer solutions, however, were more than adequate 
for the comparisons performed in this paper. 

It should perhaps be noted here that in [1] Figs. 4 and 5 
appear above the captions for Figs. 6 and 7 and vice versa. 

Plane Stress Solution. A plane strain solution is first 
formed from the two solution forms shown in Table 1. These 
solution forms are taken from the solution forms listed in 
columns 1 and 4 of Table 1 in [1] and can be seen to represent 
the plane strain case for the y-z-plane. That is, u the 
displacement in jr-direction is zero and there is no functional 
dependence on x. The symmetric and antisymmetric forms in 
z are shown in braces with the symmetric (v as an even func­
tion of z) form on top. All values in Table 1 are dimen-
sionless. The displacements u, v, and w were made dimen-
sionless by dividing by the depth 2b. All lengths were made 
dimensionless by dividing by the depth. All stress quantities 
were made dimensionless by dividing by the shear modulus. 
The wave numbers /3, <5, J3, 5 were made dimensionless by 
multiplying by the depth. The frequency was made dimen­
sionless by multiplying by the depth and dividing by the shear 
wave velocity. The solution is taken as the column 1 form 
multiplied by A plus the column 2 form multiplied by B. 

The boundary conditions on the top and bottom surface of 
the beam are satisifed by letting 6=5, which allows both 
forms to have the same z dependence, and then setting 

(1) 

(2) 

(jy{±b,z) = 0 

Tn(±b,z) = 0 

This yields a 2 x 2 set of homogeneous equations 

a
2l

 fl22 

where 

-[„V(l-„) + 2 * ] ™ ^ 

a n = -2/3 sin (/&) 

a2\ = 252cos(f3b) 

a22 = -032-52)cos03Z>) 

(3) 

(4) 

(5) 

(6) 

(7) 

For a solution to exist the determinant of the coefficients in 
equation (3) must be zero. As in Pickett's solution it is found 
that for values of a> less than about 8.5 there are only two real 
values of 52. A plot of the two values of 62 as a function of u 
is shown in Fig. 2. This plot was for a specific Poisson's ratio. 
For other values of Poisson's ratio the curves will shift 
slightly but be similar to the plot shown. On finding the values 
of 82 the ratio of B to A can be expressed as 

B/Z=-an/a[2 (8) 

Using the two values of 52 allows satisfaction of the usual type 
of beam boundary conditions. For the free-free beam the 
boundary conditions are 

0 1 2 3 4 

Fig. 2 The two values of a2 as a function of u for v = .3 

M = az(y,±c)ydy = 0 
J ~b 

(9) 

(10) 

Satisfying these boundary conditions leads to the set of 
equations 

bu bn 

b2\ b22 A2. :{l 
where 

2?™™-*^-^*^ by = [: 

b« = i[i^+252][wcosm-¥sinm} 

j [8 sin 5cj 

(11) 

f-sin(&)/o-) 
[cos(5c) j (12) 

tB 

''A I 

2/32 

cos(/36) sin(/S6) 
(13) 

where j=\, 2. Upper and lower forms in braces are the 
symmetric and antisymmetric forms respectively. Subscripts j 
on the wave numbers and on the ratio B/A are implied. The 
determinant of the coefficients of equation (11) must be zero 
for a solution to exist. 

So far the solution is a plane strain solution. To convert to a 
plane stress solution a simple change is made in the elastic 
constants as done by Timoshenko [3] in 1922. In this for­
mulation the shear modulus was used for the non-
dimensionalization. Since the shear modulus does not change 
from plane strain to plane stress, the only elastic constant left 
in our formulation is Poisson's ratio. If an equivalent 
Poisson's ratio of 

veq = v/{\ + v) (14) 

is used to replace v in all previous formulas we have the plane 
stress solution. 

The solution process is to choose v, co, and c, find the two 
values of 52 from equation (3), find the two values of B/A 
from equation (8), then check if the determinant of the 
coefficients in equation (11) is zero. If not a new value of 
either co or c is assumed and the process repeated. 

The solution process also can be applied to beams with 
arbitrary boundary conditions. The only difference is in the 
coefficients in equation (11). For the free-free beam, use was 
made of the fact that the solution separated into symmetric 
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Fig. 3 Exact frequency versus the width-to-depth ratio a/b for the three 
lowest symmetric modes, v = .3 and clb = 4 

a/b 

Fig. 4 Exact frequency versus the width-to-depth ratio a/b for the 
three lowest antisymmetric modes, v = .3 and clb = 4 

and antisymmetric parts which lead to equation (11) being a 2 
x 2 system of equations. In more general cases (e.g., a 
cantilever beam) equation (11) will be replaced with a 4 x 4 
system of equations. In setting up and solving these 
equations, however, the same procedure as outlined above is 
followed. 

In the case of clamped boundary conditions a certain ar­
bitrariness exists. This arbitrariness is the same as noted by 
Timoshenko and Goodier [8] for the polynomial solution of 
the static plane stress problem of an end loaded cantilever 
beam. In both cases it is not possible to identically satisfy the 
clamped boundary conditions. Timoshenko and Goodier 
restricted the rigid body displacement by fixing the 
displacement at the neutral axis at the clamped end. Then they 
considered several possibilities for restricting the rigid body 
rotation. One was to fix the slope of the neutral axis by set­
ting, 

M0,c) = 0- (15) 
where the comma subscript denotes differentiation, and, as 
before, v is the transverse displacement as a function of y and 

z, respectively. Another possibility considered was to fix the 
slope of the cross section at the neutral axis by setting 

MV(0,c) = 0 (16) 

A third possibility was to set the axial displacement at the 
beam corner to zero 

w(b,c) = 0 (17) 

By investigating Fig. 27 of [8] it is obvious that for the static 
problem the boundary condition expressed in equation (15) 
will produce displacements which are too small while those 
expressed in (16) will produce displacements which are too 
large. The boundary condition expressed in equation (17) 
represents a compromise between the two extremes but will 
still result in a displacement which is too small. 

In the vibrating beam problem the result of applying either 
equations (15) or (17) is to over constrain the beam leading to 
high estimates of the natural frequencies. The result of ap­
plying equation (16) is to under constrain the beam leading to 
low estimates of the natural frequencies. Another better 
compromise is to choose some weighted average of the axial 
displacement as zero such as 

\ioyw(y,c)dy = 0 (18) 

The Timoshenko beam theory does not contain this am­
biguity. The cross-sectional slope in the Timoshenko beam 
theory is actually an average slope. Thus, setting that average 
slope (along with the transverse displacement) to zero 
represents a correct clamped boundary condition. 

In a recent paper by Levinson [9] a new beam formulation 
of the same order as the Timoshenko formulation was 
developed. Levinson's formulation, however, has several 
drawbacks. One of the drawbacks is that an equivalent shear 
coefficient of 5/6 automatically results. While 5/6 is not a 
bad choice for a shear coefficient there are slightly better 
values which can be used as shown in both [2] and [5] as well 
as in this paper. A more serious drawback to Levinson's 
theory, however, is that his cross-sectional slope term is the 
cross-sectional slope at the neutral axis. In applying clamped 
boundary conditions Levinson sets the cross-sectional slope at 
the neutral axis to zero. He shows that his solution is identical 
to the above mentioned Timoshenko and Goodier solution 
using the boundary condition expressed in equation (16). 
Therefore, for any beam problem involving clamped con­
ditions the Levinson theory will result in deflections which are 
too large in static problems, and frequencies which are too 
low in vibration problems. The same drawbacks arise in 
Levinson's plate theory [10]. Thus, while fundamentally 
correct the Levinson beam and plate theories do not represent 
improvements on the Timoshenko beam and Mindlin plate 
theories. 

Results 

Figures 3 and 4 are plots of the three lowest natural 
frequencies for symmetric and antisymmetric beam type 
modes respectively. These plots show the exact solutions for 
the free rectangular parallelepiped. The variation of the 
natural frequencies with the ratio of width-to-depth of the 
beam is considered for a constant length-to-depth ratio of 
four. It can be seen that for small width-to-depth ratios the 
frequencies are virtually independent of the width-to-depth 
ratio. If the fundamental frequency in Fig. 3 is considered, for 
instance, it is seen to have a constant value near .5 until the 
width-to-depth ratio is almost four. The width-to-depth ratio 
of four in these plots corresponds to a square plate. For 
alb<A the fundamental frequency corresponds to the fun­
damental beam frequency. At the knee of that curve where 
a/b = 4 the fundamental frequency corresponds to the fun­
damental frequency of a square plate. For alb >4 the fun-
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Fig. 6 Frequency versus depth-to-length ratio b/c for the three lowest 
antisymmetric modes for a square cross-section a/b = 1 and i> = .3 

E: elementary beam solution 
P: plane stress solution 

: exact solution 

damental frequency again corresponds to a fundamental 
beam frequency, but not to a beam of width 2a and length 2c 
but rather to a beam of length 2a and width 2c. For instance, 
the lowest frequency of the beam when a/b equals 6 
corresponds to the fundamental frequency of a beam whose 
length is six times its depth. A similar observation can be 
made for all the curves in Figs. 3 and 4. That is, just to the 
right of the knee in each curve the negative sloping lines 
correspond to the fundamental beam frequency for a beam of 
length-to-depth ratio of alb. Thus it may be concluded that 
the frequencies found in applying either the Timoshenko 
beam theory or the plane stress theory are limited to 
frequencies which are less than the fundamental frequency of 
a beam whose length is 2a (i.e., a beam whose length is the 
width dimension of the beam under consideration). 

Figures 5 and 6 show the frequency variation with the 
depth-to-length ratio for a square beam and contrast the exact 
solution with the elementary beam solution and the plane 
stress solution. The elementary beam solution is shown to 
hold only over a very limited region; whereas, the plane stress 
solution is good over a much greater region. The Timoshenko 
beam solution is not shown on this plot because it is prac­
tically indistinguishable from the plane stress solution. 

Figures 7 and 8 show the shear coefficient which would 
have to be used in the Timoshenko beam equation if identical 
matching with the exact solution or plane stress solution were 
required. These curves are for a beam of square cross section. 
It can be seen that as b/c approaches zero the plane stress 
solution approaches exactly Timoshenko's shear coefficient. 
This is also true for other values of Poisson's ratio. The exact 
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Fig. 7 Shear coefficient K versus the depth-to-length ratio b/c for the 
three lowest symmetric modes, v = M, a/b = 1, exact solution; 
plane stress solution. Numbers refer to beam mode. T and M mark 
Timoshenko's and Mindlin's shearcoefficient respectively. 
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Fig. 8 Shear coefficient K versus the depth-to-length ratio b/c for the 
three lowest antisymmetric modes, c = .3, a/b = 1, exact solution; 

plane stress solution. Numbers refer to beam mode. T and M mark 
Timoshenko's and Mindlin's shearcoefficient respectively. 

solution was not carried out for small b/c for two reasons. 
First, as b/c gets smaller more terms are required in the 
solution for equivalent accuracy, and second, as b/c gets 
smaller greater accuracy is required in the frequencies in order 
to compute the shear coefficient. Computation was therefore 
limited to the values shown because of practical limitations of 
the minicomputer which mass used. The plane stress solution, 
however, does an excellent job of handling the solution in the 
region where the exact solution is not practical. For thinner 
beams, for example, a beam with alb = .5, the exact curves, 
particularly for the first mode, are much closer to the plane 
stress curves than those shown in Figs. 7 and 8. 

Figures 7 and 8 also show that use of the Timoshenko shear 
coefficient in the Timoshenko beam theory will give excellent 
results for long wave lengths. A rule-of-thumb can be seen to 
be that if the wave length is greater than twice the beam depth 
the Timoshenko shear coefficient, (5 + 5*0/(6 + 5c), will give 
good results. For shorter wave lengths, however, a smaller 
shear coefficient would have to be used to produce good 
matching with the exact solution. 

Figures 9 and 10 show the frequency variation with depth-
to-length ratio for a beam whose width is twice its depth. A 
comparison of Fig. 5 with Fig. 9 and Fig. 6 with Fig. 10 shows 
that they are identical for co< 1.6. A plateau is reached on the 
curves in Figs. 9 and 10 near oi= 1.7 and the entire spectrum 
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Fig. 9 Exact frequency versus the depth-to-length ratio for the lowest 
three symmetric modes for alb = 2 and v = .3 
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Fig. 10 Exact frequency versus the depth-to-length ratio for the lowest 

three antisymmetric modes for alb = 2 and v = .3 

shifts at that value. From Fig. 5 the fundamental frequency of 
a beam with blc = 0.5 has a frequency of 1.7. The spectrum 
shift in Figs. 9 and 10 therefore occur at a frequency 
corresponding to the fundamental mode of vibration where 
the width direction is taken as the beam length. This supports 
the previous conclusion on the limit of high order beam 
theories. Similar curves were also generated for the case where 
a/b = 1/2. These curves were very close to the plane stress 
solution shown in Figs. 5 and 6 and so are not shown here. 

It has been noted that the near coalescence and subsequent 
divergence of the curves in Figs. 3, 4, 5, 6, 9, and 10 is a 
function of Poisson's ratio. For a Poisson's ratio of zero the 
coupling is absent and an actual coalescence is found with the 
lines simply crossing instead of veering away. Since Poisson's 
ratio is seldom zero this observation is primarily of academic 
interest. 

Figure 11 shows the variation of the shear coefficient with 
Poisson's ratio. The values corresponding to Timoshenko's 
and Mindlin's shear coefficients can be compared to those of 
two specific cases found using the exact solution and the plane 
stress solution. The specific cases were chosen by looking for 
a case near the Timoshenko coefficient value in Fig. 7 and a 
case near the Mindlin coefficient value in Fig. 8. It can be seen 
that for the first mode for b/c-0.5 the Timoshenko coef­
ficient best represents the variation; whereas, for the second 
mode for b/c = 0.8 the Mindlin coefficient best represents the. 
variation. Kaneko [2] concluded that the Timoshenko 
coefficient was best on the basis of experimental results; 
however, all the experiments reported were for the fun­
damental frequency and a depth-to-length ratio less than 1/2, 
a region in which Timoshenko's coefficient does prove best. 
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Timoshenko's and Mindlin's shear coefficients 
exact and plane stress solutions 

1: first mode exact blc = .5 
1P: first mode plane stress b/c = .5 
2: second mode exact blc = .8 
2P: second mode plane stress b/c = .8 

Conclusions 
9 The plane stress and Timoshenko beam solution produce 

similar results with the same range of applicability. 
• The plane stress solution gives greater accuracy than the 

Timoshenko beam theory but is slightly more difficult 
computationally. 

9 The plane stress and Timoshenko beam solutions are 
applicable for frequencies less than the fundamental 
frequency found by treating the width of the beam as the 
length dimension. 

9 For wavelengths longer than twice the beam depth a 
constant shear coefficient of (5 + 5v)/(6 + 5v) gives good 
matching with experiment as well as the plane stress and exact 
solutions. 
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Free Vibration of a Rectangular 
Parallelepiped Using the Theory of 

M.B.Rubm a Cosserat Point 
Faculty of Mechanical Engineering, 

Technion-lsrael Institute of Technology, Free vibration of a rectangular parallelepiped composed of a homogeneous linear 
Haifa 32000 Israel elastic isotropic material is studied. The parallelepiped is modeled as an isotropic 

Cosserat point and simple formulas are developed to predict the lowest frequencies 
of vibration. Within the context of the theory, extensional and shear vibrations are 
uncoupled. The lowest extensional frequency predicted by the Cosserat theory is 
compared with available exact solutions and with predictions of thin rod theory. 
Finally, by introducing a simple modification of the director inertia coefficient it is 
shown that the Cosserat predictions of the extensional frequencies are correct. 

Introduction 

Recently the theory of a Cosserat point (Rubin, 1985a) has 
been developed to model the deformation of a body which is 
essentially a material point surrounded by some small volume. 
The development of this theory parallels the developments of 
the theory of a Cosserat surface (Naghdi, 1972), which models 
a shell-like body, and that of a Cosserat curve (Green et al., 
1974 a, b), which models a rod-like body. 

An important feature of the theory of a Cosserat point is 
that it can be used as a basis for developing numerical solution 
procedures for continuum problems. In particular, we men­
tion that the theory has been successfully used to formulate 
the numerical solution of one-dimensional continuum prob­
lems (Rubin, 1985b). 

In this paper, we consider the three-dimensional problem of 
linear vibration of a free rectangular parallelepiped composed 
of a homogeneous linear elastic isotropic material. In its 
reference configuration, the parallelepiped has dimensions L,, 
L2 and L3 (see Fig. 1). As an example, it was shown in (Rubin, 
1985a) that such a parallelepiped could be modeled as an 
isotropic Cosserat point. The equations describing motions of 
the parallelepiped were developed, but not solved. Here, we 
specialize the equations to describe free vibration of the 
parallelepiped and solve them for the natural frequencies. 

This difficult problem has been considered by many 
researchers. Most recently, Hutchinson and Zillmer (1983) 
have developed a series solution which has been compared 
with elementary solutions and the experiments of Spinner et 
al. (1960). Here, we use the Cosserat theory to predict simple 
formulas for the lowest frequencies of vibration associated 
with particular modes. Specifically, it will be shown that the 
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simple' theory of a Cosserat point predicts extensional and 
shear vibration that are uncoupled. Furthermore, we note that 
the deformation associated with the simple theory corresponds 
to a three-dimensional state of homogeneous strain so tor­
sional and bending modes of the parallelepiped are not 
admitted. 

In the following sections we develop the basic equations and 
solve for the frequencies of extensional and shear vibrations. 
The lowest extensional frequency is compared with available 
exact solutions for a square bar (Appendix A), a cube and with 
that predicted by thin rod theory. The comparison in each of 
these cases is good. We close by introducing a simple 
modification of the director inertia coefficient which 
significantly improves the prediction of each of these 
frequencies. 

Basic Equations 

In this section, we summarize the basic equations of the 
theory of a Cosserat point which was developed in (Rubin, 
1985a). In the present configuration at time /, the Cosserat 
point occupies a region R of Euclidean 3-space bounded by the 
closed surface dR which consists of a finite set of sections dRK 

{K - 1,2, . . . ,M). Furthermore, with respect to the present 
configuration, a Cosserat point is defined by its location r ( / ) , 
relative to the origin of a fixed coordinate system, and by three 
directors d , (0 (/ = 1, 2, 3). The position vector r and direc­
tors d, are each a three-dimensional vector function of time 
only which in the reference configuration acquire the values r 
= R and d,- = D,-. A motion of the Cosserat point is defined 
by 

r = r ( 0 , d , = d , ( 0 , [ d , , d 2 , d 3 ] > 0 (Ia,b,c) 

where the condition (lc) ensures that the directors form a 
right-handed set of linearly independent vectors. 

The vector functions r and d,- in (1) are assumed to be suffi-

We use the word simple to describe the theory which admits only three 
directors. 
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Fig. 1 A rectangular papallelepiped with dimensions L1, L2, L3 

ciently smooth in the sense that they are differentiable with 
respect to time t as many times as required. Let v and w, 
denote, respectively, the velocity of the Cosserat point and the 
director velocities at time t. Then 

v = r, w, = d; (2a,b) 

where a superposed dot denotes time differentiation. 
For later convenience, we introduce the reciprocal vectors d' 

(/ = 1, 2, 3) of the directors d, and record the kinematical 
definitions 

hu = &i'Aj, d,-«d'=8/, hiJ = &'& Qa,b,c) 

where 5/ is the Kronecker delta symbol. Furthermore, we in­
troduce the strain yy relative to the reference configuration 
through the expression 

yy = Vi(hu-Hu) (4) 

where Hy is the reference value of hy. 
We now turn to a statement of the conservation and balance 

laws of the theory and, with reference to the present con­
figuration, define the following quantities: the mass m(t) of 
the point; the contact force nK(t) and contact director couples 
mK'(t) applied to the section dRK of the boundary dR; the ex­
ternal body force f(t) and external body director couples 
l ' ( / ) ; the intrinsic director couples k ' ( / ) , which make no con­
tribution to the supply of angular momentum, and the con­
stant inertia coefficients y' and y'j, with yij being a symmetric 
tensor. With the above definitions, and with reference to the 
present configuration, the balance and conservation laws may 
be written in the forms2: 

m = Q, 

m ( v + / w , ) = f + Yd nK> 
M 

£ 
M 

m(y'v + y'jYtj) -1' + E mJ 1 — k' : K > 

(5a) 

(56) 

(5c) 

d ,xk ' = 0. (5d) 

Equation (5a) represents conservation of mass, (5b) represents 
the balance of linear momentum, (5c) represents the balance 
of director momentum, and (5d) represents the reduced form 
of the balance of angular momentum. 

For the linearized theory we assume that in its reference 
configuration the Cosserat point is in its natural state and is 
free of body forces and director couples, contact forces and 
director couples, and intrinsic director couples. Let u(t) be 
the displacement of the Cosserat point and d,(t) be the 
displacements of the directors relative to the reference con­
figuration, so that 

Throughout this paper we use the usual summation convention over 
repeated indicies. 

r = R + u, d ,=D, + 6, (6a,b) 

where u and 5, are considered to be small relative to R and D,-, 
respectively. Neglecting quadratic terms in u and 5, the equa­
tions of motion (5b,c,d) may be written in the component 
forms 

m{u'+y>8j)=f>+ £ nK>, (la) 

m (y1 uJ + y>" 8 J) = liJ + £ mK
>] -

K=\ 

k'J = kJi, 

where 

u = u'Vj = UjDi, 5, = 8/Dj = 5iP> 

f = / ' D „ nK = nK'D, 

m ^ = OT/D., k ' = F D 

k\ (lb) 

(7c) 

($a,b) 

(8c,d) 

(8e,/) 

and where the components 5/ and 5,-,- of the displacements 5; 

should not be confused with the values of 5/ and 5,y of the 
Kronecker delta symbol. Also, D' are the reference values of 
d'. 

It was shown in (Rubin, 1985a) that a one-to-one cor­
respondence exists between the theory of a Cosserat point and 
the three-dimensional theory when we assume that the posi­
tion vector p of an arbitrary material point, within the 
Cosserat point, admits the representation 

p = p(f l ' ,0=r(/)+fl 'd,(0 (9) 

where 6' (i = 1, 2, 3) are convected coordinates identifying 
the material point. For the linear theory the three-dimensional 
displacement u*(6',t) may be represented by 

u*(0'',O=i»(O+0''8,-. (10) 

To determine the vibration of the parallelepiped shown in 
Fig. 1 it is convenient to specify the reference values D,- of the 
directors in the forms 

D ^ Z , ^ ! , D 2 =L 2 e 2 , D3=Z,3e3 (\\a,b,c) 

where e,- are base vectors of a fixed rectangular Cartesian 
coordinate system with coordinates x-, and where Lx, L2

 a n d 
L3 are the lengths of the sides of the parallelepiped. Further­
more, we specify the convected coordinates d' by 

-, 02 = -, 0 3 = - (12a,b,c) 
L\ L2 i-3 

In the above, we have identified the midpoint of the 
parallelepiped as the location of the Cosserat point so the 
region of space occupied by the Cosserat point is defined by 

| 0 i | ^ i / 2 , 10 2 |<! / 2 , l0 3 l^! /2 (Ua,b,c) 

From (Rubin, 1985a), we recall that for a parallelepiped 
that is composed of a homogeneous, linear elastic material 
that has a uniform mass density p0* in the reference configura­
tion, and is three-dimensionally isotropic, the constitutive 
equations for the mass m, inertia quantities y' and y'j, and the 
intrinsic director couple k'J become3 

m=p0*L1L2L3,y' = 0, (14a,b) 

y i = J ) 2 2 = y 3 = ail other y1' = 0, 

k'i = c, (Hm"ymn )H« + 2c2H'"'HJ"ym„, 

(Uc,d) 

(14e) 

(14/,g,/0 

(140 
See additional remarks in the closing section regarding the specification of 

H n _ 
1 H*=-L, H33 1 

L\ L2 L3 

all other HiJ =0, 
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EvLxL2L3 

(\ + p)(l-2v) 2(1 + v) (14/.*) 

where H'j are the reference values of hij and (14e) is a 
generalized form of Hooke's law. For later reference (see the 
conclusions) we note that the constitutive constants c, and c2 

were determined in terms of Young's modulus E and 
Poisson's ratio v of the three-dimensional material by compar­
ing Cosserat solutions with exact solutions of certain simple 
static problems. Also, the condition (14c/) states that the direc­
tors D, are parallel to the principal axes of inertia. 

For free vibration of the parallelepiped the body force f and 
director couples 1', and contact forces n̂ - and director couples 
m^' all vanish. Then with the help of (14) the equations of mo­
tion {la,b) reduce to 

ii' = 0, my'"S„J=-kiJ. (\5a,b) 

Using (7c) and (14c,d) equat ion (156) may be rewritten in the 
equivalent form 

m 
12 ' 

ffl *• 

12 ' 

and 

- * " , 

-kn, 

12 2 

m s? 
12 ' 

12 

m 

-ki3, 

-k2\ 

•k22, - ^ - S 3
3 = - £ 3 3 , (I6a,b) 

(\6c,d) 

51
2 = 52

1, 5,3 = cV> 57 = 57- (\la,b,c) 
Equat ion (15a) implies that the velocity of the center of mass 
of the Cosserat point is constant and equations (17) imply that 
the angular m o m e n t u m about the center of mass is constant . 

Now the strain components y ^ can be determined in terms 
of the components of the displacements 5, by substituting (6b) 
into the definition (4) and neglecting quadrat ic terms in S, to 
obtain 

yu = ^(Su + Sj,). 

Using the t ransformat ion relations 

equations (17) may be written in the form 
5"i2 ^2i 513 531 5~23 532 

/ 2 

^2 
V T 2 i 3 w w 

It follows from (18)-(20) that 

yn=L1
2S1

1, l22=L2
2'b2

2, y33=L3
2'b3

i 

L2+L3
2 

* _ / Z - l 2 + Z - 2 2 U ' 2 ,-. _ / ^ l 
7 l 2 ~ l : 

723 : 

( 
L2+L2 

) * i 2 , 7i3 = ( -)*.3. 

(18) 

(19) 

(20a,b,c) 

(2\a,b,c) 

(2ld,e) 

(21J0 

Thus, with the help of the constitutive equations (14), the 
results (21) and the definition of the physical components of 
strain y{j 

7n . 722 . —'-^-, (22a,b,c) 
yu=—TT-> y22-—TT~' T33= , 2 

7l2 : 712 
7 l 3 : 

^2 

713 
7 2 3 = " 

^ 3 

723 (22d,e,f) 
Lj\1-,1 LlLJ L2L3 

the equations of mot ion (16) may be rewritten in the form 

( -7 )711 +c,2Ti, +(c,2-2c2
2)722 

+ (Cl
2-2c2

2)733=0, 

( — y ) >22 + (Cl2 " 2C22)711 + C,2722 

+ (c,2-2c2
2)733=0, 

(23a) 

(236) 

Gj)^ + iC 

and 

-2c2)yn+(c2-2c2)y2 

+ c , 2
T 3 3=0, 

71 2+c2
2(p,2+p2

2)7,2 = 0, 

7 i 3 + 7 W + / 7 ) 7 i 3 = 0 , 

723+C2 2(P2 2+P3 2)723=0, 

(23c) 

(24a) 

(24b) 

(24c) 

where c, and c2 are the dilitational and equi-voluminal wave 
speeds, respectively, defined by 

E(l-V) 
-. ci' (25a,b) 

Pa*(\ + v)(\-2v)' -* 2Po*(l + v)' 

and P\, Pi and p 3 are constants which are related to wave 
numbers and are defined by 

2 1 2 2 1 2 ? X1 ,~,c u s 

P\=-Tir<Pi-—rr>Pi--TT-- (26a,b,c) 
L\ L2 -L3 

It is interesting to note tha t , within the context of the theory of 
a Cosserat point , equations (23), which describe extensional 
vibration, are uncoupled from equat ions (24), which describe 
shear vibration. Each of these types of vibration are described 
in the following sections. 

Extensional Vibration 

To determine the natura l frequencies of extensional vibra­
tion of the parallelepiped we may assume a solution of the 
form 

•yn=fl[Sinco/, -y22 =a2sinco/, y 3 3 = a3sino>t, (21a,b,c) 

where the constants a, and w are, respectively, the m o d e shape 
and frequency, each to be determined. Now, with the help of 
(27) the system of equations (23) may be reduced to 

(Ku-u
2Mu)aJ = 0 (28) 

where the symmetric tensors Ktj and M/j are defined by 

Ku=K22=K33=c2, (29a) 

Kl2=K2l=Kn=K3l=K23=Ki2 = (Cl
2-2c2

2), (29b) 

1 

Pi 
Mn=-zrT' M22: 

1 1 
— r > M 3 3 = - ^ - : 
Pi Pi 

(29c,d,e) 

all other My = 0. (29/) 

Following usual procedures , the characteristic equat ion of the 
system (28) may be determined by setting the determinant of 
the tensor (K^ — io2My) equal to zero. After some algebraic 
manipulat ion, this characteristic equat ion may be written in 
the form 

G(o>,Pi,p2,p3) = 0, (30a) 

G = u
6^c2(p2+p2

2+p3
2W 

+ 4(cl
2-c2

2)c2
2(pl

2p2
2 +p{

2p3
2 +p2

2p3
2W 

-4(3C2-4C2
2)C2WP2W- (306) 

Given the dimensions of the parallelepiped L{, L2, L3 and 
the constitutive properties of the material in terms of the wave 
speeds c, and c2, the characteristic equation (30a) may be 
solved for three natural frequencies of extensional vibration. 
The mode shape associated with each of these frequencies can 
then be determined by solving (28) for a; using the appropriate 
value of co. It is expected that the lowest of these frequencies 
should provide a good approximation to the lowest frequency 
of vibration of the parallelepiped associated with the par­
ticular mode shape considered. 

A few special cases of interest may be analyzed simply if we 
consider a parallelepiped which has a square cross section. For 
such a parallelepiped 
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L,=L 2 > px=p2, (3la,b) 

and the solution of (30a) may be written in the form 

-2c2W 
b~[b2-4cf b + [b2-4c]'' 

b = 2(cl c2)p
2 + C lV-

-4c2
2)c2WP32 

(32a,b,c). 

(32d) 

Q2e) 

In the limit that the parallelepiped becomes a cube, i.e., 

-L3, pl=p2=p3 (33a,b) 

the solution (32) takes the form 

co2 = 2c2
2
Pi

2, co2 = 2c2
2
Pl

2, u2=(3ci
2-4c2

2)pl
2. (34a,b,c) 

This result compares well with the exact solution presented in 
(Hutchinson and Zillmer, 1983).4 In particular, the exact solu­
tion for a cube of length Lx and Poisson's ratio v = 0.3 
predicts that the lowest two frequencies are equal and take the 
value to* = 4.44 c2/Lx. Comparing this value with the one 
predicted by (34a,6) we observe that to/to* = 1.103. Thus, the 
Cosserat theory predicts a value about 10 percent higher than 
the exact value. However, the value of the highest frequency 
(34c) which is expected to be in error, is about twice the exact 
value. 

To further examine the accuracy of the natural frequencies 
predicted by the theory of a Cosserat point, we consider the 
limiting cases when the parallelepiped becomes a thin rod or a 
thin plate, each with square cross section. Although one might 
expect the theory of a Cosserat point to be limited to the 
description of a body whose length dimensions are com­
parable, we will show that the Cosserat theory predicts good 
results for both of these limiting cases. 

For the limiting case of a bar which is long in the e3 direc­
tion we have p 3 < < px and the solution (32) becomes 

2 2 (3c,2-4c2
2)c :

2 

oi- = < V = -
(c2-c2) 

o)2 = 2(c,2-

2 2 
-Pi • -cb

2Pi2, (35a) 

to2 = 2c2
2p,2, a>2 = 2(c2-c2

2W, (35b,c) 

where u>b is the lowest frequency of the bar and where cb = 
(E/p0*)'/2 is the bar wave speed. The expression (35a) for the 
lowest frequency has the same form as that predicted by 
elementary thin rod theory except that the wave number p3 is 
replaced by a different value p3 * • More specifically, we recall 
from (Graff, 1975, p. 87)5 that the frequency wb* and wave 
number p3 * associated with the lowest extensional mode of 
vibration of the thin rod are given by 

(ub*)2 = cb
2(p3*)2, Pi*=~ (36a,b) 

It follows from (26c), (35a) and (36) that 

o>b (12),/! 

—V = -!—^-= 1.103, (37) 

which states that the theory of a Cosserat point predicts a 
natural frequency that has the same functional dependence on 
the length L3 of the bar as that predicted by thin rod theory, 
but has a value increased by about 10 percent. 

For the limiting case of a plate which is thin in the e3 direc­
tion we have/>3 » px and the solution (32) becomes 

-Jr 2n 2 

- L<-7. P\ 

2(3c2-4c2
2)c2

2 

-Pi 

to2 = cfpf. 

(38a,b) 

(38c) 

In a personal correspondence, Professor Hutchinson clarified that the 
printers placed the plots for Figs. 4 and 5 above the captions for Figs. 6 and 7, 
and vice versa. 

'Our notation cb, 
(Graff, 1975). 

, p 3 * correspond to c0 , oij, and TT/1, respectively, in 

0-8 

0-6 

0 ' 4 -

0-2 

Fig 

10 2 0 3 0 f " 3'U L 3 / L , 
2 Lowest extensional frequency o.< for a square bar normalized by 

the variable bar frequency w£ and the constant plate frequency o>p 

The expression (38a) has the same form as the exact solution 
(Appendix A) except that the wave number px is replaced by a 
different value p{ *. More specifically, we recall from Appen­
dix A that the frequency wp* and wave number px * associated 
with the lowest extensional mode of vibration of the plate6 is 
given by 

(a>p*)2 = 2c2
2(p>*)2, Pi*=-j~-

It follows from (26a), (38a) and (39) that 

^ = ^ - = 1 . 1 0 3 , 

(39a,b) 

(40) 

which states that the theory of a Cosserat point predicts a 
natural frequency that has the same functional dependence on 
the width dimension Lt of the bar as the exact solution but has 
a value increased by about 10 percent. Here, it is worth em­
phasizing that the plate frequency wp (given by (38a)) is a 
natural frequency of vibration of a bar of square cross section 
for any length to width ratio LJ/Ll (see (32a)). This result is 
consistent with the exact solution in Appendix A. 

To investigate the detailed character of the lowest frequency 
of vibration we consider a parallelepiped with unit dimensions 
(Ll = L2 = 1) and with Poisson's ratio v = 0.3. Specifically, 
we are interested in the transitional character as the length to 
width ratio L3/Lt varies from that associated with a cube 
(L2/Li = 1) to that associated with thin rod {L3/L{ —• <x). 

Figure 2 exhibits the transitional character of the lowest ex­
tensional frequency oi associated with a square bar (L3 varies 
with Zq held constant). The values of to plotted in Fig. 2 are 
obtained using the expression (32) and the value v = 0.3 for 
Poisson's ratio. One curve in Fig. 2 shows the value of a> nor­
malized by the variable frequency o>b* (given by (36a)) 
predicted by thin rod theory. The other curve shows the value 
of oi normalized by the constant frequency wp (given by (38a)) 
predicted by the Cosserat theory for a bar with constant 
square cross-section. The curve for <x>lwp has the same 
character as that associated with the exact solution presented 
in the actual7 Fig. 4 in (Hutchinson and Zillmer, 1983). 

The curve co/co6* in Fig. 2 shows that the frequency very 
rapidly approaches the value a>6 (given by (35a)) predicted by 
the Cosserat theory for a thin rod. This result suggests that the 
exact lowest frequency should be very closely approximated by 
the value cob* predicted by thin rod theory even when the 

See the comment at the end of Appendix A. 
7See footnote number 4. 
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length to width ratio L3/Lx is at low as about three. In this 
regard, it is not too surprising that the extensional 
(longitudinal) frequencies of vibration measured in the ex­
periments of (Spinner et al., 1960) for the rectangular bar 
specimens are accurately predicted by elementary thin rod 
theory. 

The transitional character of the lowest extensional frequen­
cy as the length to width ratio L3/Lx varies from that 
associated with a cube (JL3/LX = 1) to that associated with a 
thin plate (L3/Lx — 0) was also investigated. Again the solu­
tion (32) was evaluated using the value v = 0.3 for Poisson's 
ratio. It was found that the plate frequency cop (given by (38a)) 
was the lowest frequency for the whole range of L3/Lx (0 < 
L3/Lx ^ 1). 

Shear Vibration 

Equations (24) which describe shear vibration of the 
parallelepiped are uncoupled so that shear vibration can occur 
in the ej - e2 plane, the e, - e3 plane and the e2 - e3 plane, 
independently. The natural frequencies associated with shear 
vibration in each of these planes may be recorded in the form: 

u>2 = c2
2(px

2+p2) for e , - e 2 plane, (41a) 

u2 = c2
2(p2+p3

2) for e ! - e 3 plane, (416) 

o)2 = c2
2(p2

2 +P3
2) for e 2 - e 3 plane, (41c) 

At present, it does not appear that an exact solution exists with 
which these results can be compared. 

Conclusions 

A rectangular parallelepiped composed of a homogeneous 
linear elastic isotropic material has been modeled as an 
isotropic Cosserat point. For linear motions of a free 
parallelepiped the twelve equations of motion of the theory of 
a Cosserat point separate into four groups of three equations 
each. One group of equations states that the velocity of the 
center of mass vanishes while another group states that the 
angular momentum about the center of mass is constant. The 
remaining two groups describe, individually, extensional 
vibration and shear vibration. 

The characteristic equation determining the three fun­
damental frequencies of extensional vibration was obtained 
for a parallelepiped with arbitrary major dimensions Lx, L2, 
L3 (see Fig. 1). The lowest natural frequency was analyzed in 
detail for the special case of a bar with square cross-section 
(Lx = L2). Both the limiting cases of a thin rod (L3/Lx — oo) 
and a thin plate (L3/Lx —• 0) were analyzed. It was shown that 
in the limit of a thin rod the Cosserat theory predicts a fre­
quency with the same functional dependence on the length 
dimension L3 as that predicted by thin rod theory but with a 
value increased by about 10 percent ((12)1/2/x). Similarly, in 
the limit of a thin plate the Cosserat theory predicts a fre­
quency with the same functional dependence on the width 
dimension L, as the exact solution but with a value increased 
by about 10 percent ((12)'/2/7r). Also, the value for the lowest 
frequency of a cube was shown to be about 10 percent (1.103) 
higher than the exact value. 

The transitional character of the lowest extensional fre­
quency was investigated as the length to width ratio L3/Lx 

varied (with Lx constant). It was found that the lowest fre­
quency rapidly approached the limiting value associated with a 
thin rod as the ratio L3/Lx varied from that associated with a 
cube (L3/Lx = 1) to that associated with a thin rod (L3/Lx — 
oo). This transitional character would suggest that the lowest 
extensional frequency is closely approximated by the value 
predicted by elementary thin rod theory even when the length 
to width ratio L3/Lx is as low as about three. Furthermore, 
the lowest extensional frequency was shown to be constant 
when the ratio L3/Lx varied (with Lx constant) from that 

associated with a cube (L3/Lx = 1) to that associated with a 
thin plate (L3/Lx - 0). 

The lowest frequencies associated with shear vibration in 
the e, - e2 plane, the e, - e3 plane and the e2 - e3 plane 
were also determined using the Cosserat theory. 

It is very interesting to note that the values predicted by the 
Cosserat theory for the lowest extensional frequency of vibra­
tion of a thin plate, a cube, and a thin rod are all increased by 
the same factor ((12)'A/ir = 1.103). This suggests that it is 
possible to modify the Cosserat theory to obtain correct values 
for each of these limiting cases. In particular, we note that 
within the framework of the Cosserat theory the inertia quan­
tities m, y , yu in (5) are not a priori determined but rather 
must be determined by constitutive equations. Such con­
stitutive equations can be obtained by comparing with exact 
solutions or experiments. The values (14a-d) for these quan­
tities were obtained by integrating expressions relating these 
quantites to three-dimensional quantities. Here, we retain the 
specifications (I4a,b,d), and assume that the quantities yn, 
y12, y33 are equal, but we determine their value by comparing 
with a known solution. This is equivalent to specifying the 
wave numbersp x ,p 2 ,p 3 by 

P]2=y^7' v^-yk?* Pi2=yk^-' (42aAc) 

instead of by equations (26a,b,c). The value of yu is deter­
mined by requiring the Cosserat prediction of the frequency 
(35a) for the limiting case of a thin rod to be accurate. Thus, 
from (35a), (36) and (42c) we obtain 

J , i i = _ y 22 = J , 33 = J_ # ( 4 3 ) 

Now, using the specifications (42) and (43) it is easy to show 
that the Cosserat theory also predicts the correct extensional 
frequency for the limiting cases of a thin plate and a cube. 
Furthermore, with the help of (42), (43), the Cosserat predic­
tion of the lowest shear frequency (41) is modified. 

Finally, we note that the above procedure should be con­
trasted with the one suggested by Mindlin (1951). Specifically, 
Mindlin suggests that one of the material constants 
characterizing the strength of the material be modified instead 
of the inertia properties of the material. Within the context of 
the Cosserat theory this could be done by replacing c, and c2 

in (14/,/:) by values which are scaled by the same factor. This 
scale factor could be determined by matching the frequency 
predicted in the limit of a thin rod. However, such a procedure 
would have the undesirable effect of causing errors in the 
predictions of the static problems of simple shear and simple 
tension. For this reason, we prefer to modify the specification 
of the director inertia instead of the material constants c, and 
c2-
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A P P E N D I X A 

In this appendix we record a simple exact solution for exten-
sional vibration of a parallelepiped with square cross-section 
(L{ = L2), which initially occupies the region of space 

l * t l ^ 4 p ]x2] = ~> l x 3 ' = i r ' (Ala,b,c) 

The three-dimensional equations of motion of the linearized 
theory in the absence of body force are 

Po w / — ty, j > Uj — tji > (A2a,b) 

where p0* is the mass density, u* is the displacement, /y is the 
stress, and where a comma denotes partial differentiation with 
respect to the coordinates x,. The constitutive equations of a 
linear elastic isotropic material and the strain-displacement 
relations may be written in the forms 

{ij = x em„fiij + 2/i e,y, (A3a,b) 

e^Vi^j + uJ), (43b) 

where 5,y is the Kronecker delta symbol. Furthermore, for free 
vibration of the parallelepiped, we impose the boundary 
conditions 

' ; i (±-y-> *2> *3> >)=0, 

ta\Xi, x2, ±-±, tj=0. 

To describe extensional vibration in the e! 
displacements u-, * are specified by 

u. = «i*sm co*̂  s i n / j ^ ^ c o s p i * ^ ! 

u2* = -«i*sin w*t c o s ^ ^ s i n / ? ! * ; ^ 

" 3 * = 0 , 

(A4a) 

(A4b) 

(A4c) 

e2 plane the 

(A5a) 

(A5b) 

(45c) 

where a,*, co*, px* are constants. These displacements 
characterize extensional vibration because «,*, u2* are odd 
functions of xlt x2 and even functions of x2, xx, respectively. 
Substituting (AS) into (Alb) the expressions for the stress 
become 

t, •t22 =2fi ax*Pi*sin u>*t cosP\*xxcospx*x2, 04 6a) 

all other t„ = 0. (A6b) 

Now, with the help of (.45) and (A6), the equations of motion 
(A2a) yield the dispersion relation (39a) and the boundary 
conditions (A4) determine the wave number px * through the 
equations 

cos • 
P i * £ i 

= 0, p,* = 
(2n- l ) i r 

« = 1,2, (Alu.b) 

It follows that the lowest frequency co* = wp* (associated with 
n = 1) may be written in the form (39a) with p{* given by 
(39b). Although o)p* in (39a) is the lowest extensional fre­
quency of the type 045) it is not necessarily the lowest exten­
sional frequency of the square bar. For example, in the limit 
that the bar becomes a thin rod (L3/Ll >> 1) the lowest ex­
tensional frequency is the bar frequency o>b* given by (36a). 
On the other hand, in the limit that the bar becomes a thin 
plate (L3/Lt < < 1) the lowest extensional frequency is the 
plate frequency cô * given by (39). 

A D D E N D U M 

The author has recently learned of some related work by 
other authors. Cohen (1981) developed the theory of pseudo-
rigid bodies by a direct approach for bodies with a fixed point. 
Similar equations were developed by Muncaster (1984) as 
special solutions of the three-dimensional equations. Both of 
these approaches are different from that presented by Rubin 
(1985a). Also, Cohen and Muncaster (1984) have considered 
small strain-free vibrations of a symmetric body which are less 
general than those considered in this paper. 
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221-247. 
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pp. 375-392. 
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On the Variational Foundations of 
Assumed Strain Methods 
So-called assumed strain methods are based on the a-priori assumption of an inter­
polation for the discrete gradient operator, not necessarily derivable from the 
displacement interpolation. It is shown that this class of methods falls within the 
class of variational methods based on the Hu- Washizu principle. The essential point 
of this equivalence lies in the statement of the appropriate stress recovery procedure 
compatible with this variational structure. It is noted that most currently existing 
assumed strain methods fail to perform the stress recovery in a manner consistent 
with the variational structure discussed herein. Application is made to recently pro­
posed methods such as mode decomposition techniques. 

1 Introduction 

The denomination "assumed strain methods" is intended to 
encompass a variety of finite element procedures, often pro­
posed on an ad-hoc basis, which are typically characterized by 
an interpolation of the discrete gradient operator assumed a-
priori, independently of the interpolation adopted for the 
displacement field. The often referred to "5-bar procedure", 
proposed by Hughes [1], offers an example of an assumed 
strain method which has proven successful in a variety of 
situations, including widely used structural elements [3]. For 
the finite strain incompressible problem, this method has 
recently been precisely reformulated by Simo et al. [6] within 
the context of the Hu-Washizu principle. The so-called mode 
decomposition technique, proposed by Belytschko and co­
workers (e.g., [1, 7]), furnishes another example of a 5-bar 
type of method that leads to the formulation of successful 
structural elements. 

The purpose of this paper is to show that assumed strain 
methods can be systematically formulated within the varia­
tional framework furnished by the Hu-Washizu principle. A 
crucial point in this development concerns the role played by 
the stress field, now entering the formulation as a Lagrange 
multiplier, and its recovery within the proposed variational 
structure. 

It is first noted that the Lagrange multipliers drop out from 
the formulation leading to a generalized displacement model, 
provided a certain orthogonality condition on the assumed 
strain field is satisfied. In addition, as a result of the varia­
tional structure, the admissible stress field (Lagrange 
multipliers) is constrained by an orthogonality condition aris­
ing from the Hu-Washizu principle as an Euler-Lagrange 
equation. These orthogonality conditions result in a single 
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constraint that, for a given form of assumed strain field, 
restricts the form of admissible stress fields. Therefore, once 
an assumed strain method has been formulated, the stress 
recovery becomes the central issue. It is interesting to observe 
that almost all of the stress recovery procedures employed in 
the assumed strain methods we are aware of fail to meet this 
condition, thus rendering the resulting method "nonvaria-
tional." 

It should also be emphasized that the generality afforded by 
the Hu-Washizu principle is essential for the variational 
characterization of assumed strain methods discussed below. 
In this sense, the Hellinger-Reissner principle provides too 
narrow a variational framework in which this class of methods 
generally do not fit. In fact within this framework, in a recent 
paper [7], Stolarski and Belytschko conclude that the mode 
decomposition technique, a particular instance of a B-bar pro­
cedure, generally lacks a variational justification. However, as 
a particular example, we show below how to obtain this class 
of methods within the variational framework outlined here, by 
appropriately recovering the stress field. 

For the sake of concreteness, we shall adopt the bending of 
a Mindlin plate as a model problem in the context of which 
our discussion is presented. The same ideas apply without 
modification to other problems such as three-dimensional 
elasticity. 

2 Mindlin Plate Problem. Basic Notation. 

Consider a Mindlin plate with mid-plane spanning QcIR2 

and thickness h. Denote by xtti a typical point of the mid-
plane. Define the set of generalized displacements by 

xefi—u(x): = 
d(x) 

w(x) 
eiR3 (i) 

Here, &(x) is the (infinitesimal) rotation of a line (director), 
perpendicular to fl through x, and w(x) the vertical deflection 
at x€fi. Introduce the following differential operators 
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d 

"dx1" 

0 

d 
"bx2 

L,:--

0 

d 

~dxr 

d 

'dxT 

d 

~dxr 

d 

~dx2~ 

(2) 

so that the curvature, K(X) and shear strain, y(x) at x€Q are 
given by 

K:=LBU, y:=Lsu (3) 

We assume an uncoupled bending/shear stored energy func­
tion of the form 

* ( K , 7 ) = * B ( K ) + * S ( Y ) . (4) 

so that the bending moment m and shear force s are given by 

dVB(K) d*s(y) 
m=—; , s~ d/c ' dy 

We note that for the developments that follow it is not 
necessary to assume that contitutive equations (5) are linear. 

3 Variational Structure. H u - W a s h i z u Principle . 

Consider the following partial Hu-Washizu principle2 

U(u,y,s):=\jitl^B(.LBu) + ̂ s{y)+s-(Lsu-y)]dQ + n EXT 

(6) 
where nE X T is the total potential energy of the external 
loading. The space of kinematically admissible variations 
(generalized displacements) Kmay be defined as 

V-.^U^OritWHm^ V „ =o l 
V. oil,, J 

(7) 

where Hl (Q) denotes the usual Sobolev space of functions 
possessing finite energy, and dQu is that part of the boundary 
where the generalized displacements are prescribed. In addi­
tion, admissible shear strain and shear stress fields are defined 
according to 

T:={y:Q~IR2\ yt[L2(Q)]2} 
(8) 

S:=[s:n-IR2\ s£[L2(Q)]2} 

where L2(Q) denotes the usual Hilbert space of square in­
t e g r a t e functions. By taking variations in the standard man­
ner, we obtain the following Euler-Lagrange equations 

&(u,s): = [ (—±:LBri+s-LsV)da-GExr = 0 

(equilibrium) 

G2(u,y):=\ T'[Lsu-y]dU = 0 (strain-displacement) (9) 

0-<W):-J...[-^]--37 

(constitutive equation) 

Independent stress and strain fields are only assumed for the transverse shear 
strain and stress fields. This presupposes no real loss of generality and is suffi­
cient for the applications of interest [3j. 

The above equations hold for arbitrary variations ?j€ V, eeT, 
and T € S . 

Approximation. Introduce a standard finite element 
discretization Q = Uf=, Qe, and the finite dimensional approx­
imating subspace 

Vh: = \uhi[Cd(Q,)}2\ uh\ =YtN'(x)uI=Neq} (10) 

Here, qe = is the complete set of degrees of 
freedom of Qe. The discrete curvature and shear strain field 
corresponding to (10) are given by 

n = BBqe, and Lsu>'^ =Bsqe J f l " ' l _ " " W e . a u u ^ s " L - " S V e 0 1 ) 

Then, the discrete approximation to the weak forms (9) are 

EXT n» 

\dQ (12) 

Gl \ A 'V + ~^—(? oy 1 
dtl 

where G1 = Ef=1 G\. Consider now an assumed local strain 
field generated by a given 5-bar operator, x — yh \a (x) = 
Bs(x)qe. That is, we assume (discontinuous) approximations 
for the strain field of the form 

r " : = {y"e[L2(Q)]2\yh
e(x)=yh ' (*) 

= Bs(x)qe,v/hereqem
Ne} (13) 

Let us denote by Sh C [L2 (Q)] 2 the space of discrete admiss­
ible stress fields rh. Notice that in general Th ?s Sh. In fact, as 
shown below and further elaborated upon in Section 4, this is 
the essential point in the variational stress recovery. By 
substitution of (13) into (12)3 , we obtain 

^-^W-^+^>W=° (14) 

for arbitrary variations eh\a = BspeeT''. It will be shown 
next that the stress field sh does not enter explicitly in the for­
mulation provided certain orthogonality conditions are 
satisfied. 

Orthogonality Constraints on the Stress Field. First, we 
observe that by making use of the identity Bs = Bs + [Bs — 
Bs] along with variational equation (14), the second term in 
the weak form of the momentum balance (12.1), may be 
rewritten for arbitrary variations t\h = NepedVh, as 

pA Bis" dQ=pA Bl^(y>e)dSl 
Js!„ a, J n, dy 

+ Pe • L [ * -Bs]
Ts" dQ, (15) 

Now assume that the second term in (15) vanishes. This condi­
tion along with the weak form (12)2, yields the following two 
orthogonality relations 

GML/ 
J V [ [Bs-Bs] 

• [Bs-Bs ]do)qe = 0for any ThtSh 

dQ, = 0 for any •qh =NepeZ Vh 

(16) 

where use has been made of (13). Note that for given Bs, con-
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ditions (16) place a restriction on the choice of admissible 
shear stress fields T''(X). In the next section, however, it is 
shown that stress fields satisfying conditions (16) can always 
be constructed. Substitution of (15) into (12)( yields, on ac­
count of (16)2, the following generalized displacement model 

thogonal complement to the space Eb relative to usual L2 in­
ner product. 

An Explicit Construction of Sh. We now show that given 
Bs, a space of admissible stress fields Sh satisfying (21) may 

Ge -pe •/<. — GB 

-'••(U^ur^-5* dy 
(yh

e)]du) J EXT 

(17) 

where Kh
e = BBqe and yh

e = Bsqe. In addition, it readily 
follows from (17) that the element tangent stiffness matrix, Ke 

is given by 

always be explicitly constructed as follows. For simplicity, 
assume linear constitutive equations so that 

DG\ 'U=pe>Keqe 

-'••(L 
WB(Khe) 

dK
2 

d2*s(y
h
e) 

dy2 B ]dQ)t 

(18) 

Therefore, the resulting discrete equations (17) and (18) are ex­
pressed exclusively in terms of BB and Bs. 

Remark 3.1. The assumed local strain field defined by Bs is 
arbitrary. Formally, equations analogous to (17) and (18) 
would also arise in the context of the procedure proposed by 
Hughes [2] and are often referred to as the 5-bar method. The 
present development furnishes the appropriate variational 
framework. 

Remark 3.2. Note that the Lagrange multipliers drop out 
completely from the formulation, provided conditions (16) 
hold. This fact was also noted in Simo, Taylor and Pister [6] in 
the context of the fully nonlinear incompressible problem. For 
this problem, an identical formulation in the context of the 
Hu-Washizu principle can be carried out. 

Now let us reverse our viewpoint. Assume we start with (17) 
and (18) (i.e., the ZJ-bar method). The finite element 
discretization is considered defined by these equations in­
dependently of the way in which stresses are to be computed. 
Is this seemingly ad-hoc method variational^ consistent? The 
exposition preceding (17) and (18) makes the answer manifest: 
It is variational^ consistent if the stress field is constructed so 
that conditions (16) are satisfied. Thus, the method of stress 
calculation, or recovery, is the central issue. This is dealt with 
in the following section. 

4 Variational Stress Recovery 

An equivalent characterization of the admissible stress 
fields rh satisfying orthogonality conditions (16) is the follow­
ing: For simplicity in the notation, the superscript h will be 
dropped. Let E be the set of discrete strain fields generated by 
Bs; i.e., 

(19) 

= [BS-Bs]qe] (20) 
P. J 

E:=[y(x)^[L2(Q)]2\ 7e = 7 

In addition, introduce the notation 

Eb: = [yb(x)t[L2(a)]2\ ybe-yb\a 

Conditions (16) then, may be re-stated simply as 

( V Y 6 ) L , : = r-ybdQ = 0, for any r € S \ and yb€Eb (21) 

Therefore, an assumed strain method is variational provided 
the space of admissible stress fields Sh is contained in the or-

Ds:= d
S, =const. (22) 

Now consider the orthogonal complement E°b
Hh of the space 

Eb relative to the inner product induced by Ds, that is 

Ey»:={y°b"(x)Z[L2(Q)]2\ < T v Y £ > = 0 ) , (23) 
where we have set 

<y^y°b
rI>- -I a, Jb \a. 

'Dsyf< dQ (24) 

Then, we define admissible stress fields as the stresses 
associated with the projection of the strain fields E onto Ef'h, 
that is 

7-eS* if and only if T =Dsy%rt, where y%HZE°b
r<h (25) 

Clearly, by virtue of (23) the local stress field T obtained in this 
way satisfies constraint (21). The explicit form of the inter­
polation for T(LSH may be obtained by constructing a basis for 
Eb

r"'. This can always be accomplished by orthogonalizing the 
columns of Bs against the columns of Bs — Bs in the < . , . > 
inner product, according to the following generalized Gram-
Schmidt procedure. 

Stress Interpolation. Suppose that E°b'
h has dimension dim 

£orm _ fj^ < pj^^ Then, the number of independent columns 
of [Bs - Bs] is Ne. Let b'b, {I = 1, . . _. ,Ne) denote the col­
umn vectors of the matrix [Bs — Bs]. Without loss of 
generality, assume that the first Ne columns are the indepen­
dent column vectors. We introduce the notation 

Bb: = [bibj . . . bf], w h e r e ^ -Bs = [b\bl . . . bN
be] (26) 

Associated with the independent column vectors Bb we define 
the Gram-Schmidt matrix Hb according to 

Hb:=\a (Bb)
TDsBbdQ (27) 

Note that by construction Hb is regular. We now define a 
modified stress interpolation operator Bs such that, for a 
given set of generalized displacements qeZl_RNe, the admissible 
stress fields r^Sh are defined in terms of Bs as 

T = DsBsqe 

Bx -Bs-BbHb-' \ (Bb)
TBsdQ 

(28) 
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To see that (28) furnishes the appropriate stress interpolation, 
simply observe that any yb£Eb may be expressed as yb = [Bs 

- Bs]pe = Bbpe. Here, pe denote the nodal degrees of 
freedom corresponding to the Ne independent columns of [Bs 

— Bs]. From (28) it follows at once that 

( r ,Y 6 )L*=/v[{ (2s)
TDsB„da]qe=0 (29) 

Thus, the stress fields constructed according to (28) satisfies 
the key orthogonality condition (21). 

Remark 4.1. It should be noted that stress fields of the form 

s\ =DsBsqe (30) 

often used in applications, do not satisfy condition (21) in 
general, thus rendering the method nonvariational. 

Remark 4.2. The crucial role played by the Hu-Washizu 
principle should be noted. In the more restrictive variational 
framework furnished by the Hellinger-Reissner principle, once 
the strains are assumed as y = Bsqe, the only possible choice 
for the stress field is (30). By contrast, within the framework 
outlined above, the stress field may be chosen as the or­
thogonal complement of Eb in L2. 

Remark 4.3. The developments discussed so far yield no in­
formation regarding the structure of Bs. The stress recovery 
(28) merely ensures that for a given Bs the method is varia-
tionally consistent. However, variational consistency is by no 
means a guarantee of success. Issues concerning stability and 
convergence of the method depend crucially on the form of Bs 

and ultimately, as any mixed method, on a discrete LBB con­
dition (e.g., [5]). 

An Example: Mode Decomposition Technique. As a par­
ticular example, consider the mode decomposition proposed 
by Belytschko and co-workers. The idea is to introduce a pro­
jection on the nodal displacements qe so that 

qe=PBqe + Psqe (31) 

where PB and Ps are projection operators which, accordingly, 
satisfy 
PB+PS=I, PBoPB=PB, PsoPs=Ps, PBoPs=PsoPB = 0 

(32) 

Then, the procedure is based upon selecting a discrete gradient 
operator Bs of the form 

Bs:=BsoPs (33) 

The methodology for constructing Ps is based on the concept 
of a so-called equivalent Kirchhoff configuration, see, e.g., 
[1]. The essential purpose of the method is to eliminate the so-
called parasitic shear strains. Clearly, the procedure falls 
within the class of 5-bar methods. Hence, the structure out­
lined in Section 3 entirely applies. In particular, the shear 
strains are computed according to 

71 =Bsqe = BsoPsqe, yb\ =BsoPBqe, (34) 
l"e >"e 

The shear stresses must be obtained so that condition (21) is 
satisfied. For this purpose, the procedure leading to (28) is 
applied. 

Remark 4.4. It should be noted that the stress recovery in 
the mode decomposition approach is usually performed ac­
cording to expression (31) which renders in general nonad-
missible stress fields violating orthogonality condition (21), 
see, e.g., [7] and references therein. Other structural elements 
employing a 5-bar type of approach, e.g., [3], have also 
employed this stress recovery. 

Remark 4.5. Zienkiewicz and Nakazawa [8], generalizing 
results of Malkus and Hughes [4], have considered the 
equivalence between numerically integrated displacement for­
mulations and mixed formulations based upon the Hu-
Washizu principle. They also consider the issue of a consistent 
variational recovery of strain and stress fields, within the con­
text of smooth (continuous) interpolations for these fields. It 
should be noted that numerically integrated displacement 
methods and B-bai type of methods represent different classes 
of generalized displacement methods, although in some in­
stances they may overlap. Thus, the results in [8] and those 
reported herein may be considered complementary. 
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Invariance Considerations in Large 
Strain Elasto-PIasticity 
This paper addresses a number of issues in the ongoing debate over the relevance 
and/or appropriateness of the rotational invariance requirement which is generally 
associated with the intermediate unstressed configuration. In particular, it is argued 
that the principle of material frame invariance has been "misapplied" by the pro­
ponents of full rotational invariance. Insistence on a strictly "kinematic" interpreta­
tion of the deformation gradient (F = FeFp) constituents Fe and Fp justifies elimina­
tion of the plastic rotational component Rp(Fp = RpUp) based on the principle of 
determinism for stress—not invariance of frame. However, simple physical con­
siderations, including a physical example involving a "structurally anisotropic" 
crystal, suggest that a more intricate definition of the gradient constituents is re­
quired in order to adequately account for microstructural characteristics. These con­
siderations suggest alternative definitions for the gradient constituents Fe and Fp 

with associated constitutive invariance requirements. 

Introduction 

In recent years a number of articles concerning the ad­
missibility of certain invariance requirements relating to the 
deformation gradient decomposition 

F = FeF„ (1) 

have appeared. This debate centers on the question of whether 
a specific requirement of invariance under the transformation 

( F , F e , F , ) - (F ,F C Q,Q%) (2)1 

for the full orthogonal group is 
(i) required in order to obtain "admissible'' constitutive 

laws, or 
(ii) over-restrictive and leads to a general theory which is 

something less than "general." 
Those who argue for (2) assert that constitutive equations 

for the symmetric Piola-Kirchhoff stress and (Helmholtz) free 
energy of the form 

S = S(E,F | J 1 K); * = I K E , F , , K ) , (3) 

must be independent of the rotational component of Fp and 
therefore equivalent to equations having the Green-Naghdi [1] 
form 

S = S(E,E/,,K); ^ = ^ ( E , E P , K ) , 

expressed in terms of the total and plastic strain 

2E = C - I ; C = F r F 

2E,-C„-I; C,»F/F„ . 

(4) 

(5) 

In This invariance requirement is in addition to the frame invariance (isotropy 
of space) requirement associated with the transformation (F,Ff,F„)— 
(QF,QFe>Fp). 
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The case for this position has been stated most recently by 
Casey and Naghdi [2, 3] while proposition (ii) has had recent 
support from a number of authors including Mandel [4], 
Lubliner [5], Lubarda and Lee [6], and Lee [7]. Here, 
arguments in support of this latter group are presented. 
Through simple microstructural considerations, I intend to 
demonstrate that the imposition of this additional invariance 
requirement severely compromises our ability to model 
materials which possess a "persistent" anisotropic lattice 
structure (e.g., single crystals). This conclusion follows from 
the fact that it effectively allows for one and only one lattice 
orientation in each plastically deformed rest configuration, 
regardless of the complexity of the plastic deformation path. 
This restrictive property ascribes a path-independent 
characteristic to the plastic deformation mechanism which is 
not supported by available evidence. Relating to this latter 
point, and in lieu of evidence which suggests that the ac­
cumulated plastic strain has any relevance to the determina­
tion of a deformed element's mechanical state, I will also sug­
gest a move to alternative constitutive formalisms which do 
not rely on the identification of plastic strain as a "primitive" 
variable. 

The basic assumptions which underpin this line of argument 
are not new. Those familiar with the body of literature 
authored by Havner, Hill, Kocks, Rice, and others2 dealing 
with the plastic deformation of crystalline metals will 
recognize, and no doubt feel comfortable with, the underlying 
phenomenology. The intent here is to bring this line of reason­
ing to bear on the present and ongoing debate over invariance 
criteria and to cast this sort of theory in a form which may be 
more familiar to those accustomed to the formalisms of Lee 
and/or Green and Naghdi. 

2The recent review article by Havner [8] seems to give a thorough accounting 
of this line of research. 
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The present considerations nevertheless lead to a general 
constitutive formalism [9] which, although fully consistent 
with that elucidated by Havner [8], has a number of note­
worthy features. Apart from the elimination of explicit 
dependence on the accumulated plastic strain the most striking 
feature of this alternative format is that it is set in an Eulerian, 
or spatial, context with the present deformed configuration 
adopted as the instantaneous reference. This approach is 
based on the assumption that an inelastic element's present 
state is wholly determined by 

(/) its present geometric configuration, 
(ii) the instantaneous geometry and orientation of the 

characteristic material lattice structure, 
{Hi) an "adequate" characterization of the instan­

taneous dislocation structure. 
In this formulation the inherent path dependent nature of the 
inelastic deformation mechanisms is recognized through the 
explicit non-reliance on a fixed-material reference configura­
tion (as distinct from a fixed-lattice reference) and the elimina­
tion of all measures of the accumulated plastic strain. These 
considerations, which draw upon all previously cited for­
malisms, offer a resolution to the present debate over in-
variance criteria and establish a suitable theoretical structure 
for the development of realistic, large-strain, inelastic material 
models. 

The Difficulty 

In order for the Cauchy (true) stress response equation 

a = a{F,Fp,K) (6) 

to be concordant with the principle of determinism for stress, 
and thereby establish a theoretically valid point of departure 
for inelastic modeling, it is necessary that F^, like F, be deter­
mined from the history of the local material motion relative to 
some specified reference. This is explicitly acknowledged by 
Lee in [10] when he states that " . . . the plastic deformation 
Fp is a functional which represents the past history of plastic 
flow that has already occurred, . . . " The fallacy of the cur­
rent debate is that an argument has been joined over the in-
variance requirements which apply to a quantity which has not 
been properly defined in this causal sense. There is no debate 
over the meaning of the stretch component 

Vp = J¥/Tp (7) 
of Fp as it is understood to represent the unique positive 
definite square root of the Green plastic deformation tensor 

CP = F/Fp. (8) 

The existence of Up as a functional of past deformation 
history follows from the assumption that each material ele­
ment, at each instant, possesses a unique relaxed or unstressed 
geometry. A similar causal definition of the rotational compo­
nent R^ = FpVp ~' has never been fixed. In this regard, the 
demonstrated "non-uniqueness" of the gradient de­
composition 

F = F F = F *F * 

Fe* =F e Q (9) 

F / = Q % - R , * = Q % , 

in terms of an arbitrary proper orthogonal Q, can be taken as 
proof of the fact that purely kinematic considerations alone 
do not, and cannot, establish the causal functional nature of 
R„. 

Proponents of the contested invariance requirement seize on 
this non-uniqueness of the gradient decomposition and state, 
in effect, that the instantaneous response cannot possibly de­
pend on how one orients the unstressed element. Thus, they 
invoke invariance under the transformation 

(F ,F e J F p ) - (F ,F e Q,Q r F, ) (10) 

for the full proper orthogonal group, while suggesting that 
this represents a logical extension of the principle of in­
variance of frame. I submit that while their conclusion is for­
mally correct, given their characterization of the primitive 
variables as having only kinematic significance, it is not ap­
propriate to appeal to the principle of invariance of frame. 
Moreover, by choosing to ignore the essential microstructural 
aspects of solids, they arrive at a general theory which is an­
tithetical to the nature of crystalline or polycrystalline solids 
which exhibit material anisotropy. 

First of all, the constitutive hypotheses of determinism and 
invariance of frame seem to have a natural ordering in which 
the former precedes the latter. Indeed, they are based on com­
pletely independent philosophical principles. The principle of 
determinism for stress, i.e., 

The instantaneous stress response of a material element at 
time t> 0 is a functional of the history of the element defor­
mation proceeding from a "well-characterized" reference 
state at r = 0, i.e., 

a ( 0 = ( R o [ F ( s ) : 0 < 5 < / ] , (11) 

is based on an intuitive understanding of the nature of time 
and the supposition that causes necessarily precede effects. 
This principle underpins and, in some sense, justifies all scien­
tific investigation. The hypotheses of invariance of frame, as it 
applies here, i.e., 

The instantaneous stress response of a material element at 
time t> 0 depends on the history of element orientation only 
as a function of its current value, and only insofar as it 
"orients" the resultant stress, i.e., 

Qa(OQ r = «UQF(0;C(s):0<s<;fl ; 

C = F r F ; for all proper orthogonal Q (12) 

is based on the notion of isotropy of space. Since this 
hypothesis freely incorporates the idealization of Galilean 
relativity, among other things, it is clearly subordinate to the 
more fundamental assertion of determinism. In fact, the 
specific wording given above presupposes stress determinism 
through (11). 

In view of these considerations it is difficult to justify the 
imposition of frame invariance on a constitutive form which 
already stands in violation of the principle of determinism. 
Within the context of the present debate, an explicit definition 
of Rp, and thus of Fp, in terms of prior deformation history 
must precede the consideration of additional invariance re­
quirements. Put differently, the existence of a constitutive 
relation 

R o ( / )=9 l o [F (5 ) :0< 5 <?] (13) 

must be established before additional restrictions can be 
meaningfully imposed. If no such physically relevant defini­
tion of Rp exits, then it must be excluded from (6), leaving the 
form 

a = a{F,Vp,K), (14) 

as a consequence of the principle of determinism for stress, 
not invariance of frame. On the other hand, if a physically 
relevant, causal definition of Rp can be formulated, then the 
validity of any additional invariance requirement can be 
assessed only in light of this definition. It should also be clear 
that no such definition of Rp is possible without the introduc­
tion of microstructural, in addition to purely kinematic, con­
siderations. To exclude consideration of microstructure in 
modeling the behavior of solids is to ignore the inherent 
physical nature of this class of materials. 

Additional Considerations 

Within the context of a general theory, it is clearly necessary 
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to allow for material anisotropy. While this is recognized by 
all parties there is not yet agreement on how this should be 
done. In fact, this issue seems to provide the focus for the 
ongoing debate. In view of the considerations of the previous 
Section, I believe that it is crucial to develop a "meaningful" 
causal definition of Rp which bears some relationship to 
anisotropic characteristics through material microstructure. 
For this purpose I have adopted the phenomenology 
elucidated by Rice [11; Sec. 3.2], in incremental form by 
Asaro and Rice [12; Sec. 2], and most recently in the review ar­
ticle by Havner [8; Sec. 3.2 & 4.1] in connection with the slip-
shear deformation of single crystals. 

In an effort to cast this discussion in a somewhat more 
general context I shall begin by dividing all anisotropic 
characteristics into two mutually exclusive categories. 
Specifically, any directional characteristic which is present and 
recognizable in all unstressed elements of a given material will 
be referred to as a structurally anisotropic characteristic. All 
others, i.e., those which may or may not be present depending 
on prior deformation history, will be referred to as induced 
anisotropic characteristics. Structural anisotropy will most 
likely be associated with chemical composition and the cor­
responding crystallographic, or cell, structure of the material 
while induced anisotropy is most likely to result from the local 
density and distribution of dislocations within the 
crystallites.3 

Once the existence of structurally anisotropic materials is 
admitted (the paradigm example being the single crystal), then 
a causal definition of Rp of obvious physical relevance 
becomes apparent. In order to assign a particular value to Tp, 
and therefore to its rotational component R^, it is first 
necessary to select and set aside a particular "virgin" element 
of this material which exhibits only the characteristic struc­
tural anisotropy. This element shall henceforth serve as a 
reference map for the underlying material bond structure and 
is to be regarded as an integral part of any constitutive rela­
tion. Having established such an element, the so called 
reference cell, as a standard for comparison, the value of Fp 

assigned to any other element of this material is taken as that 
which "places" the corresponding relaxed or unstressed ele­
ment with structural orientation identical to that of the 
reference cell. Based on this definition of ¥p and the gradient 
decomposition (1), it is evident that Fc can then be regarded as 
the linear map which fixes the current "lattice configuration" 
by "placing" the characteristic structure of the reference cell 
in the deformed material element. This makes it possible to 
visualize the total element deformation as a two step process 
consisting of an initial "plastic" deformation characterized by 
a spatially fixed cell structure, followed by an "elastic" defor­
mation in which the characteristic cell structure is "dragged 
along" with the material. For reasons of convenience I choose 
to regard F and ¥e as primative, with F placing the material 
relative to a chosen material reference and Fe providing the 
essential outline for the description of lattice or material bond 
structure (instantaneous elastic distortion and "structural" 
orientation) by placing the preselected reference cell in the 
deformed material element. 

In the event of full structural anisotropy (orthotropy), this 
definition assigns unique values to the gradient constituents of 
each material element based entirely on local deformation 
history. On the other hand, if the material exhibits no struc­
tural anisotropy then, based on the above definition of F p , 
proper orthogonal Rp would clearly be indetermiriant. Thus, 
adoption of the above definitions establishes the invariance re­
quirement (2) as a consequence of structural isotropy. Based 
on these considerations it can be argued that the contested in-

Based on statistical averaging, most annealed polycrystalline metals should 
probably be regarded as structurally isotropic. 

variance requirement should rightfully be replaced by a re­
quirement of invariance under the transformation 

(F,Fe,F |,)-(F,F (,,Q,Q rFJ,); for each QeS (15) 

where g represents the orthogonal symmetry group for the 
virgin reference cell. 

The above discussion would seem to suggest that the theory 
of Green and Naghdi is incapable of modeling structurally 
anisotropic materials, as the imposition of invariance under 
(2) would appear to deny the influence of structural orienta­
tion. This, however, is not necessarily the case since elimina­
tion of Rp from (3), and subsequent reduction to (4), would 
also result from the explicit assumption that 

R / , = R P ( F , U P , K ) . (16) 

Since elastic unloading to F = Up would presumably not fur­
ther alter the structural orientation (relative to the material) in 
the relaxed element, (16) is seen to imply a simpler relationship 
of the form 

RP=RP(VP,K). (17) 

The obvious implication of (17) is that there is one and only 
one cell orientation corresponding to each state of plastic 
strain at a given hardness. In other words, it implies that the 
evolution of lattice orientation, relative to the material, is in­
dependent of the plastic deformation path and thereby fixed 
by the accumulated plastic strain. There is, however, no 
evidence to suggest that this is characteristic of inelastic defor­
mation in metals. In fact, it is a simple excercise to construct a 
physical counterexample (see Appendix) by demonstrating the 
existence of a closed plastic deformation path in a non-
hardening crystal, consisting of a sequence of four single shear 
deformations along a pair of perpendicular slip systems, 
which results in a net rotation of the underlying crystal lattice 
relative to the material. Such examples, although highly 
idealized, serve to suggest that the above "path independent" 
characteristic is not a property which is generic to metal 
inelasticity. 

This apparent deficiency in the Green-Naghdi format sug­
gests one which is even more fundamental in nature. This 
relates to the selection of the accumulated plastic strain as a 
"primitive" state variable. As demonstrated above, func­
tional dependence on accumulated plastic strain (as opposed 
to the entire history of plastic strain) appears to assign in­
herent path independent characteristics to the plastic deforma­
tion mechanism which are not borne out by available 
evidence. In effect, the plastic deformation mechanism 
disassociates "material distribution" from bond structure, 
with ¥p giving the current accounting of this relationship. 
Havner [8; Sec. 3.1] expresses this by noting that, "The single 
most important phenomenological aspect of gross inelastic 
behavior in metal crystals (indeed, distinguishing them by 
kinematics alone from polymers and soils) is the movement of 
the macroscopic material relative to the underlying crystalline 
structure." The key assumption which underlies all theoretical 
development based on the above phenomenology is that the 
mechanical state of a deformed material element is determined 
by the instantaneous spatial bond distribution (lattice place­
ment plus dislocation distribution), independent of the 
material distribution. This assumption shall be formalized in 
the concluding Section through the introduction of a new in­
variance requirement which may be referred to as replacement 
invariance. Further, due to the fundamentally path dependent 
nature of the plastic deformation mechanism, I consider it im­
probable that accumulated plastic deformation has any 
relevance to the characterization of bond structure. To iden­
tify plastic strain as a primitive state variable is to suggest 
otherwise. As shall be demonstrated in the concluding Section, 
the requirement that all constitutive forms be invariant with 
respect to material element replacement provides a justifica­
tion for the elimination of plastic strain as a primitive variable 
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and establishes a needed connection between the different for­
malisms employed by the contending parties. 

An Alternative Formalism 

The fundamental premise which guides the following 
development is that the instantaneous lattice placement and 
dislocation structure fix the mechanical state of deformed 
material elements. That is, any two deformation paths, 
regardless of final material placement, which result in iden­
tical lattice placements and spatial dislocation distributions 
should produce mechanically indistinguishable elements. 
Although these assertions would support a direct statement of 
the attendant constitutive forms, a more formal approach is 
adopted wherein the appropriate response forms are deduced 
through a systematic application of invariance requirements to 
a more general (and less controversial) form. For convenience, 
the response equations are first cast in the form 

[*,*] = (R(F,Fe,,), (18) 
in terms of the Cauchy (true) stress a, the (Helmholtz) free 
energy density \j/, the familiar total and elastic deformation 
gradients F and Fe , and a set of frame invariant, Eulerian4 

tensor state variables i\ = (q,) . These additional variables will 
likely describe certain geometric aspects of the instantaneous 
dislocation distribution and are introduced in order to model 
the dislocation induced variation in mechanical properties. 
The conjecture of the previous Section is that these variables 
are inherently history dependent and that there is little 
likelihood that they will exhibit explicit dependence on ac­
cumulated plastic strain. 

The first invariance requirement that must be imposed on 
(18) is that of material frame invariance. Since F and Fe , 
respectively, "place" the material element and the 
characteristic cell lattice in the current configuration, it is 
clearly necessary and sufficient to require that 

[QoQ r ,fl = <R(QF,QFe,TQ,), (19) 

for all proper orthogonal Q corresponding to post-
deformation rotation of the material element. Here, T e 

represents the rotational group transformation operator 
associated with the set of tensor state variables t\. Structural 
symmetries in the characteristic lattice are accounted for by 
demanding invariance under (15). This insensitivity to certain 

Eulerian in the sense that they are defined and interpreted relative to the cur­
rent element configuration. 

Fig. 1 Element "replacement" resulting in unaltered 
mechanical characteristics 
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prerotations of the reference cell gives rise to the formal re­
quirement that 

[o,$] = (R(F,FeQ,tj); for all orthogonal Q6 Q. (20) 

Replacement invariance, as described above, takes the form of 
invariance of response under the transformation 

(F ,F e , F p ) , ) - [FF,Fe,CFe - ' F F J F , , , ! (21) 

for all possible non-singular replacements F (see Fig. 1). 
"Replacement" of a deformed material element (placed by F) 
can be visualized as one or a series of perfectly plastic shear-
slip deformations which do not effect the geometry or orienta­
tion of the underlying lattice structure.5 With the substitution 

F * = F " ' F F ; F = F F * F - ' , (22) 

this transformation is seen to be equivalent to 

(F ,F e ,F„ , , ) - (FF*,Fe,F/7F*,»,). (23) 

Thus, replacement invariance is assured if and only if 

[a,M = (R(FF*,Fe,ri), (24) 

for all possible nonsingular F*. If dilitation is regarded as a 
purely elastic phenomenon (as it usually is), then the set of 
allowable replacements would be restricted by the determinant 
constraint 

det(F) = det(F*)=l. (25) 

Due to (25), (24) would render arbitrary only the unimodular 
component of F and hence it is more convenient to impose 
these invariance requirements on the equivalent response form 

M] = (R(Fp,¥e,r,) (26) 

expressed in terms of ¥p = Fe ~' F. With the adoption of (26) it 
is clear that the invariance requirements (19, 20, 24) are re­
placed by 

Frame invariance 

[QaQT,4'] = (R(¥!„Q¥e,TQr,y, 

for each proper orthogonal Q, (27) 

Lattice orthotropy 

[(r,i/-] = (R(Q7'Fp,F(?Q,);); for each orthogonal QeQ, (28) 

Replacement invariant 

[<r,i/<] = (R(Fjl,F*,Ff,,t;]; for each unimodular F*. (29) 

Now, since Fp would also be subject to the unimodular con­
straint (25), invariance under (29) would render its value ar­
bitrary and thereby force its removal from the list of 
arguments in the response equation (26).6 

Thus, imposition of replacement invariance leads to a new 
formalism for the modeling of inelastic solids based on 
response functions of the form 

M] = (R(Fe,v). (30) 

If the material being modeled supports such deformations, then element 
replacement could be achieved through this mechanism. More generally, 
however, replacement invariance should be regarded as nothing more nor less 
than a mathematical statement of the assertion made in the second sentence of 
this Section. 

6It is a simple matter to verify that the form 

S = S(C,C/J,K) 

is constrained by the requirement that 

F* ~ ' S ( F * _ * ) T = S(F* rCF*,F* TCpV,/<); for all unimodular F*, 

under the imposition of replacement invariance. Since this guarantees invariance 
under all element prerotations, it must be concluded that this particular 
theoretical form cannot incorporate replacement invariance without being 
restricted to materials which have isotropic structure. An invariance require­
ment of this type was employed in [13] in the modeling of a special class of 
isotropic elastic-plastic solids having invariant elastic properties. 
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This form is further restricted by the usual frame invariance 
requirement 

[QoQ7,^] = (R (QF<.,7Q»;); for each proper orthogonal Q, 
(31) 

and, the lattice orthotropy constraint 

[a,\p] = (R(FeQ,ij); for each orthogonal Qe8. (32) 

In view of (32), full structural isotropy would make it possible 
to rewrite (30) in either of the alternative forms 

t«r , f l= / (M)=g(c,*) , (33) 

in terms of the positive definite, symmetric, elastic deforma­
tion measures 

b = F e F / (34) 

c ^ b - ' ^ F ^ T F , - ' . 

These reduced forms are subject to frame invariance through 

lQaQT,t]=f(QbQT,TQt,)=g(QcQT,TQV), (35) 

but satisfy (32) identically. 
The considerations of this Section underlie, and establish 

the point of departure for, the alternative constitutive for­
malism detailed in [9], This format, which is fully compatible 
with the previously cited theoretical formulations of Havner, 
Hill, Rice, et. al., is not burdened with the physically over-
restrictive invariance requirement (2) and deemphasizes the 
mechanical significance of accumulated plastic strain. This is 
accomplished by assigning full responsibility for the modeling 
of plastically induced mechanical effects on a collection of 
history dependent internal variables consisting of the "cell 
placement" tensor ¥e and a set of (as yet unspecified) state 
variables r/ = {q,). The history dependence of these variables is 
explicitly incorporated into this general theory by postulating 
the existence of frame invariant, causal, evolution equations 
which take the form 

WeV), TQV(t)] = g0[Q¥U); C(s): 0<s<t]; 

for all proper orthogonal Q, (36) 

when referenced to some "well-characterized" state at t = Q. 
Havner [8] traces the development of incremental evolution 
laws for ¥e (using the symbol J in place of Fe) under the cir­
cumstance wherein slip-shear is the dominant plastic deforma­
tion mechanism. 
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A P P E N D I X 

An Interesting Example 

For this example consider a unit cell of a perfect single 
crystal having horizontal and vertical families of slip planes. 
This element shall be subjected to a sequence of perfect single 
slip-shear deformations which alternately activate the horizon­
tal and vertical slip systems. As is well-known, a perfect slip-
shear deformation (see Fig. 2) is characterized by a displace­
ment field of the form 

u(r) = u 0+ 7 (s(x)n) . r (37) 

and deformation gradient 

F s = I + 7(s(x)n) (38) 

in terms of the normal n to the active slip planes, the shearing 
or glide direction s, and a positive shear strain parameter 7. 
Moreover, it is clear that such a deformation changes the 
material geometry without altering the cell size [det(F i)=l], 
or the local geometry or spatial orientation of the underlying 
crystallographic structure. 

Now, let i and j represent the horizontal and vertical direc­
tions, respectively, and consider the four step slip-shear 
deformation 

F = F4F3F2F, 

= [I + 72a®i)][I-71(i®J)][I + Yi(J®i)][I-Y2(i®J)] (39) 

f l - Y i 2 - [ 7 2 ( l - 7 ! 2 ) + 7i] "I 

l 7 2 ( l - 7 i ) + 7i (I-71Y2) - 7 2 J 

expressed in terms of the shearing parameters 7] and y2. The 
immediate objective is to show that 7, and y2 can be chosen so 
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that the accumulated effect, as measured by F, amounts to a 
counterclockwise rigid material rotation (see Fig. 3) by an 
angle @ = 20, for any angle 6 satisfying - TT/2 < 0 < w/2, that is 

.72(i-Yi2)+Yi 

- [ Y 2 ( l - Y i 2 ) + Yi] 

d - Y , Y 2 ) 2 - Y 2 2 

cos20 - sm26~) 

sin20 cos20 
(40) 

Note that this is accomplished by satisfying any two of the 
three equations 

F;rA. = l - 7 1
2 = cos28 

Fyy = (1 - Y1Y2)2 - Y22 = cos20 

Fyx = ~Fxy = Y2O - Yi2) + Yi = sin20 

(41) 

by virtue of the fact that F identically satisfies the determinant 
constraint det(F) = 1. Simultaneous solution of the first and 
third equations yields the result 

Yi = V2sin0 

72 = V2sin0/( 1 + V2cos0). (42) 

With reference to Fig. 3, it therefore follows that for any 
choice of 0€( —ir/2,ir/2), the five step deformation process 

F* = QF = QF4F3F2F,, (43) 

which terminates with a clockwise rigid rotation Q through an 

angle 20, describes a closed deformation cycle (F* =1) which 
results in a net rotation of the underlying lattice structure. 
Having assumed an initial absence of dislocations (perfect 
crystal), no hardening can occur during the perfect slip-shear 
deformations. Consequently, it is clear that the initial and 
final states of this element are characterized by 

[E = E J , ,itJ /={E = Ep,icJl. (44) 

Thus, the particular version of the Green and Naghdi theory in 
which the primitive variable E ' is associated with the plastic 
strain Ep is not able to distinguish between these obviously 
distinct (provided of course that proper orthogonal Q does not 
belong to the lattice symmetry group) mechanical states. 

The lesson of this example is inescapable insofar as it clearly 
demonstrates that the evolution of material characteristics 
associated with "structural" anisotropy depends in a com­
plicated manner on the entire plastic deformation history. In­
asmuch as the Green and Naghdi formulation depends on a 
"realistic" description of the anisotropic characteristics of 
subsequent unstressed elements in terms of the accumulated 
plastic strain and hardness (and perhaps a number of fixed 
material tensors associated with the initial anisotropic 
reference configuration) it must be regarded as overrestrictive. 
It is noteworthy that these conclusions follow from the con­
sideration of a highly specialized example in which only struc­
tural anisotropic characteristics (i.e., those associated with lat­
tice structure) are relevant. One can only speculate on how 
much stronger a plastic path dependence is exhibited by the in­
duced anisotropic characteristics which arise from the genera­
tion and interaction of lattice dislocations. 
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Determination of Dynamic Forces 
From Wave lot ion Measurements 
An experimental method has been developed for generating oblique forces with 
known orientations and time histories. Recorded signals from several forces were 
analyzed by an iterative deconvolution method to determine their orientations and 
time histories. The recovered values agree closely with the exact ones for these con­
trolled sources. These experiments are a valuable test of source characterization 
methods that may be applied to seismic data from earthquake sources or to signals 
recorded from the acoustic emission of cracks. 

1 Introduction 

A time-dependent concentrated force with fixed orientation 
that is applied to a structure generates wave motion which may 
be recorded on the surface. If the location, time history, and 
orientation of the force are known, the displacement response 
can be calculated for simple structures for which the Green's 
functions are known. To record the response to either a 
known or unknown source, a transducer can be mounted on 
the surface of the structure. In this paper a method is de­
scribed and demonstrated to experimentally determine the 
orientation and time history of an oblique force applied to the 
surface of an elastic plate. 

A closely related problem is determining the time history of 
a concentrated force of known orientation. Goodier et al. 
[1959] solved an integral equation to calculate the time history 
of a vertical force applied to a half-space from the far-field 
response. Hsu et al. [1977] and Michaels et al. [1981] discre-
tized and inverted a time convolution integral to determine the 
time history of a vertical force applied to a plate from the 
near-field response. An important factor in the success of their 
work was the availability of an artificial source, which is 
generated by fracturing a glass capillary against the structure 
surface. As was first noted by Breckenridge et al. [1967], this 
source is a concentrated vertical force that has the time-
dependence of a step-like unloading function. 

The response of a structure to a force of known orientation 
is given by a convolution in time of a source function with a 
single Green's function. Thus, the problem of determining the 
source function from the response may be solved by decon­
volution. However, for a force of unknown orientation, the 
response is given by a convolution of the source time function 
with a linear combination of Green's functions, where the 
unknown coefficient of each Green's function is proportional 
to a direction cosine of the force. Therefore, methods for 
deconvolution with a single Green's function cannot be direct-
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Iy applied to determine both the source time function and the 
direction cosines. In this paper, a deconvolution jnethod 
recently developed by Michaels and Pao [1985] for multiple 
Green's functions is applied to experimental data. 

2 Theory 

Before the orientation and time history of an oblique force 
can be determined from the measured wave motion, it must be 
understood how the response depends upon the source, the 
medium, and the receiver. It is assumed here that the medium 
is an infinite elastic plate and that the receivers are piezoelec­
tric transducers sensitive to normal motion. 

Displacement Response in a Plate. Consider the plate 
geometry shown in Fig. 1. In cylindrical coordinates (r, 6, z), 
the source is located at x° = (0, 0, 0) and a typical receiver is at 
x = (V, 6, h), where h is the plate thickness. It is assumed that 
the horizontal dimensions of the plate are large enough so that 
it can be modeled as infinite in extent. 

The Green's displacement tensor, Gy(x, t; x°), is defined to 
be the displacement response in the ith direction at x and t due 
to an impulsive concentrated force of unit magnitude in they'th 
direction at x° and t=0. Thus, for a point force Fj(x°, t) 
acting at x° that is zero for t < 0, the resulting displacement is, 

";(*> 0 = Lt\a drGi/x, t-r\ x°)Fj(x°, T) 

(1) 

= IX'(*> t;x°)*Fj(x°, t) 

In this and subsequent equations, an asterisk denotes a con­
volution integral in the time variable. 

It is assumed here that the orientation of the oblique force 
Fj does not change with time. It then may be expressed as, 

Fj(x°,t)=fj(x°)s(t) (2) 
The function s(t) is the time history of the force, which is the 
same for all three components of Fj. The vector fj(x) is the 
time-independent orientation. This decomposition in equation 
(2) is not unique because it is defined only to within a scale 
factor. 
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Fig. 1 Source and receiver geometry for an infinite elastic plate 

Since the plate is axially symmetric and the source is located 
on the x3 (or z) axis, the normal displacement u3(r, 6,h,t) may 
be evaluated from the Green's functions at x = (r, 0, h) by 
rotating the components of the force fjt 

u3(r, 6, h, 0 = f £ Gy(r, 0, h, t; 0 ) / / ] M O (3) 

The components// are, 

/ , ' = /1cos0+/2sin0 

f2' = - / l S in0+/ 2 cos0 (4) 

/>' = A 
Equation (3) may be simplified by noting that G32 (r, Q,h,t; 0) 
vanishes identically because of the axial symmetry of the plate 
(Ceranoglu and Pao, 1981). 

u3(r, 6, h, t)= i(fiCosd+f2sme)G31(r, 0, h, t\ 0) 

+f3G33(r,0,h,t;0)}*s(t) (5) 

Thus, if the Green's functions are known, the normal 
displacement response to a known oblique force may be 
calculated. 

Deconvolution with Multiple Green's Functions. To 
determine / , , / 2 , f3 and s(t) from the measured normal 
displacement u3, we must consider the problem of deconvolu­
tion where the kernel is a sum of Green's functions with 
unknown coefficients. The method used is described in detail 
by Michaels [1984] and Michaels and Pao [1985] and is only 
briefly reviewed here. 

Equation (5) for displacement is of the form, 

M 

«(0=[]C cmGm(0j*5(0 (6) 

where we identify, 

i/(0 = u3(r,e,h,t) 

M = 2 

ct = /1cos0+/2sin0 

G,(0 = Gj,(r,0,A,f;0) 

c2 = A 
G2{t) = G33{r, 0, h, t; 0) 

(7) 

In general, there are several receivers, and equation (6) is valid 
for each receiver but with different c,„ and Gm(0-

The first step is to calculate c,, c2 and s(t) at each receiver 
location by an iterative deconvolution procedure. The coeffi­
cients c, and c2 are first set to non-zero initial values. Using 
these values, the source time function s(t) is estimated by least 
squares deconvolution. Then, improved estimates of cx and c2 

are calculated from the estimate of 5(0, again by least squares. 
This procedure of alternately calculating cm and s(t) is con­
tinued until they converge to stable values. 

The final estimate of 5(0 is obtained by averaging the signals 
obtained by deconvolution at all of the receivers. Similarly,/3 

is obtained by averaging the coefficient c2. However, the 
iterative deconvolution procedure does not recover fx and f2 

directly. They are imbedded in the coefficient c t as shown in 
equation (7). Thus, to calculate/! a n d / 2 , there must be at 
least two receivers located at different angular positions. For 
more receivers, a least squares minimization is performed to 
obtain/! and/ 2 from the coefficients c, at all of thejeceivers. 

Thus, the iterative deconvolution method yields f and s{t), 
estiamtes of f and s(t), the parameters of the oblique force. 
As discussed previously, f and i ( r ) may be mulitiplied and 
divided, respectively^, by an arbitrary scale factor. Here we use 
the convention that f is a unit vector, and thus scale s(t) such 
that 

7 = 1 

Since f and f are both unit vectors, the angle between them is 
given by, 

A</) = cos- '(f .f) 

This angle is a measure of the error in determining the orienta­
tion of the oblique force. 

Transducer Characterization. The piezoelectric trans­
ducers used in the work reported here are primarily sensitive to 
normal velocity. They are also small in size such that a point 
receiver model is appropriate. Thus, we assume that the out­
put of the amplifier a(t) can be expressed as, 

a(t)=T(t)* 
du3(x, Q 

dt = r(0*«3(o (10) 

In this equation, T(t) is the transfer function for the 
transducer. It characterizes not only the transducer but the 
coupling of the transducer to the structure and the recording 
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Fig. 2 Data acquisition equipment for oblique force measurements 

equipment (cabling, amplifiers, transient recorders). It is fur­
ther assumed that T(t) is of finite duration. 

The first step in the characterization procedure is to deter­
mine the transfer function T(t) for each transducer. This is 
done by measuring the response to the fracture of a glass 
capillary. This dynamic source is initiated by slowly pressing 
vertically against a capillary tube until it fractures. As shown 
by Breckenridge et al. [1967], this source is a concentrated ver­
tical force that has the time dependency of a step-like 
unloading function. If the finite rise time is neglected, the time 
dependence of the source is represented by a step function 
//(/)»and we have, 

f = - e 3 

s(t) = H(t) 

The resulting normal velocity at x = (r, 6, h) is, 

d 

(11) 

vc(t) dt 
{G33(x, t;Q)*H(f)) 

= -G 3 3 (x , r ;0) (12) 

If ac(t) denotes the signal generated by breaking the capillary, 
equation (10) then yields 

ac(t)=T(t)*vc(t) (13) 

Since ac{t) is measured and vc(t) is known from calculation of 
the Green's function G33, the transfer function T(t) can be 
evaluated by deconvolution. 

Now let a{t) be the measured signal from the unknown 
source. From this signal, the iterative deconvolution pro­
cedure recovers a source time function S(t). This S(t) is the 
convolution of s(t), the derivative of the source time function, 
with the transducer transfer function T(t), 

S(t)=nt)*s(t) (14) 

Since both S(t) and T(t) are known, s(f) can be calculated by 
deconvolution. It must be numerically integrated to obtain the 
source time function s(f). Therefore, the source time function 
can be recovered using a transducer that is not a displacement 
sensor, but that is sensitive to vertical velocity. 

If the transfer function is band-limited, those frequency 
components of s(t) not present in T(t) cannot be recovered by 
deconvolution. For example, if the transducer is not sensitive 
to high frequencies, the recovered s(t) will be missing high fre­
quency information and fast rise times cannot be accurately 
recovered. 

3 Experimental Methods 

Experiments were performed by generating oblique forces 
with step-like time functions on the surface of a glass plate. 

Static 
Load 

Dynamic 
Load 

Transducers 

Fig. 3 Experimental setup for generating oblique forces 

Signals were recorded and analyzed to determine the orienta­
tion and time dependence of several forces. 

Specimens and Equipment. A single glass plate was used 
for all experimental measurements. The plate was approx­
imately 150 mm x 150 mm in extent, and was 18.46 mm thick 
(h= 18.46 mm). The longitudinal and shear wave speeds were 
measured with a pulse-overlap technique, and were 5.81 
mm/fis and 3.46 mm//iS, respectively. 

The transducers used to record the wave motion in the plate 
contained circular piezoelectric crystals 1.35 mm in diameter. 
The frequency response of these transducers had an upper 
limit of approximately 1 Mhz. Since the high frequency 
response of the transducers was negligible, rise times faster 
than about 1 ^s could not be accurately recovered. 

The transducer voltage signals were amplified with a gain of 
40 dB and then digitized and stored. An additional transducer 
was used to trigger the digitizers for each channel, as shown in 
the equipment diagram in Fig. 2. The sampling frequency was 
20 Mhz (A? = 0.05 jis), and the data were digitized with a 
resolution of 10 bits. Each recorded signal consisted of 201 
points, which corresponds to a time window of 10 jis. This was 
the longest possible time window that could be recorded with 
no reflections from the edge of the plate. 
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Table I Coordinates of transducers for measurements at dif­
ferent radii 

Transducer 
Number 

1 
2 
3 
4 

r 

1.03h 
2.31h 
3.10h 
2.06h 

e 

0° 
117° 
180° 
256° 

z 

lh 
lh 
lh . 
lh 

CO 

DC 

0.4 

0) 
•o 
.•§ 0.0 
Q. 

| "0 .2L 

S 0.4 

0.0 
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Time (fxsec) 
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Fig. 4(a) Green's functions G31 and G3 3 at x(r,0, z) = (1.03 h, 0, h) lor a 
source at x° =(0, 0, 0) 
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Fig. 4(b) Green's functions G31 and G3 3 at x(r,0, z) = (2.31 h, 0, h) lor a 
source at x° = (0, 0, 0) 
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Fig. 4(c) Green's lunctions G31 and G33 at x(r, II, z) = (3.10 h, 0, />) for a 
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Fig. 4(d) Green's lunctions G31 and G3 3 at x(r, 0, z) •• 
source at x° = (0, 0, 0) 

17.7 

(2.06 h, 0, h) lor a 

Oblique Force Generation. The experimental setup for 
generating oblique forces on the top surface of the plate is 
shown in Fig. 3. Note that the transducers are located on the 
bottom surface of the glass plate. The vertical rod, which was 
3.18 mm in diameter and had a taper angle at the tip of about 
33 degrees, was statically located onto the top plate surface. A 
glass capillary tube with 0.08 mm o.d. and 0.05 mm i.d. was 
placed in the corner between the rod tip and the plate along the 
Xy axis. A second rod, which was 2.38 mm in diameter and had 
a taper angle of about 21 degrees, was held at an angle <f> such 
that its tip was in contact with the capillary. This rod was 
slowly loaded along its axis until the capillary fractured. 
Therefore, the time dependence of this source is a step-like 
function, and the orientation of the force is along the axis of 
the second rod but in the opposite direction of the applied 
force, since the fracture of the capillary unloads the plate. 

(15) 
f = - cosc/>e2 - sinc/>e3 

s(t) = H(f) 

Since the capillary is physically very small, it is quite dif­
ficult to position the tip of the second rod exactly on the apex 
of the capillary. Therefore, the measured angle <j> may differ 
from the exact angle of the oblique force by as much as 5 to 10 
degrees. 

4 Results 

Experiments were performed with four transducers that 
were located at different radial and angular locations. The 
coordinates of the transducers are listed in Table I. Since the 
radii are different for each transducer, the Green's functions 
G31 and G33 are also different. These Green's functions are 
shown in Figures 4(a)-(d). The ordinate is relative displace­
ment, and is consistent for the four functions. 

The Green's functions were calculated by numerically dif­
ferentiating the displacement responses to forces with the time 
dependence of a Heaviside unit step function. Therefore, G31 

and G33 are not truly the impulse responses, but the responses 
to a rectangular pulse of unit amplitude and width A? = 0.05 
ixs. Since the width of the pulse is the same as the sampling in­
terval, G3] and G33 may be treated as though they were im­
pulse responses. 

The step function responses were calculated by a computer 
program developed at Cornell University by R. Gajewski and 
A. Ceranoglu. The program is based upon the generalized ray 
theory (Pao and Gajewski, 1977), which obtains the transient 
displacement signals for a given time in the form of a finite 
series of integrals. Each integral corresponds to a particular 
ray path in the plate, and is evaluated numerically by 
Cagniard's method. The displacement signals obtained by this 
program are very accurate, and have been experimentally 
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Fig. 5 Recorded waveforms from calibration source 

Fig. 6 

0.6 0.9 
Time (^sec) 

Transducer transfer functions 

1.5 

verified for vertical forces (Sachse and Ceranoglu, 1979, and 
Procter et al., 1983). 

The four transducers were characterized by velocity transfer 
functions according to equation (10). A glass capillary 0.08 
mm o.d. and 0.05 mm i.d. was broken at x° = (0,0,0), and the 
resulting voltage signals for each transducer were digitized and 

4 6 8 

Time (fu.sec) 

Fig. 7 Recorded waveforms for oblique force at SS deg 

0 .4 r 0=0' 

10 

Time (ytisec) 
Fig. 8 Convolved functions S(f) = s(f)«T(f) recovered from 55 deg 
oblique force data 

stored. The average of three signals for each transducer is 
shown in Fig. 5. These signals were deconvolved to obtain 
transfer functions for each transducer, which are shown in 
Fig. 6. These functions are negative in sign because of an in­
verting amplifier. 
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Fig. 9 Differentiated source time functions s(() recovered from 55 deg 
oblique force data 
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Fig. 10 Averaged function s(t) and source time function s(() recovered 
from 55 deg oblique force data 

Oblique Force at 55 Deg. The first oblique force was 
generated at a nominal angle of <f> = 55 deg. This corresponds 
to an orientation of, 

f = (0, -0.5736,0.8192) (16) 

The measured signals from each of the transducers are shown 
in Fig. 7. 

These signals were analyzed according to the iterative 
deconvolution procedure described in Section 2. The 
recovered time functions are the convolution of the differen­
tiated source time function s(t) with the transfer functions 
T(t), and are shown in Fig. 8. The functions s{t) at the four 
transducer locations were determined by deconvolution, and 
are shown in Fig. 9. The final estimate of s(t) was found by 
first averaging the signals at the four locations, and then 
rescaling to correct for the normalization of f. It is shown in 
Fig. 10 along with s(t), which was obtained by numerical in­
tegration. The recovered s(t) is a step-like function with a rise 

0 2 4 6 8 
Time tyisec) 

Fig. 11 Fitted transducer signals for 55 deg oblique force data 

8 10 2 4 6 

Time (yxsec) 
Fig. 12 Recorded waveforms for oblique force at 32 deg 

time of approximately 0.3 /xs. The actual rise time could be less 
because of the limited high frequency response of the 
transducers. The amplitude scale is not absolute but is relative 
to the magnitude of the calibration source. 
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Fig. 13 Differentiated source time functions s(() recovered from 32 deg 
oblique force data 

The recovered orientation vector f after normalization to a 
unit vector is, 

f = (-0.0501, -0.5658, -0.8230) (17) 
The angular error between f and f, as calculated by equation 
(9), is 2.87 deg. 

To evaluate how well the recovered f* and s(t) model the 
data, they were used to calculate fitted transducer signals by 
convolution according to equations (5) and (10). These 
calculated signals are shown in Fig. 11. They may be com­
pared to the measured signals in Fig. 7, which are shown as 
light lines in Fig. 11 for comparison. The calculated signals 
closely match the measured data except for some high fre­
quency information that is not modeled by the recovered 
parameters. 

Oblique Force at 32 Deg. The second oblique force was 
generated at an angle of cj> = 32 deg such that, 

f=(0, -0.8480, -0.5299) (18) 
The measured signals are shown in Fig. 12. Note that the 
signal at 180 deg is quite small in amplitude and somewhat 
noisy compared to the other three signals. This is because the 
transducer for this signal is located at a null in the radiation 
field for the horizontal component, and it is also at the largest 
distance from the source (r=3.10 h). 

These signals were analyzed to obtain s(t) at each 
transducer, with results shown in Fig. 13. These s(t) are all 
quite similar except for the one obtained at 180 deg, which is 
very noisy and bears little resemblance to the others. This is 
because the measured signal at 180 deg is small in amplitude 
and has a lower signal-to-noise ratio than the other three. 
Thus, the final estimate of s(t) is the average of the signals 
from the first, second and fourth transducers only, and is 
shown in Fig. 14. Also shown in Fig. 14 is s(t), which was ob­
tained by numerical integration. It is a step-like function with 
a rise time of about 0.5 /xs, and is very similar to the source 
time function obtained for the 55 deg force. 

0.0 0.3 0.6 0.9 
Time (^sec) 

1.2 1.5 

Fig. 14 Averaged function s(t) and source time function s(t) recovered 
from 32 deg oblique force data 

The recovered orientation vector f after normalization to a 
unit vector is, 

f = (-0.0555,-0.8923,0.4480) (19) 
The angular error between f and / i s 6.25 deg. 

5 Summary and Conclusions 

In this paper we have presented results that experimentally 
confirm an inverse method for determining the orientation 
and time history of dynamic oblique forces. In previous work, 
time histories of forces with known orientation have been 
determined by deconvolution techniques. Here, we have 
solved the problem of simultaneously determining the orienta­
tion as well as the time history of an oblique force. The re­
quired data are signals recorded at a minimum of two receivers 
that are sensitive to normal motion. 

An important part of the successful demonstration of this 
inverse method was the development of an experimental pro­
cedure to generate controlled oblique forces. The procedure 
consists of fracturing a glass capillary with a load slowly ap­
plied at a known angle to the specimen surface. The resulting 
dynamic unloading force has a step-like time function and 
controlled orientation. 

The key step in the inversion method is the determination of 
a source time function s(t) and coefficients c„, of a linear com­
bination of Green's functions, as represented by equation (6). 
This procedure is not limited to the characterization of oblique 
forces, but can be applied to many dynamic sources that are 
separable in time and space. The particular problem that 
motivated this study is that of characterizing cracks or earth­
quakes from recorded transient signals. The parameters to be 
determined for these sources are the time history and moment 
tensor components of the crack or earthquake. Another 
problem to which this method can be applied is that of 
recovering the spatial distribution of a separable extended 
source of known orientation, as was done by Chung and 
Sachse [1985] for synthetic data. 
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Introduction 
The boundary element method is based upon classical in­

tegral equation formulations of boundary value problems. 
Although such formulations were originally thought to be 
primarily of theoretical interest, the contributions of energetic 
researchers together with the explosive advance of computers 
have developed the method to the extent that it is today a 
powerful general purpose procedure for obtaining numerical 
solutions to many practical problems in science and engineer­
ing. In the field of solid mechanics, starting with applications 
in torsion (Jawson and Ponter, 1963) and then linear elasticity 
(Rizzo, 1967, Cruse, 1969), the method has been applied to a 
wide range of problems with material nonlinearities (see, for 
example, Mukherjee, 1982) and recently, even to elastic-
viscoplastic problems with both material and geometrical 
nonlinearities (Mukherjee and Chandra, 1984). The BEM, to­
day, is a strong competitor to the more widely used finite ele­
ment method (FEM). Some user friendly commercial codes 
capable of solving general linear elastic and other problems, 
based on the BEM, are now available in the market. 

As mentioned in the last paragraph, Rizzo (1967) and Cruse 
(1969) were the first researchers to solve linear elasticity 

A New Boundary Element Method 
Formulation for Linear Elasticity 
A new boundary element formulation for linear elasticity problems is presented in 
this paper. The standard formulation for planar problems uses two kernels —one of 
which is logarithmic singular and the other is 1/r singular, where r is the distance 
between a source and a field point. The new formulation avoids the use of the 
strongly singular kernel so that both kernels are now only logarithmic singular. The 
new formulation has several potential advantages over the standard one, the most 
significant of which is that it delivers stresses accurately at internal points which are 
extremely close to the boundary of a body. Numerical results for sample problems, 
from each of the formulations, are presented and compared here. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
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problems by the BEM. Rizzo obtained numerical solutions to 
two-dimensional and Cruse to three-dimensional problems. 
Their original BEM formulation for linear elasticity, which is 
now a standard approach, is based on the equation 

u,(p) = [ Wu(p,Q)Tj(Q) - Tu(p,Q)Uj(Qj\dsQ (1) 

where the displacement and traction components are u, and r,, 
respectively, with p a source and q a field point (with upper 
case letters denoting points on the surface dB of a body B and 
lower case letters denoting points in the interior). Further, the 
kernels Uy and Tijt which are obtained from Kelvin's singular 
solutions due to point loads in elastic bodies of infinite extent, 
are singular two point functions. These are available in many 
references (e.g., Mukherjee (1982)) for both three-dimensional 
as well as planar (plane strain and plane stress) problems. It 
should be mentioned here that body forces are assumed to be 
absent in equation (1), but these can be easily included in the 
formulation. Also, equation (1) is valid for simply as well as 
multiply connected domains B. The surface dB must, of 
course, include the outer as well as inner boundaries of B in 
the latter case. 

Equation (1) contains both the boundary tractions and 
boundary displacements over the entire surface dB. Only half 
of these are prescribed in a well posed problem of linear 
elasticity. Boundary integral equations for the rest can be ob­
tained by taking the limit of equation (1) as an internal point p 
approaches a boundary point P. This gives 
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Q(e,,£>) 

Fig. 1 

Cy{P)Uj{P) = JaB [Uy(P,Q)Tj(Q) " Ty(P,Q)Uj(Q)]dsQ (2) 

The new coefficients C,-, depend on the local geometry of dB 
at P. It simply equals (1/2)6/,- (wherre 5,y is the Kronecker 
delta) if the boundary is locally smooth at P. Otherwise, it can 
be obtained in closed form for two dimensional problems (see, 
for example, Mukherjee, 1982)1 but direct evaluation of Cy 
appears difficult in three-dimensional situations. A convenient 
indirect approach, however, is possible in such cases. 

In the interest of what is to follow, the explicit forms of the 
kernels, for plane strain problems, (with ij=\,2) are given 
below: 

ed point on it. Further, the range of indices in equation (5) is 

- 1 
Uii 8ir(l - v)G 

•lO-4v)lnr5v-r„r,j] (3) 

TiJ
 4TT(1 - v)r 

( ( 1 - 2 I 0 8 < , + 27V, , . ] 
dr 

(l-2c)(/-,/«;-/-v«;J (4) 

In the above, G is the shear modulus and v is the Poisson's 
ratio. Also, r is the Euclidean distance between p and q and a 
comma denotes a derivative with respect to the corresponding 
coordinate of a field point. Finally, the components of a unit 
outward normal to dB, at a point on it, are denoted by «,• and 
dr/dn is the derivative of r with respect to the normal at a field 
point. 

The above formulation for linear elasticity, as mentioned 
before, is a standard one and forms the basis for many BEM 
analyses and computer programs. The singularity of the kernel 
Tjj- \/r for two-dimensional and \/r2 for three-dimensional 
problems-is, however, strong. Also, using (Fig. 1) 

3 3 3 

as d*j dx2 

it can be demonstrated that, at any point P on 3B, 

dr 
rv.n,.-/•„«,. =e0- — 

where the boundary dB of a two-dimensional simply con­
nected body is considered for the moment. This boundary, as 
shown in Fig. 1, has a unit outward normal n with components 
rif at a point on it and s is the distance, increasing in the 
counterclockwise direction, measured along 3B from some fix-

1 equation (5.10)2 p. 52 in Mukherjee (1982) should read c12 = c21 = 

sin2ysin/3 

4JT(1 - v) 

(5) 

(6) 

1,2 and e n = e2 0, •^21 = 1. 
The tangential derivative of \nr is mathematically ill behav­

ed as /•—0. The strong singularity in Ty, coupled with the 
presence of the tangential derivative of \nr in it, is known to 
cause some numerical problems in the standard formulation. 
Perhaps the most serious of these is the rapid degeneration in 
numerical accuracy of the stress and strain components, as 
one samples these quantities at an internal point very close to 
the boundary. This phenomenon is sometimes called the 
"boundary layer" effect. 

It is the main purpose of this paper, then, to reformulate the 
elasticity problem so that the cumbersome kernel Ty is replac­
ed by a kernel with a weaker singularity. This kernel, called 
Wy, has the same singularity as Uy. The new formulation has 
tractions and tangential derivatives of the displacements, T, 
and diij/ds, as primary variables. It is shown that this new for­
mulation completely eliminates the "boundary layer" effect in 
some numerical examples, and is expected to do so in general. 
Also, it is expected that numerical results based upon the new 
formulation will, in general, be more accurate than those ob­
tained from the standard one. Only two-dimensional plane 
strain problems are considered in the rest of the paper and the 
range of indices in subsequent equations, unless otherwise 
specified, is 1,2. It is possible to carry through these ideas into 
three-dimensional formulations but the calculations there 
become more involved. 

New BEM Formulation 

Simply Connected Region. The plane strain problem of 
linear elasticity is considered here. The cross-section of the 
solid has the boundary 3B in the (xl ,x2) plane. Given a source 
point, a corresponding reference point is defined to be an ar­
bitrary point P on dB. To be specific, for an internal source 
point p, P is here chosen to be the point of intersection of 3B 
with the line parallel to the global x raxis through p. In case 
there is more than one point of intersection, the point which is 
farthest from/? is chosen as P. If, instead of an internal source 
point p, a boundary source point P is considered, the cor­
responding reference point P, for the sake of simplicity, is 
chosen to coincide with P. The angle <p is the angle between the 
global x,-axis and the line joining the source and the field 
points (Fig^ 1). It is important to note that <f> has a discontinu­
ity across P with a jump of 27r. 

Referring to Fig. 1, it can be shown that 

1 dr ( £ , - * , ) (£?-x 2) 

dn 
( € i - * i ) x « 2 -

3. ni + : 

and 
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Fig. 2 

tan</> = 
£ i -* i 

(8) 

Differentiating equation (8) with respect to s and obtaining 
the expression for 34>/ds, it is revealed that 

±-*- = -*- (9) 
r bn ds 

Further, noting that /-,, = cost/) and r,2 = sin</> one can obtain 

(10) 
1 dr a/w»> 

9n • ' V v = 

where 

_ <j> s'm2(j> 
/1 1 = — y "! 7 > /l2 =J21 : 

as 

- cos2<£ 0 sin2<£ 

4 ' / 2 2 = ^ V~ 

Using equations (9), (10) and (6) in the expression for Ty 
(equation (4)), one finds 

d 

where 
Tu-—Ru (11) 

^=^r^[2(1-^4^+^ ir>k 

+ (l-2v)tulnr 

Therefore, by partial integration, 

2ir 

a«; 

Defining 

this gives 

Ru - ^ - ds 
SB " ds 

W= -R -^ 
" " 87r( l- , ) 

TiUjds — uM + ^ W , , ^ . ds 

Therefore, the standard BEM formulation, equation (1), 
can be recast as 

u,(p)- w,(P) = ^>3B [uu(p,Q)Tj(.Q)- Wvip,& -j£ (Q) 

where the new kernel 

dsQ 

(12) 

4TT(1 — v) 

It is important to note that Wi} has a discontinuity across P. 
Also, Wy has the singularity \nr, as has Uy and the primary 
variables in equation (12) are the traction components T, and 
the trangential derivatives of displacement components, 
diij/ds. 

A boundary integral equation for the new formulation can 
be obtained by treating equation (2) of the standard formula­
tion in the same manner as above (Appendix 1). The resulting 
boundary integral equation is 

c j ^ Uu(P,Q)rj(Q)dsQ = §aB Wy(P,Q)^(Q)ds (14) 

As proved in Appendix 1, the above equation is valid even 
for a point P lying at a corner of 3B. 

Some potential advantages of the new formulation will be 
noted here. First, the boundary tensor Cy is absent here. 
Second, and perhaps more important, a consequence of 
Uj{p)-Ui{P) appearing on the left hand side of equation (12) 
suggests that this difference would be obtained very accurately 
from this formulation. This should be particularly important 
in obtaining very accurate displacements at a point p when it is 
an internal point very close to P. This issue is discussed further 
in the section on numerical results which is presented later in 
the paper. 

Multiply Connected Region. The plane strain problem in a 
multiply connected region is considered next. The situation is 
depicted in Fig. 2. The cross-section, of course, can have an 
arbitrary number of cutouts. Only one, with boundary dB7, is 
shown here. The outer boundary is aB0. The reference point P 
is always chosen to lie on 9B0. 

The convention used here is that a unit normal must always 
point away from the body B. Also, the direction of integration 
is chosen in such a way that the body always lies on the left, 
i.e, it is counterclockwise on 5B0 and clockwise on each dB7. 
Thus, s increases in a counterclockwise direction on aB0 and 
in a clockwise direction on each 3B/. 

3B7 

Using the above convention, it is easy to show that 
TiJ = d/ds(Rjj), as before, at every point on 3B. 

The derivation of an equation for an internal point p pro­
ceeds as before. The result is 

",(?)-",(£)= <j>aB [UU(P,Q)TJ(Q) 

- Wu(p,Q)^iQi\dsQ for peB (15) 
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The situation, however, is different for the two cases-one 
in which P e dB0 and another where P e 9B7. The resulting 
equations are 

0= <faB [uu(P,&Tj(Q)-Wy(.P,Q^i&]dsQ for P e 3B0 

(16) 

where P on dB0 is chosen to coincide with P, and 

u,{P) - u,(P) = ^ \UU(P,Q)TJ{Q) 

- Wu(.P,Q}^<Q)]dsQ for P e dBj (17) 

where P is as in Fig. 2. 
Equations (16) and (17) are valid even if Plies at a corner of 

3B0 or dBj. The derivation of equation (17) is given in Appen­
dix 2. Equations (15) and (16) can be derived in an analogous 
manner. 

At first glance, the boundary integral equations (16) and 
(17) for the multiply connected region problem appear 
underdetermined since displacements at boundary points ap­
pear in these equations in addition to r,- and dUj/ds on dB. One 
must, however, not lose sight of constraint equations of the 
type 

«/(^2>- " «/(/>!)={ 
P2 dU: 

ds 
'-ds 

between two points Pt and P2 lying on the same outer or inner 
boundary. Inclusion of such constraint equations allow a well 
posed problem to be solved. 

Another interesting observation pertains to rigid body 
modes. It is well known that if all the tractions over 3B are 
prescribed, the standard formulation (equations (1), (2)) 
delivers a displacement field which is unique only within rigid 
body translations and rotations. Similarly, the pure traction 
problem for the new formulation delivers a tangential 
derivative of the displacement field to within a rigid body rota­
tion. Rigid body translations for the pure traction problem do 
not affect the values of the tangential derivatives of the 
displacement components, hence the appearance of displace­
ment differences in equations (12), (15) and (17) of the new 
formulation. Therefore, the new formulation has an advan­
tage in that it has less indeterminancy relative to the standard 
one. 

Strains and Stresses. The strain field throughout the body 
must be obtained by differentiating the displacement field. A 
convenient approach is to analytically differentiate equation 
(15) at an internal source point p in order to obtain the 
displacement gradient there. This gives 

";,L(P) = UilL(p,Q)rj{Q)- WilL(p,Q)^-(Q) ds0 (18) 

An upper case letter following a comma in the above equa­
tion denotes differentiation with respect to a source point. 
Using the identity 

the differentiated kernels can be written in terms of field point 
derivatives as follows 

uiir=-u!U = 
1 

JU,L u.i -

+ Q-4v)r,l6tt + 2r„r,jr„] 

WUtL = - ^ , , = — — ^ — [ 2 ( 1 - vy^fiy 

(19) 

4ir(l - v)r 

- 2eJkr„r,kr,l + (1 - lv)r,fiij + eJk(r,kb„ + rtiSkl)] (20) 

P x. 

Fig. 3 Geometry of the cylinder problem 

The stress at an internal point can then be easily obtained 
using Hooke's law. 

The fact that equation (18) only involves kernels with 
singularity of the type \/r results in very accurate numerical 
determination of displacement gradients - even when the 
point/) lies very close to the boundary dB. Thus, the so called 
"boundary layer" essentially vanishes if this new formulation 
is used. This aspect is discussed further in a later section with 
numerical results for some sample problems. 

The stress components at a boundary point where dB is 
locally smooth can be most conveniently determined from the 
boundary data, i.e., T,- and du/ds at that point, together with 
Hooke's law. This approach is essentially the same as that 
described by Rizzo and Shippy (1968) except that there is no 
longer the need for the numerical evaluation of du,/ds. Since 
numerical differentiation is intrinsically an unstable procedure 
and generates large round-off errors, the new formulation has 
an enormous advantage over the standard one in this respect. 
In actual computations with the standard approach, shape 
functions for displacements are differentiated with respect to 
s. This results in lower order shape functions for dut/ds and 
reduces accuracy. Thus, in any case, it is of great advantage to 
obtain dut/ds directly. 

An Illustrative Analytical Example 

The analytical example considered next is the plane strain 
problem for a long cylinder, of internal radius a and external 
radius b, subjected to internal and external pressures p, and 
p0, respectively. 

The cross-section of the cylinder is shown in Fig. 3. The 
location of a general field point is given by polar coordinates 
(p,6). Due to axisymmetry and plane strain, it is sufficient to 
locate the source point at (i?,0). The displacement vector is 
written as 

VL = eRuR(R) = eRu(R) (21) 

A unit load is applied at p in the x, direction as shown in 
Fig. 3. The integral formula, equation (15), for an internal 
point p, becomes 

U(R) - U(b) = (^cylinder (Uip Tp + Upj ds 

(< 
cylinder \ UlpTp-

Wu 

»•) 
ds (22) 
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Table 1 Integrals for cylinder problem 

M 

cosOlnr 

(pcosd - R)(p - Rcosd) 

<j>smd 

p>R 

•KR 

P 

-irR 

P 

vR 
lir + 

J: * MdO 

P = R 

— IT 

- 7 T 

— TT 

p<R 

— Trp 

R 

— irp 

R 

— irp 

R 

On the outer circle, p = b, d/ds-(l/p)(d/dd), du/ds=(ee/p)up, 
and WXJ(dUj/ds) = (Ww/p)ul>. But on the inner circle, p = a, 
3 / 3 s = ( - l / p ) ( 3 / 3 0 ) so that Wu(dUj/ds) = (-Wie/p)up. 
Therefore, the signs on the second terms are different in the 
two integrals in equation (22). 

Now, on the outer circle s = bd but on the inner circle 
s = a(2ic-d). The limits on s are 0 to 2bir on the outer circle 
and 0 to 2air on the inner circle. Using these, equation (22) 
becomes 

u(R)-u(b) = apt, j o * Ulp(R; a, 6)d6 

- bp0\* Ulp(R; b, 6)dd 

+ u(a)\ * Wlt(R; a, d)dd 

- u(b) \ * WW(R; b, d)dd 
Jo 

where 

Ulp(R;p,d) = 

and 

Wie(R;p,6) = 

(23) 

1 
(3 - 4v)cosdlnr 

8TT(1 - v)G 

(pcosd -R)(p- Rcosd) 
(24) 

4TT(1 
— [-2(1. 
•v) L 

i/)$sin0 

+ (\-2v)cosd\nr-
(pcosd-R)(p-RcosdU 

Ja J (25) 

with r2 = p2 + R2 - 2pRcosd. 
In order to solve for u(R), equation (23) is first used with 

R = a and then with R = b. The required integrals are shown in 
Table 1. The resulting equations are 

ab 
bu(a) - au(b) = -^r(Pi ~Po) (26) 

(27) 

2G 

au(a) - bu(b) = ( - ^ ) (b2P0 ~ a*P,) 

These equations are solved for u(a) and uib), and then the 
boundary displacements are used in equation (23) for an inter­
nal points, with a<R<b. This yields the well known Lame 
solution (Timoshenko and Goodier, 1970) 

u(R)=AR + B/R (28) 

where A = (1 - 2v)(b2p0 -a2pi)/2G(a2 - b2) and B = 
a2b2{p0-p^/2G(a2-b2). 

Numerical Results 

Numerical implementation of equations (15)—(17) is carried 
out in standard fashion. The boundary 3B must be discretized 

TTTTTTTTnTf 
Fig. 4 Square plate with elliptical cutout 

into boundary elements. Suitable shape functions must now be 
chosen for the variation of tractions and tangential derivatives 
of displacements on the boundary elements. The numerical 
results presented next are obtained by using straight boundary 
elements with piecewise linear representations of v,- and du,/ds 
on these elements. Also, the kernels, for both the standard and 
new formulations, are integrated in closed form over boun­
dary elements. 

One way to model jumps in normals at corners of 3B in the 
standard formulation is to put double nodes at corners (see, 
for example Mukherjee, 1982). This procedure cannot be used 
in the new formulation as it would lead to singular matrices in 
the system of algebraic equations obtained by discretization of 
equation (16). The corner problem, however, can be easily 
taken care of by placing sampling points away from a corner 
itself in the boundary elements that meet at a corner. 

Numerical results for a sample plane strain problem of a 
square cross-section with an elliptical hole (Fig. 4) have been 
obtained by the standard and new BEM formulations. The 
loading is tensile in the x2 direction with stress a^. Using 
quarter symmetry, a quarter of the region is modeled here so 
that the region involved becomes a simply connected one. The 
boundary mesh used here is very similar to that shown in Fig. 
5.8 of Mukherjee (1982). The same mesh has been used for 
both formulations. Piecewise linear representations for w, and 
T, (for the standard formulation) and 3w,/3s and r, (for the 
new formulation) have been employed here. 

The calculated variations of dimensionless displacement u2 

and stress a22 along the line AB, for various values of a/b, ob­
tained from the two methods, are shown in Figs. (5-8). In 
these examples, L/a= 10 and c = 0.3. The results from the two 
formulations agree well. Both formulations model the stress 
concentrations at A, for the various cases, adequately. The 
new formulation requires about 23 percent more computer 
time than the standard one. 

It has been mentioned earlier that since Wijt in equation 
(20) is only \/r singular, while Tij:l in the standard formulation 
has a \/r2 singularity, it is expected that the new formulation 
should be able to overcome the so-called "boundary layer ef­
fect" and deliver accurate stresses at an internal point very 
close to the point C, with coordinates (10,2), in Fig. 4. The 
results are summarized in Table 2. It is seen, in dramatic 
fashion, that the boundary layer effect vanishes in the new 
formulation. In fact, the point with X\/a= 1 0 - 5 x 10"12, 
x2/a = 2, for the case a/b = 1 has been tested also and the new 
formulation yields a22/aa =0.95303. It should be noted that 
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New formulation 

Standard formulation 

10 

x,/a 
Fig. 5 Displacement variation along AB from two BEM formulations; 
a/b = 4 

2.5 

2.0 

1.0 

0.5 

New formulation 
Standard formulation 

2 4 6 8 10 
x,/a 

Fig. 6 Stress variation along AB from two BEM formulations; alb = 1 

• New formulation 
• Standard formulation 

10 
x { / a 

Fig. 8 Same situation as in Fig. 6; alb = 4 

New formulation 

Standard formulation 

10 

Table 2 Stresses near point C in Fig. 4 from two 
BEM formulations 

Fig. 7 Same situation as in Fig. 6; alb = 2 

Xj/a 

9.95 
9.995 
9.9995 
9.99995 
9.999995 
9.9999995 

9.95 
9.995 
9.9995 
9.99995 
9.999995 
9.9999995 

9.95 
9.995 
9.9995 
9.99995 
9.999995 
9.9999995 

x2/a 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 

°~22/(roo 
(New formulation) 

(7/6=1 
0.95303 
0.95303 
0.95303 
0.95303 
0.95303 
0.95303 
a/b = 2 
0.95953 
0.95953 
0.95953 
0.95953 
0.95953 
0.95953 
a/b = 4 
0.95662 
0.95662 
0.95662 
0.95662 
0.95662 
0.95662 

°~22/(7ao 
(Standard formulation) 

0.97411 
0.96831 
0.96278 
0.95728 
0.1037X106 

0.1037X107 

0.98369 
0.97951 
0.97552 
0.97155 
0.1009X106 

0.1009X107 

0.98875 
0.982237 
0.98541 
0.98223 
0.99364 x10 s 

0.9937 xlO6 
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the boundary layer effect in the standard formulation occur­
red despite the fact that the kernels were integrated analytical­
ly over boundary elements. 

Conclusions 
The new BEM formulation, presented in this paper, has 

several potential advantages relative to the standard one. 
Some of these are: 

(a) The strongly singular kernel Tn is avoided here so that 
both kernels are only logarithmic singular. Since 7^ is a 
strongly singular kernel, the resulting integral 

JaB Tu(P,Q)Uj(Q)dSQ 

is a singular integral in the sense of Calderon-Zygmund 
(1952), where it is assumed that the Cauchy principal value of 
the integral is taken. Since, in the numerical implementation, 
it is common to take nonuniform subdivisions of the boun­
dary, the value obtained is generally different from the 
Cauchy principal value and this could result in substantial er­
rors. The boundary integral equation (14) involves only in­
tegrate kernels and this problem does not arise. 

(b) It should be noted that the kernel Uy is such that if 
some T,(P) is unknown, the corresponding row in the coeffi­
cient matrix for the BEM, although not being diagonally 
dominant, has the property that the diagonal term is large, (in 
absolute value), relative to other terms in that row. Such, 
however, is not true for the kernel 7^, where the presence of 
the strong singulary in \/r dr/ds causes some off-diagonal 
elements to blow up as the mesh size goes to zero. This 
undesirable property of Ttj can negate any advantage derived 
from the presence of a free term in the standard formulation. 
In contrast, the kernel Wy, like U^, only produces bounded 
elements in the BEM coefficient matrix, although, the 
presence of eu shifts the largest terms off the main diagonal. 
Thus, although neither BEM formulation produces a 
diagonally dominant coefficient matrix, it is expected that the 
new formulation will produce a more well-conditioned coeffi­
cient matrix relative to the standard one. 

(c) Another important consequence of the above is that the 
kernels for stresses are only \/r singular. This fact is 
demonstrated, in an illustrative numerical example, to over­
come the "boundary layer problem" and deliver the stresses 
accurately at internal points that are extremely close to the 
boundary of a body. It is expected that the new formulation 
will be able to overcome the "boundary layer problem" in all 
cases. 

(d) The tractions T, and displacement derivatives dUj/ds are 
the primary variables in the new formulation. Choice of a par­
ticular shape function for du/ds is essentially equivalent to 
using a higher order shape function for «,• at no extra cost. 

(e) The corner tensor Cu is absent in the new formulation 
and need not be calculated. 

The new formulation, like the standard one, can be easily 
extended to solve problems with material nonlinearities. In 
fact, since all that is involved here is partial integration of the 
term Tyitj, the domain integrals associated with plasticity 
(Mukherjee, 1982) remain unaltered. The new formulation 
can also be extended to three-dimensional problems. The 
calculations for the three-dimensional case, however, become 
more involved. 
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A P P E N D I X 1 

Proof of Equation (14) 

Referring to Fig. 9 and considering P at a corner of the outer 
boundary <9B0 (the angles /S and y are defined in Mukherjee 
(1982) p. 52), 

Journal of Applied Mechanics MARCH 1986, Vol. 53/75 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



LT"uJds=[R^Yp-LR^ds 

The boundary term is 
p 

[RU»J 

For (' = 

J r -i * = T + T 
— - 2(1 - v)(t>Uj + ejkrtir,kUj P 4ir(l - c) 

For (' = 1, the above expression becomes 

/3 cos2Ysin/3] 

T+ir + 0/2 

* = 7 + T - / 3 / 2 

27r 4ir(l - J/) J 

sin27sin/3 

Ml(P) 

-C12(P)u2(P) 

Similarly, for ;'=2 
p sin27sin/3 

p 

u2(P)=-Cu(P)Ul(P) 

(4) 

[*y«; 4v(l-u) 

cos27sin^"| 

"•«-[£ 
4ir(l - c) J 

-C22(P)u2(P) 

Thus, [RUUJ p=- CyWtijiP) and ^ Tu(J>,Q)Uj(Q)dsQ 

= -Cu(P)Uj(P) + 4 Wv(P,Q)dUj/asiQidsQ 
J oB 

This equation, together with equation (2), immediately gives 
equation (14). 

A P P E N D I X 2 

Proof of Equation (17) 

Referring to Fig. 2 and considering P at a corner of the 
cutout 9B7, 

a B ^ * = t a B o ^ * + l B / ^ * 

Ml + Ml-faB /^* 
3M, 

Rv —J- ds 

The boundary terms are 

M' = 1 

4ir(l - v) 
[ -j <£ = 7 - i r 

2(1 - X)0H(-+ €,*/•„•/•, ̂ H J 
J <A = 7 + TT 

<£ = 7 - i r + 0/2 

4> = ~t + Tr-$/2 

This time, for /= 1, 2 (see Appendix 1) 
i P 

[RuUj]p = u1(P)-Cu(P)ul{P)-Ca(P)u2(P) 

[R2JUJ]P = -Czl(P)Ul(P)-C22(P)u2(P) + u2(P) 

so that U y « J = 5uUj(P)-CiJUj(P) 

Thus, 

TflM/fc = -6UUj(P) + 6UUj<ft-Cutlj(F) 

„ 3"/ , 
Rij ^T ds 

3B y dS 
This equation, together with equation (2), gives equation (17). 
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An Analysis of Large Strain 
Viscoplasticity Problems Including 
the Effects of Induced Material 
Anisotropy 
This paper examines the modeling of large shearing of solids that exhibit induced 
anisotropy during inelastic deformation. The "traditional" approach uses integra­
tion of material rates of certain tensors which are obtained from Jaumann rates of 
these tensors delivered by a material constitutive model. This leads to erroneous 
results (spurious oscillations) in a simple shear example. Several previous authors 
have suggested resolutions to this dilemma based on modification of the constitutive 
model — usually based upon changing the interpretation of the tensor rates 
delivered by a constitutive model. This paper draws attention to another aspect of 
the modeling process — that of obtaining the components of tensors such as the 
Cauchy stress in a global, space-fixed basis, from the objective rates of these tensors 
as delivered by the material constitutive model. In essence, it is suggested here that 
the elastic rotation rather than the spin should be used to achieve the above objec­
tive. The rotation idea is first discussed in the context of a simple shear example. 
This philosophy is then incorporated in a general purpose two-dimen onal boun­
dary element method (BEM) formulation and computer program. Numerical 
results for the simple shear problem, using the rotation idea, are obtained both by 
direct integration and from the general BEM computer program. 

Introduction 

The subject of this paper is a close examination of the pro­
per way of generalizing conventional small strain inelastic con­
stitutive models for materials exhibiting induced anisotropy, 
to cases where large strains and rotations are present. It is 
clear that the rates of certain tensors, such as that of the back 
stress in a small strain, small rotation kinematically hardening 
plasticity constitutive model, must be interpreted as suitable 
objective rates in a generalized large-strain, large-rotation ver­
sion of that material model. This is necessary in order to main­
tain rotational frame indifference of the generalized model. 

The "traditional" approach, for such problems, has been 
the identification of such an objective rate as the Jaumann 
rate (Ty) of the corresponding tensor Ty. The next step has 
been to obtain the material rate from the Jaumann rate by tak­
ing account of the rotations, i.e., from the equation 

1 u J
 IJ 

where the material rate 

TllrOllri+UitT, ' ik^kj ik-'kj (1) 
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=Jij 
dT„ 

vk. (2) 
Dt ~,J dt dxk 

In the above, xk are the coordinates of a material point in 
the current configuration; vk are its velocity components and 

«<, = ( l /2Xv, ,y-«, , , ) (3) 

is the spin of a differential material element containing the 
point. 

The final step in the "traditional" approach involves the in­
tegration of the material rate ty with time, in order to deter­
mine the evolution of the tensor Ty in a global, spatially fixed 
coordinate frame. 

In a recent paper, Nagteegal and de Jong (1982) used the 
above approach to numerically analyze a very simple boun­
dary value problem - the case of simple shear for large plastic 
deformations using a Mises-type kinematic hardening con­
stitutive model. Their calculations lead to the surprising result 
that use of a kinematic hardening rule of the Prager-Ziegler 
(1959) type results in the prediction of an oscillatory shearing 
stress in response to a monotonically increasing shearing 
strain. In fact, in an earlier paper, Dienes (1979) had observed 
the same phenomenon using a hypo-elastic material model 
where Ty in equations (1) and (2) was the Cauchy stress rather 
than the back stress. 

Several researchers such as Lee et al. (1983), Defalias 
(1983), Dienes (1979), Atluri (1984) and Johnson and Barn-
man (1984) have examined the above situation. A recent 
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Fig. 1 Simple shear in the x1 direction 

ASME publication (Willam, 1984), which contains papers on 
this subject by several of these and other authors, summarizes 
the current debate in excellent fashion. In essence, in the sim­
ple shear example (Fig. 1), while the angular velocity of a line 
of material points depends only on its current orientation 
angle 6 (see Fig. 1) and is given by 

0=-ksm26 (4) 

(with V\ = kX2), the spin tensor oiy has constant nonzero 
components 

co12 = £/2anda)2i = -k/2. (5) 

As noted by Lee et al. (1983), k/2 is the magnitude of the 
angular velocity of the material lines at 6 = ir/4 and 0 = 3ir/4 
which instantaneously coincide with the principal directions of 
the deformation rate tensor dy. This is also the average of the 
angular velocities over all directions in the current 
configuration. 

The oscillations in stresses, according to Lee et al. (1983), 
arise since the constant spin terms in equation (1) (with Ttj = 
a,j, the back stress), generate a tensor a which rotates with an 
angular velocity of k/2 and consequently causes the com­
ponents of the stress tensor to oscillate with angular frequency 
k. Thus, while the maximum possible rotation of any material 
line in the simple shear example (Fig. 1) is -w, the "traditional" 
approach allows unlimited rotation of the back stress tensor 
(by virtue of equations (1) and (5)). This phenomenon, which 
is clearly physically unacceptable, is of concern, of course, not 
only in simple shear but whenever large shearing strains occur 
in a material exhibiting induced anisotropy. 

The solution to this problem, suggested by Dienes (1979), 
Lee, et al. (1983) and Dafalias (1983), involves modification of 
the rate equation (1) by replacing u,-,- by some other <b«. Lee et 
al. (1983) demonstrate that using the actual angular velocity of 
a line of material points (from equation (4)) eliminates the 
oscillatory stresses in the simple shear example. For more 
general cases, they suggest a modified Jaumann derivative 
associated with a spin tensor aiy based on the spin of lines of 
material elements carrying the major influence of the back 
stress a. Dafalias (1983) and Dienes (1979), on the other hand, 
suggest using the spin associated with the antisymmetric tensor 
R"R r (where R is the rotation matrix from the polar decom­
position of the deformation gradient F = R«U). 

Atluri (1984), while still suggesting modification of the con­
stitutive models involved, takes a somewhat different ap­
proach. He starts with a lengthy hypo-elastic constitutive 
model, initially leaving open the exact choice of an objective 
stress rate. Later, based on ideas of a "complete" hypo-elastic 
law, he modifies the rate of the back stress equation for the 
case of a rigid - kinematic hardening plastic model. The. 
relevance of elasticity considerations, to the modeling of rigid-
plastic behavior, is not clear from this paper. 

The authors of this present paper feel that while there is 
considerable merit in the ideas of the researchers cited above, 
the present situation falls far short of a complete resolution of 
the above problem, and further investigation is necessary. 
Proper understanding of finite plastic strains and rotations in 
the presence of anisotropy will require careful experimenta­

tion and possible development of appropriate micro-
mechanical models before a satisfactory phenomenological 
model is obtained. Clearly, mathematical formalism should 
not dictate the mechanics concepts, but, rather, a 
mathematical model should be sought which most clearly ex­
presses the mechanics involved. 

It is not the purpose of this paper, then, to offer a complete 
resolution of the dilemma discussed in the preceding 
paragraphs. Instead, attention is being drawn here to another 
aspect of the modeling process which is very important but has 
not received much attention so far. This aspect relates to the 
process of proceeding from the intrinsic objective rate of ten­
sors as delivered by the constitutive model to the desired goal 
of obtaining the components of the Cauchy stress at a moving 
material point in a spatially fixed coordinate frame. The sug­
gestion here is to reexamine the usual process of converting the 
objective tensor rates obtained from the constitutive model to 
a material rate through the use of an appropriate spin cb,̂ , and 
then integration of these rates in a spatially fixed basis. The 
essential idea here is to use the elastic rotation instead of the 
spin in order to attain the above goal. This is motivated by the 
observation that, in the simple shear problem, integration of 
the constant angular velocity leads to unbounded rotation, 
while, as mentioned previously, the actual maximum rotation 
of a material line is bounded. 

If material behavior is hypo-elastic, the elastic rotation R(e) 

is equal to the total rotation R. In this case, the new approach 
suggested here is equivalent to use of the Dienes (1979) rate 
(also called the Green-Naghdi rate by Johnson and Bamman 
(1984)). Also, under certain restrictive conditions, the new 
algorithm becomes equivalent to the formulation of Rolph 
and Bathe (Willam, 1984) using the logarithmic or Hencky 
strain. Thus, careful examination of the proposed idea, for the 
case of a simple hypoelastic material, provides a great deal of 
insight. 

The elastic-plastic case is considered next. This is followed 
by a very brief discussion of a state variable type constitutive 
model which includes induced anisotropy and presentation of 
numerical results for the simple shear problem obtained by 
direct integration, from the "traditional" (Nagtegaal and de-
Jong, 1982) as well as the present point of view. It is further 
realized that since this issue is not limited, of course, to the 
problem of simple shear alone, it is important to demonstrate 
the implementation of the rotation idea in a general computa­
tional context. The rotation idea is implemented in a general 
purpose two-dimensional BEM computer program (Chandra 
and Mukherjee, 1983, 1985) and the same simple shear exam­
ple is solved using this program. 

A Hypoelastic Example 

Hooke's law for isotropic linear elasticity is of the form 

(, = <l>(t) = \(tre)I + 2Ge (6) 

where a is the Cauchy stress, e the strain, X and n = G are 
Lame constants and tr denotes the trace of the corresponding 
tensor. A simple hypoelastic generalization of the above equa­
tion can be written as 

°=<HD) = A(?/-D)I + 2GD (7) 

where a is an, as yet, unspecified but objective rate of the 
stress and D is the deformation rate whose components have 
the form 

du = (l/2)(.vu + vjj) (8) 

The proposal here is to proceed from 0(D) to the Cauchy 
stress in a desired global spatially fixed basis by using the 
equation 

a(t) = R(t)a0R
T(t) 

+ R(t)[\l
oR

T(r)(j>(D)R(r)dr]RT(t) (9) 
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where F = dx/dX = R«U; a0 is the value of the Cauchy stress 
at time zero and R r denotes the transpose of R. The symbols 
in the above equation are matrices corresponding to the ap­
propriate tensors.. 

The rationale behind this proposal is to observe that the ex­
pression RT<t>(D)R delivers the components of 0(D) in a local 
basis which is rotating with respect to the fixed global basis 
with R the measure of this rotation. Integration is then carried 
out with respect to an observer in the rotating basis. Finally, 
premultiplication by R and postmultiplication by RT, at any 
time, delivers the Cauchy stress components in the desired 
global basis. 

Relationship With the Dienes Rate (Dienes, 1979). Defining 
the Cauchy stress a in the rotating basis as (Johnson and Bam-
man, 1984) and using equation (9) 

<j = RToR = o0 + \'0R
T4>{D)RdT (10) 

Proceeding in a manner similar to Dienes (1979), one dif­
ferentiates equation (10) with respect to time. Comparing 
these expressions and taking note of equation (7) results in the 
equation 

(j>(D) = o = &-Q<j+on (11) 

so that a, for this hypoelastic model, is the Dienes rate of the 
Cauchy stress, with Q = RRT. 

Thus, equation (9) can be regarded as an integral form of 
equation (7) and helps to clarify the physical interpretation of 
the Dienes rate. It has recently been brought to the authors' at­
tention that Goddard and Miller (1966) have presented an 
equation similar to (9) for the inverse of the Jaumann 
derivative. 

Relationship With Rolph and Bathe (Willam, 1984). 
Starting from the relationship 

2D = F . F - ' + F - r - F 7 ' (12) 

and using polar decomposition of F, it is easy to show that 

2D = R . (U .U- 1 +U- 1 .U)«R 7 ' . (13) 

This time a special situation is considered in which the direc­
tions of principal stretches remain fixed in the body during 
deformation. Thus, one may decompose U = Q A(t) QT, 
where A(t) is diagonal and Q is orthogonal but independent of 
time. In this case, one can show that 

RTDR=^{lnU) (14) 

where InU = QlnAQT, so that, from equation (7) 

RT4>(P)R=—[\tr{lnU)I+2GlnU] (15) 

From equation (10), the left hand side of the above equation 
equals a. Hence, 

o = \(trE)I+2GE (16) 

where E = R InURT is the logarithmic or Hencky Strain. The 
above equation is the model of Rolph and Bathe (Willam, 
1984). Thus, it has been shown that for an isotropic linear 
hypoelastic material, for deformations in which the directions 
of principal stretches remain fixed in the body, equations (7), 
(9) and (16), are all equivalent. Equations (7) and (9), of 
course, are equivalent under more general conditions as shown 
before. 

Elasto-Plasticity With Finite Rotations 

Elasto-plastic problems in materials exhibiting induced 
anisotropy typically involve tensors such as the back stress a. 
A typical evolution equation for small-strain small rotation 
elasto-plasticity might be of the form (Lee, et al., 1983) 

a = g[£<P)]i<P) (17) 

where i^ is the plastic strain rate and i^ is a suitable in­
variant of i^K Large strain generalizations of equation (17) 
usually involve replacing a with a suitable objective rate of a 
and e w with D w , the plastic part of the rate of deformation 
tensor. Thus, the evolution of such tensors must be considered 
in addition to that of the stress. Also, in general, the function 
<j>(D) in the hypoelastic law (7) might involve the stress as well. 

It is proposed that for such problems, a modified form of 
equation (9) with elastic rotations R(e> be adopted. Thus, for a 
small time step At, one may write 

?,+At = T, + [R^THR^]tAt (18) 

T1+A, = [R^TR^T}1+A, (19) 

where the tensor T can be the Cauchy stress, the back stress or 
some other suitable tensor internal variable and H is a func­
tion such that for small strain small rotation problems T = H. 

The function H must be suitably interpreted by replacing e<e) 

by Z>(e) etc. Also, At is a small time increment. The above 
equations are, strictly speaking, correct in the limit At -* 0. 
Operationally, of course, one must use small, finite time in­
crements At. Also, these equations must be used in a march 
forward time integration procedure. 

The need for the use of elastic rotations arises from the 
nature of elastic and plastic deformations. As with elastic 
strains, elastic rotations with respect to a virgin configuration 
are remembered by the solid. It is common to assume that for 
plasticity analysis it is not necessary to use variables involving 
the virgin configuration of the material prior to plastic flow 
(Lee, et al., 1983). 

Recently, researchers such as Dafalias (Willam, 1984) and 
Aifantis (1984) have been looking into constitutive descrip­
tions for plastic and elastic rotations. This research is still at 
an early stage. Thus, for the purpose of the rest of this work, it 
is assumed that R = Re. 

Inelastic Constitutive Model 

The first constitutive assumption made here is that the 
deformation rate tensor can be linearly decomposed into an 
elastic and a nonelastic part 

d^df + df (20) 

A hypoelastic law, similar to equation (7), is here assumed 
to relate the stress rate to the elastic part of the rate of defor­
mation tensor 

^ = X4^8,y + 2Grf|f) (21) 

where the new symbol <5,y is the Kronecker delta. 
The nonelastic strain rates d\f must be specified in terms of 

the Cauchy stress, and possibly other variables, through ap­
propriate inelastic constitutive equations. Combined creep-
plasticity constitutive models with state variables are of in­
terest in this work. In the interest of brevity, the reader is 
referred to Mukherjee (1982) for a discussion of such con­
stitutive models. 

The particular constitutive model that has been used to 
generate the numerical results presented in the next sections is, 
due to Hart (1976), generalized to the case of large strains and 
displacements (Chandra and Mukherjee, 1983, 1985). The 
model has a scalar state variable E (the hardness, called a* in 
previous publications) and a tensor state variable, the anelastic 
strain e\p, which is responsible for induced material 
anisotropy. For this work, it is assumed that 

?W = df-df (22) 
where d^ is the irrecoverable portion of the deformation rate. 
Given the Cauchy stress and the state variables at any time, 
this constitutive model delivers, among other things, tf|"> and 
the state variable rates E and e jf> at that time. 
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Fig. 2 Shearing stress as a function of shearing strain from two 
methods. Direct integration and BEM solutions. 
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Fig. 3 Longitudinal stress as a function of shearing strain from two 
methods. Direct integration and BEM solutions. 

Numerical Results by Direct Integration 
Numerical results for the simple shear problem (Fig. 1), ob­

tained by direct integration for two different approaches, are 
presented here. The first of these is the "traditional" ap­
proach (Nagtegaal and deJong, 1982) and the second is the 
new one. 

The simple shear problem, with (Dienes, 1979, Lee, et al., 
1983, Dafalias, 1983) 

x1=Xl+ktX2,x2=X2,x3=X3 (23) 
yields the following nonzero components of deformation rates 
and spin 

d12 = d2l=k/2, un= -w2i=k/2. (24) 

Using the "traditional" approach, the nonzero material 
rates of the components of Cauchy stress, using equations (1, 
21 with afj, d$ = 0 and 24), becomes 

<j,, = ka12 - 2Gdfl b12 =-kan- 2Gd@ (25) 

*u = -y fe - o11) + Gk - 2Gd®. 

The objective rates of the Cauchy stress and the tensor state 
variable ej?' are identified with the Jaumann rate in this 
"traditional" formulation. 

The new formulation requires the elastic rotation matrix 
7?(e). For the time being, this is taken to be the rotation matrix 
R from the polar decomposition theorem. Following Dienes 
(1979), the nonzero components of R become Rn = R22 = 
cos (3, Rl2 = -R2i = sin/3, R31 = 1, where tan/3 = kt/2. 

Starting from equation (21) 

°1, = -2Gdft>,ff22 = •2Gd® 
and 

°l2 = Gk-2Gd['$ 
(26) 

and similar equations for e ,y from Hart's constitutive model, 
it is a simple matter to compute ayit) and e\f' (t) in a s p a -
tially fixed frame through the use of Ry and equations (18 and 
19) with An = -2Gd\f for a = Tetc. 

Numerical results for the two cases, obtained by direct in­
tegration by marching forward in time, are shown in Figs. 2 
and 3. The material parameters used are representative of 304 
stainless steel at 400°C (Mukherjee, 1982). It is clearly evident 
that use of constant spin components from equation (24) leads 
to a prediction of oscillation of stress components in response 
to a montonically increasing shearing strain kt, while the use 
of rotation rather than spin leads to a physically acceptable 
situation in this example, namely monotonic increase in stress 
components as functions of monotonically increasing shearing 
strain. 

Implementation in BEM 

It is clear that the importance of the issue discussed in the 
previous sections is not limited to the simple shear example, 
but would be of consequence in problems whenever the local 
shearing strain at a point or points in a structure becomes large 
during deformation of the structure. While most of the re­
searchers referred to earlier have not looked into this more 
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general situation, the subject of this concluding section of this 
paper is an investigation of the implementation of the rotation 
idea in a general context. The rotation idea has been im­
plemented in a general two-dimensional BEM computer pro­
gram (Chandra and Mukherjee, 1983, 1985) capable of solving 
elastic-viscoplastic problems in the presence of large 
nonelastic strains and rotations. The original BEM formula­
tion has been published before (Chandra and Mukherjee, 
1983, 1985) and only some key points and the final BEM equa­
tions are presented here. 

The original BEM formulation, published previously by 
Chandra and Mukherjee (1983, 1985), is based on use of the 
Jaumann rate in the hypoelasticity equation (7), together with 
the updated Lagrangian approach. A key equation in this for­
mulation is the relationship between the material rate of the 
Lagrangian (or nominal) stress S and the Jaumann rate of the 
Cauchy stress. In the updated Lagrangian framework, this 
relationship is (Mukherjee and Chandra, 1985) 

S = a —ff'co —D»ff (27) 

where the deformation is assumed to be incompressible and, in 
general, 

S = (detF)F-'.ff. (28) 

Further, it can be shown in general that (Atluri, 1984) 

fi = c o — 2 ~ R . [ U . U - 1 - U - ' . U ] . R 7 ' (29) 

so that in the updated Lagrangian approach, with R = U = I, 
one obtains 0 = to. 

Thus, the BEM equation for the velocity field, from Chan­
dra and Mukherjee (1983 and 1985), still remains valid for the 
present formulation with the Dienes rate. It must be 
remembered, however, that once the velocity field is obtained 
throughout the body, further calculations are necessary 
before, for example, the Cauchy stress history is obtained in a 
reference frame. These subsequent manipulations are carried 
out here using equations (18, 19) rather than by integrating the 
material rates of the relevant tensors. 

It has been shown before (Chandra and Mukherjee, 1983, 
1985) that the velocity at a point p inside a structure undergo­
ing small elastic strains, but large viscoplastic strains and rota­
tions can be written as 

vj(p) = W [Uu(p,Q)t,{Q) - Tij{p,Q)vi{Q)]dS''Q 

+ yp0Uu(p,q)Mq)dV° 

+ \Bo2GUihk(p,q)d%Kq)dV° 

+ \B° ^>(P.9)G»*/te)«*,/(«f¥^- (30) 

In the above, Uy and Ty are the usual two point kernels of 
small deformation elasticity that are given in many references 
(e.g., Mukherjee, 1982); G!jkl is a function of components of 
the Cauchy stress (Mukherjee and Chandra, 1985); r,- is the 
traction at a point on the boundary; and p0 and Ff are the 
mass density and body force rate, respectively, in the reference 
configuration. Also, p (or P) is a source point and q (or Q) is a 
field point, with lower case letters denoting points inside the 
reference volume B0 and P and Q denoting points on its boun­
dary dB0. Finally, a comma denotes differentiation at a field 
point q. 

The traction rate f,• in the above equation (using equation 
(27)), is 

ji = nfy = t, - rijOjkuki - njdjkakj (31) 

where 

ii = nj°ji. (32) 

In the above equation, t-, can be interpreted as the component 
of the rate of the prescribed follower force, per unit deformed 
surface area, on the deforming boundary. The follower force 

moves with a boundary point and rotates with the normal to 
the boundary at that point. 

The next steps require the determination of a boundary in­
tegral equation by taking the limit of equation (30) as p—P 
and the stress rate equation by differentiating equation (30) at 
a source point. These equations are given in previous papers 
(e.g., Chandra and Mukherjee, 1983). The plane strain and 
plane stress versions of these equations are also available in 
the above-mentioned paper. 

Solution Strategy. The solution strategy follows the same 
approach as discussed in previous publications (e.g., Chandra 
and Mukherjee, 1983). The boundary integral equation is first 
discretized to obtain appropriate algebraic equations of the 
form 

{A]{v}+[B]{i} = ib}. (33) 

A march forward time integration scheme is then used with 
suitable updating of the configuration of the body. The 
presence of velocity gradients in the boundary traction rates 
and in the last domain integral in equation (30) requires itera­
tions within each step. The essential differences between this 
new approach and the "standard" one (Chandra and Mukher­
jee, 1983) are stated below. 

a) Once the elastic problem is solved at zero time, the 
displacement gradients are used to form the deformation gra­
dient matrix F. 

b) This matrix F is decomposed according to the polar 
decomposition theorem F = RU and R is obtained. 

c) The iterations are completed and Vj(p), Vjt{p), and a]t 

and e \f are calculated in the fixed global basis at zero time. 
The material derivative of Fis determined from the equation F 
= LF where Ly = vfj. 

d) Time integration is performed next. An explicit Euler 
type scheme with proper time step controls (Kumar, et al., 
1980) is used to find the relevant quantities including F a t time 
At. F is decomposed into RU at time At and R is obtained at 
At. 

e) The objective rates of the Cauchy stress and the anelastic 
strain are integrated in time through equations (18) and (19). 
Here 

l<y]l=Al = ([R]m[R]T)t^t (34) 
and similarly for [e<<7)]. 

Thus, the relevant quantities (displacements, displacement 
gradients, stresses, anelastic strains, etc.) are found at t = At. 
The time histories of various quantities are then obtained by 
marching forward in time and suitable updating of the 
geometry and the kernels. 

Numerical Results. The BEM formulation, described 
earlier, has been implemented in a computer program. This 
program can, of course, be used to solve general two-
dimensional elastic-viscoplastic problems in the presence of 
large strains and rotations. It has been validated by solving the 
simple shear problems discussed earlier. The BEM numerical 
results in Figs. 2 and 3 agree, within about 5 percent, with the 
direct numerical results for the same problem. This exercise 
demonstrates the feasibility of implementation of the rotation 
idea in a general purpose two-dimensional computer program. 

Conclusions 

This paper suggests tht elastic rotations should be used in 
the modeling of large shearing of solids exhibiting induced 
anisotropy during inelastic deformation. It is demonstrated 
here that direct integration of objective rates of tensors, ob­
tained from a constitutive model, and subsequent correction 
for the rotation of these tensors, overcomes problems of un-
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bounded rotations that could emanate from the usual pro­
cedure of using spins to relate Jaumann rates to material rates. 
Use of rotations eliminates spurious oscillations in a simple 
shear example. It is further demonstrated that the rotation 
idea can be efficiently incorporated into a general purpose 
analysis formulation and computer program. This is done by 
adapting a two-dimensional BEM formulation and computer 
program to reflect the use of rotations rather than spins. 
Numerical results from the general BEM program, for the 
simple shear example, agree well with a solution for the same 
problem obtained by direct numerical integration. The rota­
tion idea can also be incorporated into the finite element or 
other general numerical methods. 
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Radial Dependence of Near-Tip 
Continuum Fields for Plane Strain 
Tensile Crack Growth in Elastic-
Ideally Plastic Solids 
This paper is an extension of work by Drugan et al. (1982) who derive the stress and 
deformation fields at the tip of a plane strain tensile crack that grows quasi-
statically, under general nonsteady conditions, in an elastic-ideally plastic solid. 
Here I perform a higher-order analysis of the near-tip fields for this growing crack 
problem. My principal objectives are to determine the radial variation of the near-
tip stress field and elucidate the structure of the deformation fields in the 90-deg sec­
tor ahead of the growing crack; this information was not provided by the lowest-
order solution of Drugan et al. (1982). I also derive a crucial asymptotic expression 
for the normal radial component of the deformation rate tensor in a moving 
"centered fan" plastic sector, which was given without complete proof by Rice 
(1982). The analysis presented herein differs from typical perturbation analyses in 
that I am able to derive the higher-order structure of the continuum fields rather 
than having to assume expansions for them. Among the results, normal polar com­
ponents of deviatoric stress are shown to vary as (In r) ~', while the in-plane polar 
shear component varies as (In r)~2, for small r > 0 in moving "centered fan" 
plastic sectors, r denoting distance from the (moving) crack tip. Further, in-plane 
strains proportional to Inllnrl asr-~0 appear not to be precluded in the 90-deg sec­
tor ahead of the growing crack. 

1 Introduction 

A knowledge of the stress and deformation fields associated 
with the presence of a growing crack in a body is of great im­
portance for the formulation of fracture criteria and for the 
investigation of interactions between cracks and other 
geometrical, or material, inhomogeneities in a solid. Drugan 
et al. (1982) give an exact asymptotic solution (exact in the 
limit of /•—0, where r is distance from the crack tip) of the 
stress and deformation fields at the tip of a quasi-statically 
growing plane strain tensile crack under well-contained 
yielding conditions. Their analysis treats an isotropic elastic-
ideally plastic solid obeying the Huber-Mises yield condition, 
for the general case of Poisson ratio v < 0.5, i.e., elastic com­
pressibility. The Drugan et al. (1982) solution is a lowest-order 
solution to the equations governing stress and deformation as 
r—0: the stress components are determined as the functions of 
angle about the crack tip to which they reduce at r = 0, and ex­
plicit expressions for the deformation fields at small r result 
for all angles about the crack tip except for a 90-deg sector 

Contributed by the Applied Mechanics Division for publication in the JOUR­
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centered directly ahead of the growing crack, where the solu­
tion simply bounds the order of the deformation fields as 
/•—0. Other investigators have dealt with more specialized ver­
sions of the elastic-ideally plastic crack growth problem (e.g., 
fully incompressible material, steady-state crack growth), and 
their work is referenced and discussed in the Drugan et al. 
(1982) study. In particular, Gao (1983) has attacked the pro­
blem for compressible material via a steady-state formulation, 
but we have serious disagreement with his solution, as detailed 
in Drugan et al. (1982). 

The present work supplements the Drugan et al. (1982) solu­
tion by extending it to higher order in radial dependence, in 
near-tip sectors of principal plastic loading. This is ac­
complished by employing the more explicit asymptotic forms 
of the governing continuum equations derived recently by 
Drugan (1985). These reduced forms are specialized to the pre­
sent problem in Section 2. As in the Drugan et al. (1982) 
analysis, the effects of geometry changes on the formulation 
of stress and stress-rate measures and on the equilibrium equa­
tions are neglected. Finite element solutions by McMeeking 
(1977) for a stationary crack experiencing plane strain, Mode 
I, small scale yielding conditions show finite strain effects to 
be important only within a radius of approximately 2 to 3 
times the crack tip opening displacement; this radius is ex­
pected to be considerably smaller for a growing crack due to 
the far weaker crack tip strain singularity in this case. These 
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Fig. 1 Cartesian coordinates x-,, x2, x3 are fixed in the body; polar 
coordinates r, $ are centered at the tip and move with it through the 
material as the crack grows 

and related issues are clearly explained in the excellent review 
article by Hutchinson (1982). 

The lowest-order solution of Drugan et al. (1982) is dis­
cussed in Section 3. This discussion includes a new derivation 
of the lowest-order deformation-rate fields in moving 
"centered fan" plastic sectors, providing verification of the 
results of Rice (1982) (employed in the Drugan et al. (1982) 
solution) whose derivation is not sufficient, as explained. Sec­
tion 4 then presents a higher-order analysis of the stress field, 
showing that the lowest-order solution, when coupled with the 
general governing equations, specify the radial behavior of the 
stress field. Knowledge of the higher-order stress field 
behavior in the 90-deg sector centered directly ahead of the 
growing crack facilitates determination of the heretofore 
elusive structure of the deformation field in this sector, as 
shown in Section 5. 

The geometry of the problem, illustrated in Fig. 1, is iden­
tical to that considered by Drugan et al. (1982). A Cartesian 
coordinate system, xx, x2, x3, is fixed in the body, with xx 

pointing in the direction of crack growth, a being the measure 
of crack length, and x3 lying parallel to the crack front. A 
polar coordinate system, r, d, lies in the xlt x2 plane, is 
centered at the crack tip and moves with it through the 
material as the crack grows; 6 is measured from the line ahead 
of the crack. The unit vectors e and h correspond to the radial 
and angular directions, respectively, of this translating polar 
coordinate system. Therefore, 

dr/dXj = eh dd/dx, = h/r (1.1) 

where 

e,=/i2 = cos0, e2= -h} =sin0, e 3 =/ i 3 =0 . (1.2) 

The convention to be followed throughout the paper is that 
Greek indices a„6 have range 1,2 only, while Latin indices 
ij,k,l have range 1,2,3; both types of index will follow the 
summation convention and will indicate Cartesian (but never 
polar) components of tensors. 

2 Plane Strain Governing Equations and Asymptotic 
Forms 

The analysis to follow is based on the continuum equations 
that govern plane strain deformation of a Prandtl-Reuss 
material, assuming small displacement-gradients, i.e., neglec­
ting the effects of deformation in the formulation of stress and 
stress-rate measures, and equilibrium equations. These con­
tinuum equations are summarized here, and the forms to 
which they reduce for small r are given by employing the 
results of Drugan (1985). For plane strain deformation, «3 = 
0, e3, = 0 and a3a = 0, where ujt ty and ay are components of 
the displacement vector, the infinitesimal strain tensor and the 
stress tensor, respectively. 

2.1 Equilibrium. For three-dimensional equilibrium, the 
stress tensor must be symmetric, ay = oJh and must satisfy, the 
equations 

dau/dxJ+f, = 0 (2.1) 

where/, are components of the body force vector. These equa­
tions can be rephrased in terms of the crack tip polar coor­
dinate system for the plane problem to be studied by regarding 
ay = ff,y (r,d,t), with t denoting time, and by using (1.1): 

(daa/}/d8)(hl}/r) + (dac,IJ/dr)ell+fa = 0. (2.2) 

Equations (2.2) govern Cartesian stress components; for polar 
components (2.2) become 

don/dr+(l/r)(dor0/dd) + (orr-oee)/r+fr = Q (2.3a) 

dare/dr+(\/r)(daee/dd)+2arl)/r+fe = 0. (2.3b) 

Drugan (1985) proved that if the following conditions are all 
met: (0 deviatoric components of stress are bounded (as they 
are in the present elastic-ideally plastic constitutive model); (ii) 
the body is in equilibrium with bounded body forces / ; ; (Hi) 
the quantities r[\n(R/r)]doy/dr exist in the limit as r — 0 (the 
equilibrium equations (2.3) require this for rdarr/dr and 
rdar6/dr if darg/dd, daM/dd, arn age, arg are all presumed to ex­
ist as r — 0); then 

dou/dr = o{lr\n(R/r)]~x} as r - O (2.4) 

where R is an undetermined constant having length dimen­
sions. Using this result together with the bounded body force 
assumption, the equilibrium equations adopt simplified 
asymptotic forms; for example, (2.2) become 

(daali/de)hli+o{[ln(R/r)]-l}=0 as r-*0. (2.5) 

Here and throughout the text, I employ standard order sym­
bols; a clear discussion of these and gauge functions is given 
by Van Dyke (1975). 

2.2 Yield Condition. The Huber-Mises yield condition 

f(<7y)=SySiJ/2-k2 = 0 (2.6) 

is assumed, where Sy = oy — 8yokk/3 are components of the 
deviatoric stress tensor, Sy is the Kronecker delta, and k is 
shear strength. In the analysis to follow, it is often more con­
venient to employ two differential forms of (2.6), 

Sy(doy/d6) = 0 (2.1a) 

su(daIJ/dr) = 0 (2.1b) 

which must both hold in all plastically deforming regions of 
the body. 

2.3 Elastic-Plastic Stress-Strain Relations. The rate of 
deformation £>,-,• is defined as 

Djj = iy = — (dv/dXj + dVj/dXi) (2.8) 

where vt are components of the material velocity vector and a 
superposed dot denotes time rate at a material point. The in­
cremental Prandtl-Reuss theory is adopted in rate form, so 
that for material currently experiencing elastic-plastic defor­
mation, 

l + v 
Dll=m+B¥,=-zr-o,l 

where E is Young's modulus, v is Poisson's ratio, A > 0 is an 
undetermined parameter, and superscripts e and p denote 
elastic and plastic components, respectively. For material ex­
periencing solely elastic current deformation, whether or not it 
has been previously strained plastically, (2.9) applies with A = 
0. 

A convenient expression for the stress rate at a material 
point, &y, results from applying the chain rule to the assumed 
functional form ay = ay (r, 6, t) (Rice, 1982): 

dy = (doy/de)e+(dou/dr)f + doy/dt 

= (day/dd)dsmd/r- (doy/dr)dcosd + doy/dt, (2.10) 

having employed 0 = dsind/r and r = —dcosd, which result 
from the translation of the crack tip polar coordinate system 
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with the growing crack. Two asymptotic forms of (2.10) were 
derived by Drugan (1985): 

djj = (dou/d6)dsm6/r- (do;j/dr)dcosd + 0(l) 

as r - 0 (2.11a) 

a,] = (doij/dd)asm6/r+ o{[rln(R/r)]"' j 

as r - 0 ; (2.116) 

these facilitate employment of (2.9) in the asymptotic analysis. 

2.4 Plane Strain Condition. Since I assume «,-, = efj + 
tip the plane strain condition e33 = 0 requires 

e?3 = -«33 = - ["33 ~ "(tfn + aa)]/E. (2.12) 

This shows ef3 to be bounded at the crack tip since (Drugan, 
1985) equilibrium requires all stress components to be 
bounded at the crack tip if deviatoric stress components are. 
In the form Z>33 = 0, the plane strain requirement permits A to 
be determined from (2.9) whenever s33 ^ 0, viz. 

A= -[a33-v(an + a22)]/(Es33). (2.13) 

2.5 Compatibility. I assume the displacement field w,- to 
be continuous near the growing crack tip (except, of course, 
across the crack flank) since a moving surface of displacement 
discontinuity would correspond to an unbounded plastic work 
rate in any subregion of the body traversed by such a surface. 
Drugan and Rice (1984) showed that a continuous displace­
ment field implies a continuous velocity field near a growing 
crack tip for the constitutive model employed here, except 
across a quasi-statically propagating surface whose stress state 
meets highly restrictive conditions which they derived. In all 
regions where the velocity field is thrice differentiable, plane 
strain compatibility of the deformation rate field will be 
satisfied if 

d2D22/dx] + d2Du/Bxj -2d2D l 2/dx tdx2 = 0, (2.14) 

which may be restated in terms of the crack tip polar coor­
dinate system as 

32 \ / 2 92 2 d 
- + -( l d 1 ° \ n _(± 

r 7 i + 7 ¥ i " V7 
drdd de 

)ore 

( d2 2 8 , 
= 0. (2.15) 

3 Lowest-Order Solution for Crack Tip Fields 

3.1 Summary. Drugan et al. (1982) derive a lowest-order 
(in r) solution for the stress and deformation fields near the tip 
of a Mode I (tensile) crack that grows quasi-statically under 
plane strain, well-contained yielding conditions in an isotropic 
elastic-ideally plastic solid. The stress field is thus an exact 
solution to the governing equations (Section 2) at r = 0 and is 
only a function of 6. The Drugan et al. (1982) analysis shows 
the crack tip field to divide into five angular sectors of four 
different types on each side of the crack symmetry plane, for 
the general v < 0.5 case. This configuration is illustrated in 
Fig. 2, in which: Sectors A and B can be described, for r — Q, 
in slip-line terminology as "constant stress" and "centered 
fan" plastic sectors, respectively; Sectors C and E are 
plastically deforming with non-constant stress fields and have 
no asymptotic slip-line analogy; and Sector D contains 
elastically unloading material. Drugan et al. (1982) show that 6 
= 7r/4 is the boundary (at r = 0) between Sectors A and B for 
general v, while 6ud2,63 are found to depend on the specific v 
value. For the case v = 0.3, they find 

61, = 110.26°, 6>2 = 123.13°, 03 = 160.38°. (3.1) 

The lowest-order solution of Drugan et al. (1982) is not suf­
ficient to specify the deformation field in Sector A of Fig. 2 
except to show that £>,-, = o(l/r) as r — 0 there and thus that 
Sector A produces only bounded contributions to efj as r — 0, 

Fig. 2 Exact solution configuration, directly at the crack tip, for a grow­
ing crack in material with v < 0.5 (from Drugan et al., 1982). The bound­
ary SAB is known to be 0 = irl4 at r = 0. 

except possibly on 8 — 0, where efj = o(ln r) as r —• 0. Their 
solution does provide explicit expressions for the deformation 
field as r — 0 in each of the other near-tip sectors. 

3.2 New Derivation of Asymptotic Deformation-Rate 
Field. Rice (1982) derived from (2.9) and (2.7a) two restric­
tions on the deformation-rate field (specialized here to plane 
strain response of a Prandtl-Reuss material) which can be 
fruitfully employed in moving "centered fan" plastic sectors: 

Drr + Dm = m-2v)/E\bkk (3.2) 

Dafi(daaP/d6)=^ fiu{dav/M)—L akk{dan/de). (3.3) 

These restrictions have the following asymptotic forms: 

Drr+Dee = [(1 - 2v)/E] (dakk/dd)dsind/r 

+ o[l/(/lnr)] as r-~0 (3.4) 

rDrr{darr/dd~2ar0) = (\/E)[(1 + v) (dav/dd) (da0/dd) 

- v(dokk/dd)2]dsm6 + o(l) as r - 0 . 

(3.5) 

Equation (3.4) is obtained simply by employing (2.116) in 
(3.2) as r - 0 . 

The demonstration that (3.3) reduces to (3.5) as r — 0 in a 
moving "centered fan" plastic sector is more involved. 
Although Rice (1982) arrives at a form equivalent to (3.5), his 
derivation is not sufficient (Pan, 1982), since he considers only 
the lowest-order Cartesian terms in the sum Daff (daaj3/d&) as r 
— 0. These terms cancel, however, necessitating retention of 
higher-order terms. Thus I give below a new derivation of 
(3.5), since in addition to being fundamental to the earlier 
solutions cited, it is crucial to the higher-order analysis per­
formed here. 

Use of (2.1 lb) permits rewriting (3.3) as 

rDap(doali/dd) = {l/E)[{l + v) (doy/M) (daij/dd) 

-v(dokk/dd)2]dsind + o(l) a s r - 0 , (3.6) 

having multiplied through by r. The left side of (3.6) is ex­
pressible as 

rDa& (daall m) = rDn (ba„/M - 2or6) 

+ 2rDrS[~r(darr/dr+fr)]+rDel)l-r(dcrl)/dr+fe)], (3.7) 

where (2.3) have been employed. What remains is to show that 
rDrr(dorr/d& - 2a^) dominates the other two terms on the 
right side of (3.7) as r -* 0. That it dominates the third term is 
easily observed by substituting for Dm from (3.4) and using 
(2.4), having noted from Drugan et al. (1982) that in Sector B 
of Fig. 2, 

dorr/dd-2ore=-4k+o(l) a s r - 0 . 

In other words, use of these facts reveals that the first and 
third terms of the right side of (3.7) combine to give 
[-Ak(rDrr) + o(rDrr)] as r - 0. 

To assess the second term on the right side of (3.7), we 
recognize that a "centered fan" plastic sector moving with a 
growing tensile crack tip cannot share its rear boundary with a 
"constant stress" plastic sector. This is true since by invoking 
the requirement that the full stress tensor be continuous across 
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quasi-statically moving surfaces in the material being analyzed 
(Drugan and Rice, 1984), it is easily proved that vr would have 
to undergo a jump across such a boundary (the proof is very 
similar to one presented in Section 5.2 of Drugan et al. 
(1982)), and this jump would produce negative plastic work 
since art) = + k + o(l) as r — 0 and vr > 0 as r -~ 0 in a 
"centered fan" sector at a tensile crack tip. Thus a moving 
"centered fan" sector must be bordered at its trailing edge by 
either a currently elastic sector or by a plastic sector with sn ^ 
0 at r = 0; in both of these sector types, the asymptotic 
analysis of Rice (1982) specifies that va = 0(ln r) as r ~ 0. 
Now since the results of Drugan and Rice (1984) require con­
tinuous vg across asymptotic (radial) sector boundaries, we 
conclude that vg = 0(ln r) as r -~ 0 in a moving "centered 
fan" sector. This fact together with (3.4), (3.6), (3.7) and (2.4) 
require that vr = 0(ln /•) in a moving "centered fan" sector. 
Thus, 

Dr0 = (\/2r) [dvr/dd-ve + rdvg/dr] = 0[(ln r)/r] 

as /•-> 0 

in a moving "centered fan" sector. This conclusion coupled 
with (2.4) shows that 

2rDrel-r(daIT/dr+fr)] = o(l) as r~0. 

Therefore, rDrr(darr/dd-2ar0) dominates the other two terms 
on the right side of (3.7) as /•—0 (since it cannot vanish as r^O 
because the right side of (3.6) is 0(1) as r— 0), and thus (3.5) is 
demonstrated. 

Drugan et al. (1982) show how (3.4) and (3.5) are employed 
to determine the complete lowest-order deformation-rate and 
velocity fields in Sector B of Fig. 2; here I reproduce only their 
results for Dfj, which will be needed in the ensuing analysis: 

DPr=D§g= -(\-2v) (k/E) (d/r)smd + o(\/r) 
as r—0 

DPg = [(5 -4p)/(2^2)](k/E) (d/r)ln(R/r) 
+ o[(ln/•)/''] as r—0 

D?3 =2(1 -2v) (k/E) (d/r)sind + o(\/r) 
as r—0 

4 Radial Dependence of the Stress Field 

I shall now show that the radial behavior of the stress field 
at small but finite distances from the growing crack tip is 
directly determinable from the lowest-order solution of 
Drugan et al. (1982) coupled with the general governing equa­
tions of Section 2. In particular, explicit higher-order expres­
sions will be derived for the stress field in Sectors A and B, the 
sectors in which the principal plastic deformation occurs. (The 
only other location for singular plastic strain accumulation is 
as r—0 along the crack flank, 6 = ±ir.) 

4.1 Sector B. The deviatoric stress field in the "centered 
fan" plastic sector, Sector B of Fig. 2, was determined by 
Drugan etal. (1982) to be 

Srr~SeO —^33 — 0 

sr0 = k 
at r = 0. (4.1) 

The manner in which this stress field alters as r increases 
from zero in Sector B can be derived from the lowest-order 
solution for the rates of plastic deformation, (3.8), together 
with the plastic part of the Prandtl-Reuss flow rule, 

DP- --Asv. (4.2) 

First, the parameter A is specified to lowest order in Sector B 
via the rd components of (3.8), (4.1) and (4.2): 

(4.3) 

s„ 

_ D% _ [(5 - 4v)/(2\f2)](k/E) (d/r)ln(R/r) + o[(ln r)/r] 

sre k+o(\) 

as /•—0 

= [(5 -4p)/(2V2)](l/E) (d/r)ln(R/r) + o[(ln /•)//•] 

as r-»0. 

Then, employing (4.3) and (3.8) in (4.2), one obtains 

DPr _ - (1 - 2v) (k/E)smd(d/r) + o( 1/r) 

~A~" [(5-4i>)/(2-j2)](l/E)(d/r)ln(R/r) + o[(lnr)/r] 

as r—0 

-2\f2[(l-2v)/(5-4v)]ksme(ln—) +o[(ln/•)" '] 

(4.4A) 

=srr + o[(ln r)~[] as r^0 

as r—0 

A 
(4.4b) 

-= -2srr + o[(ln r) '] as /•—(). (4.4c) 

To determine the r-dependence of sr9 for small r in Sector B, 
write 

sr0=k + g{r,6,t) as r - 0 (4.5) 

where g(r, d, t) — 0 as r -> 0. Next, rewrite the Huber-Mises 
yield condition (2.6) as 

3s2
i3/4 + (srr-sM)2/4 + s2

re=k2 (4.6) 

and substitute from (4.4) and (4.5) to obtain 

+ (o[(ln /•) ~2] J /4 + [k2 + 2kg + g2] = k2. 

Evidently this specifies g to 0[(ln r)~2], so (4.5) becomes 

3f32[(l-2*/)/(5-4!/)]2A:2sin20(m —) +o[(ln r)-2]\/4 

(3.8) sr0=k- 12[(1 -2^)/(5-4;/)]2/tsin20 (*T) 
+ o[(lnr)"2] as r - 0 . (4.7) 

That this deviatoric stress field satisfies equilibrium to the ap­
propriate order in r is easily verified by rewriting (2.3) as 

- darr/d (in —J = see - s r r - ds^/dd -rfr 

In —J -rf„ 

(4.8a) 

(4.86) 

and assuming fr, fe to be bounded as r — 0. Substitution of 
(4.4) and (4.7) into (4.8) shows that (4.8) are satisfied to 
0[(ln r)~2] as r — 0 provided that the yet-unspecified 
hydrostatic stress component is chosen properly, as reflected 
in the derivation of (4.9) below. The deviatoric stress field 
given by (4.4) and (4.7) is thus the solution in Sector B to the 
order expressed, since it was shown to satisfy equilibrium (2.3) 
and yield (2.6) to 0[(ln r)~2] as r —• 0, and because it is derived 
from the lowest-order deformation rate field, which is in turn 
derived from a continuous velocity field and hence is compati­
ble. Integration of the equilibrium equations at small r, using 
(4.4) and (4.7), shows that the stress field in Sector B must 
have the form 

= Cf ~ 2k6 + 6A^A:(20 + sin20) (-4) 
+f(r,t)/r+o[(lnr)-2] as r-~0 

= Cf- 2k& + SMPkQO - sin20) (in —) 

+ df(r,t)/dr + o[(lnr)~2] as / - -0 

(4.9a) 

(4.9b) 
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/ R\ _ 2 

or0 = A:-12M2A:sin20(ln—J 

+ o[(\nr)~2] as r—0 

ff33 = Cj - 2£0 + 6J2Mksmd (in —J 

(4.9c) 

+ [3/( r ,0 /9 ' '+ / (^ ,0/ ' - ] /2 + o[(ln/•)-'] 

as r - 0 (4.9cO 

where Af = (1 ~ 2p)/(5 - 4y) and f(r,t) is a function of in­
tegration having the properties that df(r, t)/dr = o{\) as r — 0 
and / ( r , t)/r = o{\) as r - 0. 

By assuming an Airy stress function to have an expansion of 
the form 

*=^f;/fl(fl)(in4)"". 
Gao (1980) arrives at expressions having the same functional 
forms in a moving centered fan sector as (4.9) when special­
ized to steady-state conditions; a complete comparison is not 
possible since all of his higher-order terms contain unspecified 
constants. See the discussion by Drugan et al. (1982) of the 
Gao (1980) study. 

4.2 Sector A. The results of the preceding subsection 
were derived strictly for the "centered fan" plastic sector (Sec­
tor B of Fig. 2). However, since the stress field near a growing 
crack tip in a solid satisfying the governing equations of Sec­
tion 2 must be fully continuous (Drugan and Rice, 1984), (4.9) 
imply the asymptotic form of the radial dependence of the 
stress field at all angles about the crack tip. In particular, full 
stress continuity across SAB of Fig. 2, the boundary between 
Sectors A and B, implies that the stress field in Sector A has 
the form 

aij = afm+of{e,tn-'+of{e,t)^ + o(^2) as r - 0 

(4.10) 

where £ = ln{R/r); the adoption of (4.10) embodies the 
assumption that f(r, t) of (4.9) is expressible as 

f{r,t) = « , ( 0 / - r ' + a 2 ( / ) / - r 2 + o ( / - r 2 ) as r- • 0 . 

Similarly, we represent the deviatoric stress field in Sector A as 

su=sf(e)+s<ip(d,t)Z-,+sff(d,t)£-2 + o(£-2) as r-0. 

(4.11) 

Substituting (4.10) into (2.2) and equating terms of like 
order in r, while employing the assumption of bounded body 
forces, gives the equilibrium requirements (to 0(£~2/r) as r — 
0): 

ff<$'/2g = 0 (4.12a) 

oty'hg + otye^O (4.12c) 

where the superscript 'denotes A . 

The most convenient form of the yield condition to apply 
here is the differential form {2.1b), which, upon substitution 
of (4.10) and (4.11), requires (to 0(£ ~3//-) as r - 0) 

2sfaf+s\pa\p = 0. 

(4.13a) 

• (4.136) 

Note that the other differential form of the yield condition, 
{2.1a), must also be satisfied in Sector A; however, a short 
calculation reveals that {2.1a) results in the same restrictions as 
do (4.13), but in less illuminating forms. 

An asymptotic expression for the stress rate in Sector A for 
general, non-steady crack growth is obtained by substituting 
(4.10) into the result (2.1 la), viz. 

ffy = of' sind (d/r) + of&md{d/r)Z " ' 

+ [a}2»'sin0-ff(j>cos0](«/r)£ ~2 + o[£-2 /r] 

as r-*0. (4.14) 

Drugan et al. (1982) determined the lowest-order stress field 
in Sector A to be 

< 7 < Q > ' = 0 (4.15a) 

o$ = 0 (4.156) 

a $ = (o¥? + <^)/2 (4.15c) 

ag? - <r\°> = 2£ (4.15d) 

afP + o2°j = known constant for a specific v value (4.15e) 

which of course satisfy equilibrium (4.12a) and the yield con­
dition (2.6) at r = 0. 

Theajj^of (4.15) are employed in the higher-order equa­
tions of equilibrium (4.12), yield (4.13) and compatibility 
(2.15) (written in terms of stresses via (2.9), (2.13) and (4.14)). 
The resulting system of differential equations, when 
augmented by the Mode I symmetry conditions and the boun­
dary conditions on Sector A, permits specification of the 
higher-order coefficients of {d, f) and of {d, f) of (4.10). The 
derivation is lengthy but fairly straightforward and is thus 
omitted here. Making use of these results, the stress field in 
Sector,4of Fig. 2 is expressible to 0 [(In r) ~ 2 ] as 

ffn = ^ n + Q n ( 0 (in y ) + [(Gn(0/2)In(cos2fl) 

+ / ? „ ( o ] ( l n — ) +o[( ln / - r 2 ] as r - O (4.16a) 

"22 =^22 +Gi i (0 (in y ) " +[(g1 1(0/2)ln(cos2fl)+i?1 1(0 

- \2NPk\ (in —) +o[(ln/-)"2] as / - -0 (4.166) 

ff12= -(Gii( ')/2)ln[tan0r/4 + fl)](ln —) -+o[(ln r)~2] 

as / - -0 (4.16c) 

ff33=-P33 + [Gii(0+6/fM](ln—) 

+ f [Qn(0 /2 + 3/fM]ln(cos20) +R33 {t)l (in 
R\ "2 

+ o[(ln/-)-2] as r—0, (4.16c0 

where Pn, P22, P33 are known constants for a specific v value 
(i.e., Py = of of (4.15)), and Qn{t), Rn {t) and tf33 ( 0 are 
undetermined functions of integration. {Qn{t) and Rn{(), be­
ing proportional to the 0[(ln /•)"'] and 0[(ln r)~2] stress triax-
iality coefficients, respectively, can be determined only by 
complete solution of the higher-order fields at all angles about 
the crack tip.) 

Because all stress components are required to be bounded 
near the crack tip in the elastic-ideally plastic constitutive 
model employed (Drugan, 1985), the results {4.16) show that 
the boundary of Sector A must curve for r > 0. That is, 
representing this boundary for small r > 0 as 

6 = ir/4 + m{r,t) (4.17) 

where m{r, t) — 0 as r — 0 in view of the lowest-order solu­
tion, (4.16) require that m{r, t) < 0 for r > 0. This is evident 
in spite of the fact that the value of Qn{t) is undetermined, 
since (4.16) show that at least one component of a,j becomes 
infinite as 6 —• 7r/4 for any value of Qu (t). A more explicit 
restriction on the asymptotic behavior of m(r, f) is obtained 
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by enforcing continuity of a^ to 0[(ln r) 2] across SAB, which 
via (4.9c), (4.16) and (4.17) can be shown to require 

- l 

as r^O. 

passes through Sector A can be determined by integrating (5.3) 
at that material point, i.e., 

/ w ( r , 0 = o [ ( l n — ) ] efj=\' Dfjdr, 
0 ln 

(5.7) 

5 Deformation Field in the Constant Stress Sector 

Drugan et al. (1982) show that in Sectors of Fig. 2 

Dij = o(\/r) as r - 0 (5.1) 

but their lowest-order solution does not specify £>,y further. 
The results of Section 4.2 permit the structure of D,j in Sector 
A to be determined, and from this the velocity field and plastic 
strain field in this sector may be derived. 

For/- > 0 in Sector ,4 (so that.s33 jt 0), A is given by (2.13), 
so that the Prandtl-Reuss flow rule (2.9) becomes 

EDU = (1 + v)au- v8,jdkk - [cr33 -v(an + ff22)](V
s33)- (5.2) 

Employing the Sector A stress field results (4.16), together 
with the asymptotic stress rate expression (4.14), (5.2) pro­
vides Djj in Sectoral to higher order: 

D^DPj + Omnryyr] 

= (l /4E)[(5-4i.)Q„(0+6*](52 ,82 y-81 /5 i y) 

where t0 is the time at which the material point enters the 
plastically deforming region. Drugan et al. (1982) showed that 
when a is increasing continuously with applied loading, if Dfj 
= 0(a/r) as r — 0 in a plastically deforming sector, then the 
contribution to the corresponding eg from that sector will be 
bounded for 6*0. Thus we immediately deduce from (5.3) 
that sinceDfj = o(d/r) as r — 0, 

eg = 0(1) as r - O when 6*0. 

However, (5.3) shows that a material point located directly on 
the crack line has 

Dfj =- efj = (l/4£)[(5 - 4u)Qn(t) + 6k](82i8y 

- M i , ) (a/r) (ln -£•) +0[(ln r)~2/r] 

as / • -0 along 61 = 0. (5.8) 
When a is increasing continuously with applied loading, we 
employ the relationship r = - a (valid on 0 = 0) to substitute 
for a in (5.8) and then integrate to find 

:(cos0/cos20) (a//-)! l n — l +0[(ln r)~2/r] as r - 0 . / R\ 
V r) ef1 = -ef2 = ( l /4£)[(5-4v)Q 1 1(0+6/c] ln( ln—J 

(5.3) 
To determine the asymptotic material velocity field, we 

begin by integrating the rr component of (5.3) for small r, 
recalling that D„ = dvr/dr, to obtain 

vr= (d/4E)[(5-4p)Qu(t) + 6k]cos6\n(ln —) 

+ dF(6,t)/dd + 0[(lnr)~l] as / • -0 (5.4) 

where dF(6, t)/dd is an undetermined function of integration. 
Next, the 68 component of (5.3) is employed, using Dee = 
(1/r) (dve/dO + vr). Substituting from (5.4) and integrating 
with respect to 0 gives 

ln —j 

-F(6,t)+G(r,t)+0[(\nr)-i] as r-0, (5.5) 

where G(r, t) is an undetermined function of integration. 
Now, Mode I symmetry requires that 

dvr/dd = ve = 0 on 0 = 0, 

which via (5.4) and (5.5) yield the restrictions 

d2F(d,t)/dd2 = 0 _ (5.6a) 

G(r,t) =F(6,t) +0[(lnr)"1] as r - 0 . ° n ~ (5.6b) 

Finally, (5.4) and (5.5) must satisfy the rd component of 
(5.3), expressed in terms of velocities via Dre = (1/2/-) [dvr/dd 
— ve + rdvg/dr]; this will be satisfied to 0(l/r) as r — 0 pro­
vided that 

Thus, 

d2F(6,t)/dd2 +F(6,t) -F{0,t)=0. 

F (6,t) =B(t) sind+ C(t) 

where B(t) and C(t) are undetermined functions, and the 
velocity field to 0(1) as r -~ 0 in Sector A specifies to 

vr=(d/4E)[(5-4p)Qu (t)+6k]cos6ln(ln —\ +B(t)cosd 

ve = ~ (d/4E)[(5-4u)Qu (t)+6k]smd\n(ln —) ~B(t)sin6. 

The plastic strain accumulated by a material point as it 

+ 0(1) as r - 0 along 0 = 0. 

This reveals that two components of the plastic strain at a 
material point on the crack line may (depending on the value 
of <2n(0) become infinite as the crack tip approaches. 
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Three-Dimensional Stress 
Singularities at Conical Notches 
and Inclusions in Transversely 
Isotropic Materials 
This study examines analytically the possible existence of stress singularities of the 
form a = p6f (#,</>) at the apex of axisymmetric conical boundaries in transversely 
isotropic materials, (p, 6, <j>) refer to spherical coordinates with the origin at the 
apex. The problems of one conical boundary and of two conical boundaries with a 
common apex are considered. The boundaries are either rigidly clamped or traction 
free. Separation of variables enables the general solution to be expressed in terms of 
Legendre functions of the first and second kind. Imposition of boundary conditions 
leads to an eigenequation that would determine possible values of 8. The degenerate 
case that arises when the eigenvalues of the elasiticity constants are identical is also 
discussed. Isotropic materials constitute only a particular case in this class of 
degenerate materials and previously reported eigenequations corresponding to 
isotropic materials are shown to be recoverable from the present results. Numerical 
results corresponding to a few selected cases are also presented to illustrate the 
solution procedure. 

1 Introduction 
The occurrence of stress singularities in three-dimensional 

elasticity problems (e.g., at the apex of notches and in­
clusions; along crack fronts; and interfaces between dissimilar 
materials) assumes importance in studies of the fracture 
behavior of materials as well as in general stress analysis (Sih, 
1971; Kassir and Sih, 1975; Erdogan, 1983). Most common is 
the power type singularity where the stress a assumes the form 
a = p6f{6, <f>), where (p, 6, 4>) refer to a spherical coordinate 
system with the origin at the point of singularity and Re(5) < 
0, so that the stresses become unbounded at the origin. In 
fracture mechanics it is desirable to know the order of the 
singularity 8. As far as three-dimensional stress analysis is 
concerned a complete analytical solution for a problem 
containing a crack or a notch is very difficult to obtain and 
numerical methods such as finite element techniques have to 
be employed. In the vicinity of stress singularities special 
numerical methods are preferred as they improve accuracy 
substantially. One of the often used methods is to employ a 
"special finite element" which can adequately represent the 
singular nature of the stresses in that region (Pian et al., 1972; 
Tong et al., 1973; Lin and Mar, 1976; Rhee and Atluri, 1982). 

Contributed by the Applied Mechanics Division and presented at the Winter 
Annual Meeting, Miami, Fla., November 17-21, 1985 of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, February 21, 1985; final revision, May 31, 1985. 
Paper No. 85-WA/APM-25. 

This requires primarily a knowledge of the value of 5 and, if 
possible, off(6, </>) as well. 

In the case of a crack, a notch or any other such "source" 
of a singularity of arbitrary geometry in a three-dimensional 
medium, the task of obtaining an analytical solution for 8 
seems mathematically intractable for isotropic materials and 
even more so for anisotropic materials. For isotropic 
materials, semi-analytical methods have been proposed by 
Benthem (1977, 1980) and Kawai et al. (1977) while numerical 
methods have been used by Bazant (1974) and Bazant and 
Estenssoro (1977, 1983). For anisotropic materials a 
numerical procedure has been recently proposed by 
Somaratna and Ting (1986). For any numerical technique it is 
desirable to have analytical solutions to at least a few sim­
plified cases so that they may serve as bench-mark tests for the 
numerical method and provide useful checks on its accuracy. 
In the case of anisotropic materials the simplifications are 
achieved by making the material constitutive relation and the 
geometry of the problem simpler. In the particular case of 
assuming the geometry to be axisymmetric and the material to 
be transversely isotropic, the problem can in fact be made 
mathematically two-dimensional. In the present paper we 
investigate the occurrence of stress singularities in that 
simplified problem. 

The material is assumed to be linearly elastic and 
transversely isotropic with respect to the z axis in the cylin­
drical coordinates (r, <j>, z). In the spherical coordinate system 
(p, 6, 4>) the material is bounded by either one (Fig. la) or two 
(Fig. lb) conical surfaces defined by 6 = dx and 6 = 62. On 
the boundary or boundaries the surface is either traction free 
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cross section 

Fig. 1(a) One axisymmetric conical boundary 

cross section 

Fig. 1 (£>) Two axisymmetric conical boundaries 

or rigidly clamped. The former boundary condition signifies a 
notch while the latter corresponds to a rigid inclusion. If 
necessary the method presented here can be used to analyze 
"mixed" boundary conditions (e.g., a frictionless rigid in­
clusion). A special case of this problem where the material is 
assumed to be isotropic and bounded by one conical surface 
has been analyzed by Bazant and Keer (1974) using results of 
Thompson and Little (1970). A proper reduction of the more 
general solution presented here, of course, leads to the 
recovery of the results reported therein. 

The mathematical formulation of the basic equations for a 
transversely isotropic elastic material under an axisymmetric 
deformation is presented in Section 2. Separation of variables 
enables the general solution, in which stresses are propor­
tional to ps, to be expressed in terms of Legendre functions of 
the first and second kind. This is described in Section 3 while 
in Section 4 appropriate boundary conditions are imposed on 
the general solution to yield an eigenequation for <5. It is also 
shown that under a certain special class of material properties 
the general solution degenerates. This degeneracy and the 
modifications of the solution required to overcome the dif­
ficulty arising therefrom are discussed in Section 5. Isotropic 
materials are only a particular case in this special class of 
degenerate materials and the results corresponding to 
isotropic materials are recovered in Section 6. They agree with 
those reported by Thompson and Little (1970) and Bazant and 
Keer (1974). Section 7 presents some numerical results ob­
tained by solving the eigenequation. 

2 Mathematical Formulation 

Let (r, 4>, z) be a cylindrical coordinate system with the z 
axis as the axis of material symmetry and let (ur, u^, uz) be 
the corresponding displacement components. We assume that 
the deformation is axisymmetric and u+ =0 so that ur and uz 

are functions of r and z only. Introducing the displacement 
potential $(/•, z) which gives ur and uz (Elliott, 1948, 1949; 
Green and Zerna, 1975; Ting et al., 1985) by 

a* a* 
u'=Tr'

u<=mai ( i ) 

where in is a constant to be determined, the stresses are ob­
tained as 

aA = c 

a 2 * 
a^ 
a2$ 

ff'=c"a^+Cl27a7+Cl3Wa? 
a* 
rdr 

a* 

a 2 * 

a 2 * 
12 T T + Cj, —r h C13A77 —-r 

dr2 

a 2 * 

rdr 

a* 

dz2 

°'=cn^r+cl3^+ci3m
 a , 2 3r2 

orz =
 c44^+m) 

rdr 

a 2 * 
a? 

a 2 * 
drdz 

(2) 

in which ctj are the elasticity constants for the tranversely 
isotropic material. The equations of equilibrium are satisfied 
if 

a2$ a* 
+ 

i a2* „ 
dr2 rdr p2 dz2 

where 

cl3+(\+m)c44 

mcn +(1 +m)cA4 -mc33 

or, equivalently, 

— m = 
+ c44 cn +c44p 

(cl3+c44)p
2 c44+c33/?2 

The second equality of (4a) and (4b), respectively, yields 
C11C33 - C13 . 1 

m2-2\ 
. 2c4 4(c1 3 + c 4 4 ) 

1 AW+1=0 

P*+2 
CuC-n C\ '^•cncu 

PJ + = 0 

(3) 

(4a) 

(4b) 

(5a) 

(5b) 
2c3 3c4 4 J c33 

Notice that m and p are independent of the elasticity constant 
cl2. Therefore, if the boundary conditions are prescribed in 
terms of the displacements $ is independent of c12. 

It can be shown (Eshelby et al., 1953) that/? cannot be real 
if the strain energy is positive definite. Therefore we have two 
pairs of complex conjugates for p and let them be denoted by 
Pi< Pt> Pi and p2 where an overbar indicates the complex 
conjugate. The associated values of m are denoted by mx, mt, 
m2 and m2 respectively. From (5a) we note that 

mxm2 = \ (5c) 

Since (5b) is a quadratic equation in/?2 with real coefficients, 
if/?! is purely imaginary so is p2. Then px = ~P\,p2 = -Pi 
and m 1; m2 are real and satisfy mx = mu m2 = rh2. If p{ 

and/?2 are not purely imaginary we can choose 

p1=u + iv=-p2; Pi= -u + iv^-pi (6) 

where u, v are real. In this case mx and m2 are complex and 
m, = m2- In view of the fact that the problem is linear, the 
general solution for displacements and stresses is obtained by 
superposing the solutions corresponding to $'s associated 
with Pi, Pi, p2 and p2. In the next Section where we present 
the general solution it is tacitly assumed that px ^ p2. The 
degenerate case where p , = p2 is discussed separately in 
Section 5. 
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Fig. 2 Value of X for a rigid conical inclusion in "degenerate" 
materials with v = 0.3 (X is independent of 7 for this case) 

3 Solution 

First transform equation (3) into the cylindrical harmonic 
equation by letting 

Z=~ipz (7) 

For isotropic materials p = i is an eigenvalue of the elasticity 
constants and we have Z = z. With (7), (3) becomes 

a 2 * 1 9 * a 2 * „ ,0 , 
1 H =- = 0 (8) 

dr2 r dr dZ2 

To obtain a solution of the harmonic equation (8) we let 

R = (r2+Z2)v' ^ 

c = cost = Z/R [ (9) 

s = sim/' = rlR 

where (R, i/-) are similar to axisymmetric spherical coor­
dinates. It is well known (e.g., Lebedev, 1972) that (8) has two 
linearly independent solutions given by 

<i>=ARx+lPx+i(c) + BR^+iQx+i(c) (10) 

where Px+[(c) and Qx+i(c) are the Legendre functions of the 
first and second kind respectively and their argument c is 
defined in (9), while X is an arbitrary number, real or com­
plex, and A and B are arbitrary multiplicative constants. 

In the definition of R in (9) there is a certain ambiguity. R 
in general is complex and if R is admissible so is -R. In_fact 
this would give rise to two more solutions: $=v4( — 
fl)x+1^x+i(-c) and $ = J S ( - ^ ) x + , f 3 x + 1 ( - c ) . However 
•Px+iC-c) and 2 x + i ( - c ) are linearly dependent on PA+i(c) 
and Qx+i(c) (Lebedev, 1972) and the ( - l ) x + 1 can be ab­
sorbed into A and B. Therefore they do not provide any new 
independent solutions and can be ignored. By similar con­
siderations it can easily be shown that the use of +p instead 
of p as the eigenvalue in (7) would not yield any new in­
dependent solutions. Therefore one can ignore px and p2 

which are related to -p{ and -p2 as discussed earlier and the 
general solution is a linear combination of the solutions 
corresponding to *'s as given in (10) that are associated with 
/?! and p2. Denoting their associations with px and p2 by 
subscripts 1 and 2, respectively, we write 

* , = > 4 1 * 1 * + , J V M ( C . ) + £ I * I X + 1 Q X + I ( C I ) 

i2=A2R2^
+iPx+](c2) + B2R^+,Qx+1(c2) 

(11) 

where A, B2 and X are arbitrary constants. The 
general solution for the displacements is 

9*i 9$, 9*j 
ur = 

_ 2 + 3*2 
dr dr uz=m. + m, 

9*2 
dz 

(12) 

Similar expressions hold for the stresses. 
Equations (1) and (2) which are used to obtain the ex­

pressions for the displacements and stresses corresponding to 
the solutions given by (11) require the evaluation of certain 
derivatives of *. First consider 

* = i?x + 1Px + 1(c) (13) 

The necessary derivatives of the above * are obtained by using 
the differentiation rule and the recurrence relations 
corresponding to Legendre functions (Lebedev, 1972) and the 
relations given by (9). The results are: 

9* 
Tr =^[VX-/V,)] 
^ = JR

x[(X+l)(- (p)P x] 
dz 

9 2$ 

Jr2 

9 2 * 

9? 
9 2 * 

drdz 

=*-[--^-x{<x+i)-?]; 

= ^ - > [ - X ( X + l ) p 2 / V i ] 

.*-f-^p-WcA-,>] 

(14) 

In (14) as well as in the following Sections it is understood that 
the argument of Px, P\-i, Qx and Qx-, i s c- The r v u e f ° r 

differentiating Qx and its recurrence relations are identical to 
those for P x - Hence the derivatives corresponding to * = 
i?x+1Qx+i(c) are obtained simply by replacing Px a n d i \ - i in 
(14) by Qx and g X - i . respectively. 

When the derivatives of (14) are substituted into (1) and (2) 
we obtain expressions of the following form 

uz=uz^=R^uz^ 

or = or<r>=R*-xo™ \ (15) 

az = (Jz(P)=Rx-idzm 

orz = arz^=R^orz^ 

where the superscript P refers to the fact that these correspond 
to the solution * = Rx+lPx+l(c). In an identical manner 
similar expressions corresponding to the solution * = 
^ x + 1Qx+i( c ) can be obtained. Those relationships also may 
be expressed by equation (15) itself by merely replacing 
superscript P by superscript Q. Expressions for the terms 
ur

{P\ . . . etc. in (15) do not contain R. 
Hereafter a subscript 1 or 2 (following a comma if other 

subscripts are present) will be used to indicate whether the 
quantity is associated with the eigenvalue p , or p2 of the 
material properties. The exceptions are d\ and 02 which are 
the values of the coordinate 6 at the conical boundaries. 

With the above notation, the general solution for 
displacements and stresses corresponding to $'s given by (11) 
is 
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ur=AiR\u% + B,*,«£? +A2R$u% + B2R\uty 

uz =AlR\uW+BiR\u,$ +A2R\ii% +B2R\u<$ 

ar=A1R^-,of?+BlR\-,5,
l 

+A2Rtl~°n+B2Rrl~o^ 

X-1*<G> 

x- i s <6> 

ar=A]R^~a^+B^^^ 

x-is(Q) 

x-is(Q) 

1,0 

(16) 

(17a) 

(176) 

(17c) 

0,6 

0A 

0.2 

0.0 

+ ^ 2 ^ ' ^ + 5 2 J R 2
x - 1 a < G

2
) 

o^A^dgt + Brf-^ft 
+A2Ri-19%l+B2R$-1a%jl 

Further, from (7) and (9), R can be expressed as 

R = P( 

f=(sin20-p2cos20)' / ! 

r=p sin0, z = p cosd 

where (p, 6, </>) refer to the spherical coordinates. Then it is 
clear that the stresses are proportional to ps where 6 = X- 1 is 
the order of stress singularity. When X < 1, the stress is 
singular at p - 0. However, for the strain energy to be 
bounded at the origin we require that X > - Vi. On the other 
hand if no concentrated force applies at the vertex, then for the rigid inclusion and 

Fig. 3 Value of X (or a notch in "degenerate" materials with v = 0.3 

and the (2 x 2) matrix K(p) (0) is given by 

K<p>(0) = (206) 

K^(6) = 
ft-i(d<ftcos6-d%!lsmff) 

.ft- '^icosfl-d^sinfl) 

^-•(S^cosfl-cr&sinfl) 

^-'(Sjacosfl-oSsinfl) 
(20c) 

boundedness of the displacements at p = 0 demands that X > 
0. Therefore the possibility of a stress singularity exists if 0 < 
X < 1. In the case of X being complex this requirement 
becomes 0 < Re(X) < 1 where Re refers to the real part. 

4 Boundary Conditions and the Eigenequation 

The boundary conditions applicable at 0 = Qx and (in the 
case of two boundaries) at 6 = 62 are as follows: For the 
rigidly connected boundary 

ur=0, w z=0, (18o) 

and for the traction free boundary 

ar cos0 — a„ sin0 = 0 ~l 
\ (186) 

an cos0 — az sin0 = 0 J 

4.1 Problem (A): One Conical Boundary. In this case the 
domain of validity of the solution includes the positive z axis 
where c assumes the value of 1. But Qx(c) is unbounded at 
c= 1 and in order to obtain a finite solution along the z axis 
we require that Bx = B2 = 0. Then there are only two ar­
bitrary multiplicative constants in the general solution (16). 
By substituting (16) into (18«) or (186) as the case may be and 
using (17), we obtain two simultaneous linear algebraic 
equations for A, and A2 in the form 

K(p>(0,)q = O (19) 

In (19), 

q = 
A2 

(20a) 

for the notch. For (19) to yield a nontrivial solution for q we 
require 

\lK^PKdi)l\=0 (21) 

and this is the eigenequation for determining X. 

4.2 Problem (B): Two Conical Boundaries. The positive z 
axis is not included in the domain over which the solution is to 
be valid in this case. Therefore the complete solution given in 
(16) must be used. It contains 4 arbitrary constants A t, BUA2 

and B2. At each of the two boundaries 0 = 0) and 0 = 02 two 
conditions (either (18c) or (186)) are imposed leading to the 
following system of four simultaneous linear algebraic 
equations for the four constants: 

Lw = 0 

where 

L = 

« i 

A2 

Bx 

B, 

K<p>(0i) K<®(0,) 

K<«(02) K<2>(02) 

(22) 

(23a) 

(236) 

In (236), K<p)(0t), is given by (206) or (20c) depending on 
whether 0 = 0, is a fixed boundary or a traction free boundary. 
K(e!(0i) is obtained from K(P)(#i) by replacing the Legendre 
functions Px, / \ _ i by Qx , £?\_t. Similar definitions apply to 
K</J»(02)andK<G)(02). 
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Fig. 4 Value of X for two conical boundaries In isotropic materials 
with v = 0.3 for the fixed-free case 

For (22) to yield a nontrivial solution for w we require 

IIL 11=0 (24) 

and this is the eigenequation for determining X in this case. 

5 The Degenerate Case/jj =p2 

When the material properties are such that/?| =p2 the terms 
associated with the two independent solutions given in (11) 
become identical and cause the general solution to degenerate. 
This situation requires certain modifications of the solution 
which will be presented in this Section. 

The degenerate case is discussed by Ting et al. (1985) and 
we follow the approach presented by them. From equation 
(5 b) and the fact that/? cannot be real it is seen that when/?! 
= p2, p must be purely imaginary. Also by equations (4b) and 
(5a) we have m, = w2 = ± 1. By setting m= - 1 in the 
second equality of (4a), we obtain cuc3i - c 2

3 =0 . This would 
imply that the matrix cy is not positive definite and hence 
m 7± - 1. If we set m = 1 in the second equality of equation (4a) 
we get 

(C,3+2C44)2=C11C33 (25) 

Thus when (25) is satisfied, /?, = p2 and we have a degenerate 
case. The five independent material constants are now 
reduced to four by the relation (25). Following Ting et al. 
(1985) we introduce the new material constants a, /x, y and (3 
by letting 

C 1 1 =(Q! + 2/X)/32 

C 3 3 = ( « + 2 , I ) / /3 2 

C44 = M 

c 1 3 = a 

Cn-Ci2=2YM 

(26a) 

160 

0, 

140 -

120 -

100 

<k 
Fig. 5 Value of X for two conical boundaries in isotropic materials 
with v = 0.3 for the fixed-fixed case 

and for later convenience we define v by the relation 

a = 2fiv/(\-2u) (26b) 

Equations (26a) satisfy (25) and when substituted into (5) they 
yield: 

p = iP, m = \. (27) 

We also note, by differentiating the second equality of (4b) 
and substituting (26), that when/?! = p2 = i/3, 

dm 4(1 -v) . 

~dp~= (3 
(28) 

In the particular case of 7 = /3 = 1, the material becomes 
isotropic and a and fx become the Lame constants while v is 
the Poisson's ratio. 

In order to deduce the second independent solution we 
proceed as follows: Let $1 and $2 be the two solutions 
corresponding to px and p2. The general solution for the 
displacements is 

ur=A, 
~dr~ 

a * , 

+A, 
a*2 
dr 

Uz=Axmx — +A2m2~-
dz az 

(29) 

(30) 

In the degenerate case when/?] = p2, we have $! = $ 2 . To 
consider the limit as/?! approachesp2 let 

A,=~ + 
B 

P1-P2 

A ^ -
B 

P1-P2 

(31) 
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- 3 * - 3 / 3 * \ 

u, =Am -
3$ 

3r 
r d /3$\ rfw a*] 
L dp\dz' dp Sz -I dp V Sz dp dz-

(32) 

The terms associated with B in (32) are easily identified as the 
second solution and by a similar approach the corresponding 
stress results may also be derived. Thus while the first solution 
is given by (1) and (2), the second solution is 

3 / 3 $ \ 
Ur=Tp\Yr) 

/ 3 * \ dm 

\ dz ) dp dz 

9 / 3 2 $ \ 3 

dp \ dr2 I dp 

r d / 3 2 # \ dm 3Z*~| 
,rdp\^zJ) + ~dp'Wi + c 

^ = C 1 2 ^ l l T l ) 

d /d$\ 

~dp\7dr) 

dm 32$~ 

+ c 

dp V dr 

9 / 3 * \ dm 3$ 
77—- I — 

dp \ dz 

d / 3 2 $ 

dp 

d / 3 2 # 

3p \ 3 ? 

3 / 3 2 $ 

d~p \~d~r1 

dm 32$ 

dp dz 

3 / 3 * 

3 / 3 * \ 
+ C"dp(7d-r) 

+ c 

r 3 / 3 ^ * \ dm 3Z*1 

r^V3?/ + ^ " 3?J 
9 / 3 2 * \ 3 / 3 * \ 

dp\~dr1~)+Cn~dp~\7dr) 

r 3 / 3 2 * \ dm 3 2 * ] 

3 / 32 $ \ rfw 32 $ ' r d / di<2\ dm 9Z*-] 

^ = c^(l+w) ^ _ j + ^-J 

(33) 

where $ is given in (10). It should be noted that the material 
properties c,y, p, m and dm I dp in (33) have to be assigned 
their values for the degenerate case given in (26), (27) and 
(28). 

Equation (33) requires the differentiation of $ with respect 
to/? also. Consider first 

i=Rx+lPx+l{c) (34) 

Use of the differentiation rule and the recurrence relations for 
P\(c) and equations (7) and (9) leads to 

3$ 

dp 
= -/J?x[(X+l)scot0Px] 

3 / 3 * \ 
— ( - ) = - / / J x [ M * + D c o t 0 ( / \ - c / ' x - i ) ] 

3 / 3 $ \ 
dp\Tz) = - ' 7 ? X [ ( X + 1 ) ( ^ + C X P A - I ) ] 

£(s?)~«'-,K>>~'[(*-?)* 

3 / 3 2 * 

Fig. 6 Value of X for two conical boundaries in isotropic materials dp V dz 
with i< = 0.3 for the free-free case 

(^-2X+l)d»x_1)] 

^ ) = - / J R x - | [ X ( X + l ) ( ~ / p ) ( - c X P x 

+ (2 + (2X-l)c2)/V,)] 

Substitution of (31) into (29) and (30) and then taking the — 
limit as/?2 —Pi yields, after omitting the subscript 1, 

3 / 3 2 $ \ 

dp V drdz ' 
<=-iRl X(X-l) 

( l+c2X)Px 

+ f ( X - 2 ) - c 2 ( 2 X - l ) ) c P x 

(35) 

The derivatives corresponding to $ = Rx+lQ\+\(c) are 
obtained, as before, by simply replacing P by Q in (35). 

When the relations in (35) are substituted into (33), once 
again we would obtain expressions for displacements and 
stresses in the form of equation (15). Of course, the detailed 
expressions for u(

r
p), . . . etc. are now different. In a similar 

fashion the solution corresponding to * = Rx+>Q\+i(c) is 
also obtained and this completes the general solution for 
P\=Pi- The imposition of boundary conditions and the 
derivation of eigenequation can now be carried out as ex­
plained in Section 4. 

6 Rigid Inclusion in Degenerate Materials and 
Isotropic Notch 

Isotropic materials are only a particular case of the special 
class of "degenerate" materials discussed in the above 
Section. Even though there are four material constants for 
degenerate materials, by non-dimensionalizing with respect to 
H one can make X depend only on three parameters y, /3 and v. 
For isotropic materials, y = j3 = 1 and X depends on the 
Poisson's ratio only. Previous investigators have reported 
explicit eigenequations in the case of isotropic materials for 
problem (A), i.e. for the case of one conical boundary. In this 
section we will consider a rigid inclusion in degenerate 
materials and a notch in isotropic materials. For later use we 
note here that for /3 = 1 (which results in p = i) equations (9) 
and (lib) reduce to 

c = cos0, s = sin6, f = l . (36) 

6.1 Rigid Inclusion in Degenerate Materials. Explicit 
expansion of (21) using (20b) results in the eigenequation 

< / " $ - " $ " ^ = 0 , (37) 
where it is tacitly understood that the expression is to be 
evaluated at 0 = 6t. Substitution of (14), (26) and (27) into (1) 
and the use of (15) gives 

94/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///~d~r1


-Ap) 

,~AP) 

X 

s 

= d+X)/3Px 

(38a) 

To obtain the displacement components associated with the 
second set of solutions relevant expressions from (35), (27) 
and (28) should be substituted into ur and uz in (33). This 
results in 

K $ = -ZX(1 + X ) c o t 0 ( P x - c P x _ , ) 

« $ = - / ( l + X ) [ { l - 4 ( l - ^ ) ) P x + cXP x_,] 
(386) 

Substitution of (38) into (37) yields the eigenequation for the 
rigid inclusion in degenerate materials as 

X(l + X) 
[ [ c P x - P x _ , ] [ { l - 4 ( l - i » ) ) P x + «:XPx_1] 

- (1 + \)0s cot0[Px -cP^, ]P X ] = 0 (39) 

It is worth noting that X depends on j3 and v but not on 7. The 
same situation occurs in the case of two conical boundaries if 
both boundaries are rigidly clamped. Now the eigenequation 
corresponding to isotropic materials can be easily obtained by 
letting ( 3 = 1 and using (36) in (39). After simplification it 
leads to : 

X(l + X) 

where 

[ C ( 1 + T , X ) P 2
X + C X , , P ' x - i 

[r,c2(2X+l) + ( l -7 , ) )P x P x = 0 (40a) 

*7=l/[4(l-e)] (406) 

and c and 5 stand for cos# and sin0 respectively as given by 
(36). This eigenequation is seen to be the same as that reported 
by Bazant and Keer (1974) when due attention is paid to the 
differences in notation. 

6.2 Notch in Isotropic Materials. For this case the explicit 
expansion of (21) using (20c) gives 

( 3 £ ? f f $ - » M ) « > s 2 0 

+ (5g? 5 $ - 3<{? o$)cosfl sinfi 

+ ( & M - 5 # 3 i & ) s i n 2 0 = O (41) 

Here too it is tacitly understood that the expression should be 
evaluated at 6 = 6,. To reduce the amount of algebraic 
manipulations involved we straightaway consider the case of 
isotropic materials by letting (3 = 7 = 1 which also makes p = i 
and m = \. Use of (26) with these values along with (14) in (2) 
results in the following expressions for the relevant stress 
components in the first set of solutions: 

ffl 
2jx\c 

PX + 2 ^ X [ ^ - ( 1 + X)]PX 

og? =2/A(l + X)Px 

_ 2 * ^ , 
• c P x - i ) 

(42a) 

Similarly the use of equations (26), (27), (28), (35), and (36) in 
(33) leads to the expressions for the relevant stress com­
ponents in the second set of solutions 

m 

m 

5 & 

)R.J 
= -iX(l + X)[2/*(x-^-)cPx 

+ [ 2 ^ - ( 2 X - l ) ] c 2 + a ( 2 

= -;'X(l+X)f-2^XcPx 

+ [2,[(2X-l)c2
+(2-i)]+a(2-J)]px_1] 

= -/X(1 + X)[2M[(1 +Xc 2 ) - ^ - ] ~P, 

+ 2JX ( X - 2 ) - ( 2 X - l ) c 2 + 
2V H*-} 

> (42b) 

where rj is defined in (406) and c and 5 have been reduced to 
cos0 and sin# respectively in accordance with (36). Sub­
stitution of (42) into (41) followed by much simplification 
yields the required eigenequation: 

„2 • 

4Al
2X2(l + X ) 2 - T lb 2 - 1 ) X 2 + ( C 2 - 1 ) X + ^ - 1 P 2

X 
2v-

i2 
X - l + [(c2 - 1)X2 + (c2 - 1)X+ — 1 P 

- [2c2(c2 - 1)X2 + (c2 - l)(3c2 - 1)X 

+ (c 4 +2( l -2 ! - )c 2 + l ) ] P x P x _ , ] = 0 (43) 

where c = cosd and s = sin6. Once again this is seen to be the 
same as that reported by Thompson and Little (1970) and 
Bazant and Keer (1974) except for the slight differences in 
notat ion. (There is a typographical error in equation (16) of 
Bazant and Keer (1974). In the coefficient of P x (x ) Px~\(x) 
the term 2(1 - c)X2 should read 2(1 -2v)x2.) 

7 Numerical Results 

To illustrate the application of the solution procedure the 
eigenequation corresponding to several examples was solved 
for real values of X that lie between 0 and 1. The search was 
carried out by evaluating the expression on the left hand side 
of the eigenequation at the two ends of a specified region on 
the real axis. If the two values differ in sign a root is present 
within the region. (The region should not be too large; 
otherwise this method will fail to detect roots when an even 
number of them are present in the same region). A promising 
region is bisected and each subdivision is tested separately to 
determine which one contains the root. This procedure is 
repeated until the region size reaches the tolerance level of 
accuracy. The computations presented here were carried out 
in IBM double precision and the values of X were refined to 
±0.00005 so that they would be accurate to 4 decimal digits. 

7.1 One Boundary. The material corresponding to 
degenerate case defined by (ji, /3, 7, v) was used. As we stated 
in Section 6, the material property matrix can be normalized 
with respect to p causing X to depend only on /3, 7 and v. 
When assigning values to these parameters one must ensure 
that they result in a positive definite material stiffness matrix. 
This requires 

H>0, 7>0 , v<Vi, P2> 
\-v 

(44) 

The eigenequation for a rigid inclusion as given by (39) is 
independent of 7. Results obtained for varying /3 with c = 0.3 
are shown in Fig. 2. Presented in Fig. 3 are similar results 
obtained for the case of a notch for different values of /3 and 7 
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with p = 0.3. In the case of isotropic material (i.e. /3 = 7=1) 
the results agree with those presented by Bazant and Keer 
(1974). Even though both figures are for c = 0.3 the trends 
they depict are typical of other values of v also. It is seen that 
the anisotropy represented by the deviations of /3 and 7 from 
their "isotropic value" of 1 does exert a substantial influence 
on the order of the stress singularities. 

7.2 Two Boundaries. In this case there are many variable 
parameters: the material properties, two boundary angles and 
two boundary conditions. For an example we have picked the 
case of an isotropic material with p = 0.3. The occurrence of 
stress singularities for three combinations of boundary 
conditions at 0 = 0, and 6 = 92 are considered; namely 
fixed-fixed, free-free, and fixed-free conditions. 

The admissible ranges of values for the boundary angles 
are: 0 deg < 0j < d2 < 180 deg. In the fixed-free case this 
entire region on the dx/Q2 plane was scanned for possible 
stress singularities. Fig. 4 presents the results as contour lines 
of X. Only the region that contained singularities on the 
admissible part of 0i/02 plane is shown there. This plot can be 
used to find X corresponding to free-fixed case also because X 
for free 0t/fixed 02 is the same as that for fixed (180 d e g -
02)/free(18O deg-0 , ) . 

In the fixed-fixed and free-free cases the X corresponding 
to 0,/02 is the same as that for (180 deg-02)/(18O deg-0 , ) 
which means that on the dx/d2 plane the X values are sym­
metric about the line 0j + 02 = 180 deg. Therefore only the 
region O<0,<9O deg, 0,<02<(18O deg-0 , ) had to be 
considered. The parts of this region that contained possible 
stress singularities are shown in Figs. 5 and 6 with contours of 
X. 

The X's shown in the figures are the smallest admissible real 
values between 0 and 1. In both the free-free and fixed-free 
cases we encountered the situation where there are two real X's 
which turn into a pair of complex conjugate roots at some 
point in the 0,/02 plane. The real part of the complex roots 
would still be between 0 and 1 and would lead to a stress 
singularity. In Figs. 4 and 6 we have shown the boundary on 
which this transition takes place. It should be pointed out that 
on the boundary where real roots turn into complex roots, X is 
a double root and the stress may have the px~'(ln p) 
singularity in addition to the p x _ 1 singularity (Dempsey and 
Sinclair, 1979). 
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Nonlinear Analysis of Crazes 
This paper concerns the nonlinear mechanical behavior of a single craze of finite 
length contained in an extended linear elastic medium. The craze is modeled as a 
distributed spring with a nonlinear force-displacement relation, which exhibits a 
hysteresis loop upon unloading. Stresses, displacements, and energy release rates 
are computed and compared against results for a linear craze. The case of a central 
crack within the craze is also considered. 

Introduction 
Crazes are thin, elongated defects that develop in many 

polymers. Although resembling cracks in their geometric 
configuration, namely length to thickness ratio of 0(103), 
crazes consist of interconnected voids that are transversed by 
thin fibrils which span the gap between opposite faces of the 
bulk polymer. These fibrils transmit substantial loads, 
thereby reducing the "craze opening displacement" to a level 
that is one order smaller than the opening displacement of a 
crack of an equal length. A schematic drawing, representing 
the craze region as an array of parallel fibrils between op­
posite faces of bulk polymeric material, is shown in Fig. 1. 

Crazes grow by a process of fibrillation at their tips and 
thicken due to both stretching and drawing mechanisms. The 
lengths of the "process zones" at the tips are about two to 
three orders of magnitude smaller than the length of the craze, 
and typical craze opening profiles terminate with "cusps" 
within those tip regions. 

The formation, growth, and shape of crazes have been 
studied by many investigators [11-12]. The subject is 
technically important because crazing appears to be a 
preferred energy absorbing mechanism in many cir­
cumstances, and its efficient use can find applications in both 
adhesives and composite materials. Nevertheless, the 
modeling of the mechanics of crazing appears to be deficient 
at the present time. Many investigators associated the craze 
region with the tip zone ahead of cracks (e.g., a plastic 
"Dugdale zone" [6, 8, 10, 12]) and attempted to correlate the 
behavior of crazes with considerations of crack stability. This 
approach suffers from the severe handicap of being unable to 
handle the case of crazes that develop in many polymers in the 
absence of cracks. In fact, it is well known that, in most 
circumstances, crazes are the precursors of cracks. Fur­
thermore, even in the presence of cracks crazes can grow while 
crack lengths remain stationary. 

This paper extends a recent work [13] where the craze was 
modeled as an elastic foundation with a linear force-
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Fig. 1 A craze model showing parallel fibrils connecting opposite 
faces of the bulk polymer 

displacement relation. The formulation, which was akin to 
fracture mechanics, led to a singular solution associated with 
stress intensity factors. These factors can be related to the 
familiar energy release "rates" that govern the stability and 
growth behavior of crazes. A subsequent work [14], which 
incorporated time-dependent response for both craze and 
bulk polymeric materials, demonstrated that the now time-
dependent stress intensity factors could explain various 
observations regarding craze growth and arrest. 

Several experimental investigators [1], [5] noted nonlinear 
force-displacements relations for the craze fibrils. Fur­
thermore, it was observed that significant hysteresis loops 
developed upon unloading. A schematic drawing of the craze 
response during the first three loading-unloading cycles is 
shown in Fig. 2. In the present work the nonlinear response of 
the fibrils, as sketched in Fig. 2, is represented by a nonlinear 
boundary condition, which is imposed on the linear elastic 
exterior region. 

Formulation 
Consider an infinite, isotropic, homogeneous, linear elastic 

region with G, v denoting the shear modulus and Poisson's 
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Fig. 2 A sketch of a typical stress-strain response of the craze 
material 

ratio, respectively. Assume a state of plane strain and let ax, 
°Y> TXY> U, and V designate stresses and displacements 
relative to the Cartesian coordinates X, Y. 

Let the region be subjected to aY=T as \Y l—oo and 
consider a diminshingly thin craze along the ^-axis at 
~a<X<a. 

Modeling the craze as a nonlinear elastic foundation with a 
force-displacement relation given by a = F(V), it suffices to 
consider the following boundary value problem 

- ° ° < ^ f < o o 

\X\>a 

TXY(Xfi) = 0 

V(Xfi) = Q 

oY(X,0)= - T+F[V(X,0),X\ \X\ <a 

<jY(X,Y)-~0 \Y\-oo 

It can be shown [15] that if (1),, and(l)2 hold then 

G I f dK(£,0) d% 
Oy(X,Q)=-] 

whereby (1)3 gives 

T=F(V,X) 

} 1 f 
- V T J -a K l-x 

1 n. dV tf£ 

3€ €• l - v 

In view of the properties of Hilbert 
equation (3) can be rewritten as 

G 1 d f V 

T ~d~x\ 

(1) 

(2) 

(3) 
-X 

transform [16] 

T=F(V,X)-
1 X 

dl (4) 

In (3) and (4) V= V(X,0), while under the integrals V= K(£,0). 
The explicit dependence of the nonlinear response function 

F on the coordinate X along the craze allows the in­
corporation of the case of a central crack within the craze, as 
well as the case of unloading over a portion of the craze 
region.1 

Assuming that F( V,X) is continuous in V it follows that the 
solution of the singular integral equation (4) will be con­
tinuous over [-a,a] if and only if V~{a2 -X2)v*. More 
specifically, K takes the form 

V= yJa2-X2
x(X/a) (5) 

a 
In (5) x is analytic over [-a, a] and A is some length 
parameter. 

Similarly to [13], it is advantageous to nondimensionalize 
(4) and (5). For this purpose let v=V/A, x = X/a, 
F(V,X) = Tf(v,x), and s=£/a. Then, in view of (5), we have 
V= AVl -x2x(x) and (4) can be rewritten as follows 

1 d f 
l=f(v,x)-\-

In(6)X=GA/[( l -^)o7] 

dx . -i s-
-ds (6) 

It is possible to extend Fto F(V,X,a), accounting for a redistribution of the 
response with craze length a. However, this will not be considered here due to 
the absence of pertinent data. 

If we select, in particular, A = (l - v)aT/G = b then X=l . 
This value of 5 corresponds to the opening displacement of a 
crack of length a in the same extended region. We shall adhere 
to this choice of A = 5, for which xU) provides the non-
dimensional stress intensity factor (the ratio between the stress 
intensity factor of the craze and that of a crack of equal 
length). 

Following the same procedure as in [13] it is possible to 
convert the singular integral equation (6) to a Fredholm in­
tegral equation with a logarithmic singularity as follows 

X(x)+— [ Ro(s2,x2)Mls2yAx(s),s]ds=l (7) 
•K JO 

In (7) R0 (s2,x2) = (1 -s2)- 'AR(s2,x2) 

where 

l-x2 

R(s2,x2)--

-\n(x2-s2) + \n(\-s2) + 2\n [ l + J ^ _* , ] 0<s<x 

-Ms2 - x 2 ) + ln(l -A:2) + 21n [l + .J ^ ~^2 ] 
1 -s2 1 (8«) 

X<S<1 
(86) 

Assuming further that, during the first loading cycle, the 
leading term in f(v,x) is linear in v we can express / as 
f(v,x) = vg(v,x). In this case equation (7) gives 

X(x) + — ( R(s2,x2Ms)g[(l -s2)v'x(s),s]ds = 1 (9) 
•K JO 

Obviously, if a symmetric crack of length 2C(0<C<o) 
occupies the central portion of the craze, then g = 0 for 
0<s<c, w i thc=C/« . 

As noted previously in [13], the form (5) yields a 
displacement profile that terminates with a vertical tangent at 
X=a(i.e., at x= 1). In view of the exceedingly small length of 
the process zone at the craze tip it is possible to correct this 
deficiency by means of a Barenblatt-type analysis [17], as 
detailed in the Appendix. 

The Unloading Case 

Consider the first unloading path shown in Fig. 2. The 
force-displacement relation along this curve can be expressed 
by 

ff=a('»)/u(y/y('»)) (!()) 

where a(m), v(m) are the maximal values attained by the stress 
and the displacement during the loading stage. The function 
/„ is monotonic in its argument and attains its largest value of 
unity at v/v(m) = 1. 

Since only one unloading curve is available experimentally, 
we shall assume that equation (10) expresses the unloading 
path from any stress level. 

In view of Fig. 2, there remains some positive residual 
strain upon complete, first cycle unloading. Consequently, we 
assume that/,, takes the form 

fu(.v/v^)= -k0+gu{v/v^) (11) 

where gu can be expanded in powers of its argument. 
Consider the case when the remote load T is reduced to 

a r ( 0 < a < l ) . Since, in the present circumstance, the for­
mulation of the boundary value problem results in an ex­
pression that is essentially similar to equation (4), we still have 
a nondimensional displacement u(x) of the form v(x) = (l -
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x2yAx(x). Therefore, the singular integral equation results in a 
form analogous to equation (9) as follows 

X(x)+ — \'R(s2,x2Mv(>"Hs))gu[x(s)/xim)(s),s]ds 
ir Jo 

= a + R(x) (12) 

where 

R(x)=—\ R(s2,x2)x{m)(s)g[0-s2yAX{"'Hs),s]ds (13) 
•K J O 

In equations (12) and (13) v(m)(s) and thereby xm(s) are 
presumed known from a prior solution to the loading case. 

Work and Energy-Release Within the Craze 

In analogy with the concepts of fracture mechanics, it is 
reasonable to assume that crazes will grow when the stress 
intensity factor, hence x(l)> exceeds a critical value. For this 
reason xU) is the essential quantity to be calculated in the 
present work. Nevertheless, it is of some interest to note that 
in contrast with cracks, where the entire energy release "rate" 
is associated with the work done at the tip zone due to crack 
advancement, crazes absorb energy also throughout the 
fibrillated region as their tips advance. For that reason the 
two portions of energy release "rate" are calculated below. 

The work W'm. the portion 0 < X < a of the craze is given by 

W=\ (J o'2dV\dX=2\ ( I F{V,X)dVjdX (14) 

whereby, the "work relase rate" is 
dW cna) 

da Jc 
F(V,X)dV 

The first integral in (15) vanishes since, by hypothesis, 
V(a) = Q. Employing the chain rule d/da = dV/dad/dV we 
obtain 

dW (•" 3K 
= 2 -—F{V,X)dX 

Jo da da 

In view of (5), and with A= 5, we have 

dV S ( x 

(16) 

da a \ vr 
Wi-

dx 

Therefore, with F(V,X)=Tf(v,x)=Tvg(v,x), and 

9x 

V l - x 2 x M , (16) yields 

1 dW 
n ~do~ 

= 2JQ [x-xd-x^^xgiJl^xrfdx (17) 

The nondimensional energy release term (17) should be 
compared with ir[x(l)]2, which provides the energy release 
"ra te" due to the tip zone mechanism. 

For a linear craze f(v,x) reduces to k{x)v, whereby (17) 
reduces to 

1 dW 

Yd da 
lj/Mx[: x-41-*2) dx 

dx (18) 

When a crack extends over the portion 0<x<c, the in­
tegrals (17) and (18) should be evaluated between the limits c 
and 1 instead of 0 and 1. 

Numerical Computations and Results 

Data on stress-strain behavior of crazes [1, 5] can be 
converted to the forms a=f{v) and a=a<-'")fll(v/vi'")) as 
required by the present formulation. Unfortunately, those 
data are not supplemented by information on craze opening 
displacements and craze lengths under prescribed loads, 

E 
b 

o.oo 
o.oo 1.00 0.25 0.50 0.75 

Dimensionless Distance x 
Fig. 3 Comparative opening displacement profiles v(x) versus x for 
selected values of c. Nonlinear results (solid lines) and linear values 
(dashed lines). 

E 
b 

o.oo 
0.00 1.00 0.25 0.50 0.75 

Non-Dimensional Distance x 

Fig. 4 Nondimensional stresses o(x) versus x within the craze, for 
various values of c. Nonlinear results (solid lines) and linear values 
(dashed lines). 

which is also required in the present analysis. Consequently, 
the computations reported in this section are based on ad-hoc 
combinations of stress-strain data [1, 5] and craze profile 
information [2, 4]. 

The stress-strain curve for the initial load was ap­
p r o x i m a t e d by the cubic e q u a t i o n < j = 8 0 e -
301.235e2 + 438.958c3. To convert strain to displacement Kit 
was assumed that V=e80, where the "premordial craze 
thickness" was 80 =0.1/im. Considering typical properties of 
polystyrene, let G= 1000 MPA and p = 0.352. Finally, assume 
that under T=7.2 MPa the craze length is « = 50/xm. In ac­
cordance with the above stress-strain relation a-1.2 MPa 
corresponds to e = 0.18, thereby yielding a craze opening 
displacement F(o) = 0.018^m as compared with a crack 
opening displacement 5 = (1 - c)7a/G = 0.234/xm. 

Converting to nondimensional quantities we have, for the 
first loading stage,/(y) = vg{p) where g(v) was curve-fitted by 

These values are somewhat different from those employed in Ref. [13]. 
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Non-Dimensional Half-Crack Length c 
Fig. 5 Nondimensional stress intensity factors \(1) versus c. 
Nonlinear results (solid line) and linear values (dashed line). 

g(v) = b0 + b]v + b2v
2 (19) 

with b0 =26, bi = -229.1, b2 =781.2. 
The first unloading curve in [5] was approximated ac­

cording to equation (11) with k0 =0.47578 and 
gu(.v/v°")) = B0 +Bl(v/v(",)) + B2(v/v("l))2 (20) 

where B„ = 2.79494, Bx = - 5.77698, B2 = 4.45782. 
The solution to equation (9) with g(v) given in (19) was 

obtained numerically. In view of the logarithmic singularity in 
R(s2,x2) the segment [0,1] was divided into n equal subin-
tervals, and g(v) interpolated linearly over each of these 
subintervals. The resulting subintegrals were evaluated 
analytically, in analogy with the linear case detailed in the 
Appendix to [13]. In the present nonlinear case it is only 
necessary to redefine the quantity L(x,s) so that instead of the 
previous relation L(x,s) = k(s) \f(l-s2)/{\ -x2), we con­

sider now the three expressions 

i'o)(x,s) = MsWa-sVu^3) 
LW(x,s) = bt (s)V(l -5Z]V(T^$2)/(1 -x2) (21) 

L™(x,s) = b2(s)(l -s2)V(T-52)/(l -x2) 

These Lik)(x,s) (£ = 0,1,2) are now employed, in manner 
analogous to [13], to generate matrices A ® (£ = 0,1,2) which 
yield the following nonlinear system of algebraic equations 
for x; = x(.Xi) 

i^Xj+A^Xj+A^+Af^l (22) 

z' = 0,l, . . . n 
As noted in [13], lim R(x2,s2) = 2; thereby, if numerical in-

x - l 

tegration employs the trapezoidal rule, we have Af) = 
(2/rnr)b0Jfor l < y < « - l and A<$=(l/nw)b0J for y' = 0 and 
j = n. Also, A^=A^}=0 for ally. 

The solution of the system (22) was obtained by means of 
the Newton-Raphson method, employing the linear solution 
as an initial guess. For an accuracy of 0(10 ~6) convergence 
was typically achieved after five iterations. The results were 
somewhat sensitive to the number of subdivisions «, and it 
was found that an accuracy of 0(10"3) was attained with 
« = 80. 

For comparison, the linear solution was also evaluated with 
the same values of a, G, and v. To attain a value of 
u(0) = 0.06712, which is the opening displacement obtained 
for the nonlinear case, it was necessary to compute the linear 
solution with £=14.19. 

The case of a central crack of nondimensional length c 
within the craze was handled by letting k(s) — 0 in the linear 
case, and b0(s) = bl(s) = b2(s) = 0 in the nonlinear case, for 
0<S<C. 

Various results, with comparisons between linear and 
nonlinear values, are shown in Figs. 3,4, and 5. Note that the 
differences between linear and nonlinear displacement 
profiles, as shown in Fig. 3, are surprisingly small. Therefore, 
measurements of those profiles cannot provide conclusive 
information regarding the response of the craze material. 

It should be noted that in the absence of a criterion for 
craze "disintegration," namely, the condition for crack 
formation within the craze, the stress profiles shown in Fig. 4 
should not be interpreted as "failure stresses." These stress 
profiles are merely computational results that demonstrate the 
differences between linear and nonlinear values. 

Turning to the unloading case, the "fully loaded" quan­
tities xf!) and thereby oj"0 were identified with the solution to 
equation (22). In view of equation (13), the values of 
R, = R(xf) in (12) are given by 

Ri = k0tt[Af4")+A{u)(.^"))2 

+^,?>(X,("")3] ' = 0,1 n (23) 

To solve for x(x) in equation (12), we employ the numerical 
scheme of [13] with a modification that is analogous to that 
prescribed in equations (21), with the following additional 
replacements 

b0(.s) - B0(.S)Pl»Hs) 

bt(.s) - Bl(s)P'-'")(.s)/xi'"Hs) (24) 

b2(.s) - B2(.s)pW(s)/(.Xl"Hs))2 

where P{m)(s) = b0 + bl v^'"\s) + b2{v{m\s))2. 
These replacements generate matrices A$u) £ = 0,1,2 and 

lead to the nonlinear system for the unloading solution x 
n 

E (««X; +A\1"hj +A<!^x] +A^X]) = cc + Ri (25) 

( = 0,1, . . . n 

The solution for the unloading case, as expressed in 
equation (25), was again obtained by the Newton-Raphson 
method. Covergence was attained after about six iterations. 

Results for a= 1 (no unloading), a = 0.5 (partial unloading 
to half the maximal load) and a = 0 (complete unloading) are 
shown in Fig. 6.3 For purposes of comparison, the 
corresponding displacement profiles for the linear case, where 
the displacements are proportional to the load level, are also 
exhibited. The substantial differences between the linear and 
nonlinear values of the displacement profiles indicate that 
unloading tests should provide valuable information on the 
response of the fibrillated, craze region. 

Finally, the energy-release "rates" at the tip of the craze 
Wlip and the work release "rates" within the craze region Wa 
are plotted in Fig. 7 versus the nondimensional length c of a 
central crack. Note that as the crack length approaches unity 
Wa — 0 and Wtip — ir, as expected. 

Concluding Remarks 

In this work it was shown that the analysis of the response 
of crazes can be disengaged from crack growth con-

it should be remarked that upon complete unloading (a = 0) the present 
formulation results in slightly compressive stresses within the craze region 
("compression =2-5 percent of the remote load 7). If the craze fibrils cannot 
support compression, then the present analysis requires a suitable modification. 
Such a modification was not included herein. 
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Fig. 6 Nondimensional opening displacement v{x) versus the non-
dimensional distance x during first unloading cycle. Cases of full load 
(« = 1), partial unloading (a = 0.5) and complete unloading (« = 0). 
Nonlinear results (solid lines) and linear values (dashed lines). 
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Fig. 7 Energy release rates at the craze tip, wT|p = ?r[x(1)]2, and work 
release rates within the craze region wa =(MT!i) dWISa, versus the 
nondimensional half-crack length c. Nonlinear results (solid lines) and 
linear values (dashed lines). 

Further progress in this subject requires experimental 
programs which provide complete information on craze 
response. Such information should include craze lengths and 
opening profiles under various load levels within both the 
loading and unloading regimes. 
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siderations. This feature of the present work provides a basis 
for predicting the behavior of crazes which develop and grow 
in the absence of cracks. 

The present work indicates that the departure between 
linear and nonlinear behavior of the craze fibrils is likely to be 
much more noticeable under unloading than during loading. 

It should be pointed out that the opening profiles for a = 1 
as shown in Fig. 6 do not agree with observed results. The 
discrepancy is most likely due to the fact that, in the absence 
of any single set of complete data, the computations presented 
in this paper were based on disjoint, partial sets of data. 

A P P E N D I X 

Tip Zone Correction 

It is known that the fibrillated, craze region terminates with 
process zones at its tips. These process zones resemble a 
fingerlike array of polymeric matter interspersed with voids, 
as shown in Figs. 3, 4, and 5 of [13]. It has been suggested that 
plastic regions develop within the bulk polymer ahead of the 
process zones, in which case the tip regions would encompass 
both plastic and process zones. 

Since the lengths of the tip regions are about two orders of 
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magnitude smaller than the length of the craze, it is possible to 
consider their effects in eliminating the mathematical 
singularity associated with the present analysis in a manner 
that is analogous to Barenblatt's approach, and which 
resembles the linear case of [13]. 

Denote by -at(X) the compressive stresses acting within 
the tip regions Iff — a l < I X I < l « l and introduce the non-
dimensional quantities -pe(x) = — at(X)/Tand e = a/a. 

In analogy with equation (9) we now obtain 

Xt(x)+ — \ R(s2,x2)xAs)gia-s2Y/'xAs),s]ds 
TV JO 

7T J 1 -
R(s2,x2)(l-s2)~[/'pe(s)ds (Al) 

In {Al) xe(
x) = (l -x2)~Vlve(x), where ve(x) is the non-

dimensional displacement due to -pe{x). 
Taking the limit x—\ ~ in (Al) we obtain, in view of the 

form of R(s2,x2) given in equation (8) 

X«(l)+— [ xAs)g[(is2YAxM)]cls 
T JO 

2 [' 
•K J l ds (A2) 

Consider now the asymptotic limit of xSx) when x<l-e 
(fixed) while e~0, denoted by Xo(x). 

In this case the right-hand side of (Al) is given by 

— lim ( 
7T e -0 J l - e 

R(s2,x2)(l-s2)-'/lpi(s)ds (A3) 

Obviously, in the asymptotic limit under consideration, the 
value of * in (A3) is fixed, while s-~ 1"". In view equation (86), 
we have that lim R(s2,x2) (1 —s2)~Vl = 0 and therefore (A3) 
vanishes. Consequently, (Al) yields that XoM vanishes. 

We thereby recover the well-known result that, for 
vanishingly small tip regions, the tip zone correction does not 
affect the solution outside those regions. 

The tip zone correction is thus confined only near x= 1, and 
it follows from (A2) that 

X6(l) 
2 f ' 
T J l - e 

PM 
ds= -Ce (say) (A4) 

The combined solution, denoted by xAx), due to the remote 
load T and tip region stress - a((X), is given by the singular 
solution for 0 < x < l — e namely 

Xc(x) = x(x) for 0 <x< 1 - e (A5) 

while Xc(l) is determined from 

X c d ) + — [ x(s)gl(l-s2y/'x(s)]ds=\~-C( (A6) 
•K JO 

The amplitude and distribution of pt(x) in (A4) must be 
such so as to yield a value of Cc which leads to x r(l) = 0, 
eliminating the mathematical singularity associated with the 
solution x{x)-
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The Elastic Field of an Elliptic 
Inclusion With a Slipping Interface 
The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes 
a uniform expansion. The interface between the inclusion and the matrix cannot 
sustain shear tractions and is free to slip. Papkovich-Neuber displacement 
potentials are used to solve the problem. In contrast to the perfectly bonded in­
terface, the solution cannot be expressed in closed form and involves infinite series. 
The results are illustrated by numerical examples. 

Introduction 

The elliptic inclusion is defined in this paper as an elliptic 
subdomain, in an infinite two-dimensional space, which 
undergoes a uniform eigenstrain (stress-free strain, trans­
formation strain) e,* and which also has elastic moduli dif­
ferent from those of the matrix. 

Most of the inclusion problems solved by Eshelby (1957) 
and others assume continuity of displacements at the interface 
of the inclusion, i.e., perfect bonding. Recently Mura and 
Furuhashi (1984) found that the stress field of an ellipsoidal 
inclusion with a slipping interface vanishes when the eigen­
strain has only shear components with respect to the principal 
axes of the ellipsoid. 

In this paper the complementary part of the theory is 
developed. The eigenstrain in this paper is not of the shear 
type. For mathematical simplicity, however, we consider a 
two-dimensional inclusion. As expected, the solution cannot 
be expressed in a closed form, and is in the form of infinite 
series. Numerical results are given to illustrate the nature of 
the elastic fields. 

Relations for Elliptic Coordinates 

Elliptic coordinates are obtained by the coordinate trans­
formation 

x=c cosh <x cos fi 

y = c sin/i a sin (3 

Eliminating first /3 and then a from these equations, 

+ 
r 

c2cosh2a c2sinh2a 
1 

(1) 

(2) 

czcos2/3 c2sin2/3 
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/? = 0*X 

Fig. 1 Elliptic coordinate system used 

and the coordinate lines are seen to be ellipses and hyperbolas 
(see Fig. 1). 

The relations between the displacements and strains in the a 
and /3 directions are (Love, 1927, p. 54) 

-h x—^-+hlh2U» 
da dp (i) 

yap
: 

h, d h2 d 

h2 da «, o/3 

(3) 

where 

-(£)••(£)'• »-(ty<tr da 

dy I ' " z \ dx / V dy 

From (1), we have 

h! = h 2 = h = {2/c2 (cosh2a - cos2j3) j , / ! 

The relations between the strains and the stresses are given 
by Hooke's law 

(4) 

(5) 
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G 

{(K+\)€a + (3-K)ee} 

i(K+l)e0+(3-K)ea} (6) 
" K - l 

ral3 = G7alS 

where G is the shear modulus, K = 3 —4c for plain strain and K 
- (3 - p)/(l + v) for the plane stress, and v is Poisson's ratio. 

The displacement components in the elliptic coordinates are 
given in terms of those in the Cartesian coordinates by 

dx dy 
Ua=hx — Ux + hx-£-Uy 

aa oa 
dx dy 

0 3/3 d/3 y 

(7) 

(8) 
Ua = ch smha cos/3 Ux + ch cosha sin/3 Uy 

U{}= -ch cos/za sin/3 Ux + ch smha cos/3 Uy 

where h is defined by (5). 
The Papkovich-Neuber displacement functions <t>0, <t>\ a n d 

4>2 are used to represent Ux and Uy as 

d 

Jx 
(9) 

d 

3~y 
2GUy= — ( ^ O + X 0 1 + J < / . 2 ) - ( K + 1 ) < / > 2 

where 

= 0, V2<A,=0, V2c/>2=0 (10) 

Boundary Conditions 

Consider an elliptic inclusion that undergoes uniform 
eigenstrains e* and e*. The present problem is to find the 
stress field when the elliptic inclusion is free to slip at the 
interface that cannot sustain shear tractions. 

The boundary conditions at the interface a = a0 are 

Ua = Ua + U*, oa = aa, Tap = 0, ra(3 = 0 (11) 

where the quantities with the bar pertain to the inclusion. The 
meaning of t/* is as follows: 

The elliptic inclusion with e*, e* will deform corresponding 
to the displacements U* = e*x, U* = e*y if it has no con­
straint from the matrix. Because of the constraint, however, 
the displacement for the inclusion is the sum of Iff and the 
elastic displacement U,- caused by stresses and given by (9). 
When Of is transformed into the elliptic coordinates by (8), 

U*a = (c1h/4)smh2a[(l + cos2/3)e* + (1 -cos2fS)e*], 

0% = - (c2/;/4)sin2/3[(l +cos/z2a)e* + (l - c o s W a ) ^ ] . 

It may be noted that, if the eigenstrain also has a e* com­
ponent as in case of thermal expansion, the terms e* and e* in 
(12) must be replaced for plane strain with e* + vel and e* + 
ve*, respectively. The boundary conditions (11) state the 
continuity of the normal component of displacement and the 
continuity of normal traction and vanishing shear stress. 

It has been found by Mura and Furuhashi (1984) that a 
shear eigenstrain exy does not contribute to the stress field for 
the slipping inclusion. Therefore, exy is not considered here. 
Consequently, the present problem has symmetry about the x 
and y axes. 

The Papkovich-Neuber Functions 

For an elliptic inclusion (a, > a2), the Papkovich-Neuber 
displacement functions are chosen as 

<f>o=c0\F0a+ ^Ane-"acosnl3\ 
L « = i J 

0i = co 2^ Bne~nacosnP 

for the matrix (a > a0) and 
Oo 

4>o~ca 2 ^ A„coshna COSH/3 
n=\ 

Co 

4>\ =c 0 \j Bncoshna cosnfi 

(13) 

(14) 

for the inclusion (a < aQ). Here 4>2 = 0 and c0 = 2Ge* or 
2Ge*. In the expressions above, F 0 , A„, B„, A„, B„ are 
unknown constants which are determined from the boundary 
conditions (11). 

Next we evaluate the displacement and stress components 
corresponding to the terms in the series (13) and (14). The 
quantities defined in the inclusion carry bars. 

For <j>0 = c0F0a, 

2GUa/c0=F0h,Uli=0, 

Oa/Co =-(_l/2)FQc2h4sinh2a, 

o0/co = (l/2)Foc
2h4smh2a, (15) 

Ta0/co= -(l/2)F0c
2hAsm2t3. 

For 0o = c0 ^ A„e~"acosnt3, 

2GU„ f, 
= -h ljA„ne~"acosnfi 

n=\ 

Oo 

= -h £J Anne~nasmn$ 

= (l/4)c2h4 X) -4„« [ - (« - l ) e - " a cos (« + 2)/3 

c0 

2GUi 

c0 

C0 „=1 

+ | (n + l)e~("~2)a + {n-l)e-("+Va}cosnl3 

- ( « + l)£?~"acos(«-2)/3] 
Oo 

-^L =(l/4)c2h4 J} A„n[(n- \)e-'mcos(n + 2)l3 
co «=i 

- ( ( H + l ) e - ( ' ^ 2 ) a +( / j - l ) e - ( " + 2 ) a Jcos r t ^ 

+ (rt+l)e-"acos(«-2)/3] (16) 
oo 

-^£_ = -(i /4) c2/,4 ^A„n[(.n-l)e-"asm(n + 2)0 
C0 ,i = I 

- [ ( / ? + l)e-<''-2>a+(rt-l)e-<"+2>a)sin«|S 

+ (n + \)e-"asm(n-2)P] 
oo 

For 0, = c0 2J B„e~"acosnl3, 

2GUa 

Co „= i 

y~ (n + \)ct 

= -(l/4)cfc 2^fi„[(« + K ) e - ( " - l v 

+ («-K)e^<" + 1>a]xicos(n + l)/3 + cos(«-l)(3), 

2GC/p 

c0 =-(l/4)ch]2B„[e-{"~l)a 
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Co 

+ e - (» + D«]((M-K)sin(n + l)^ 

+ (« + /c)sin(n-l)/3), 
oo 

= (l/16)c3/i4 ^ B „ / 2 [ - ( ( « + l ) e - < " 

For 0i = c0 2^ •#„ coshna cosnfi, 

-D« 2Gt7„ 

Co 

+ («-K)e-<"+ 1 ) a)cos(n + 3)|3 

+ [ (rt + 3 ) e - ( " - 3 ) a - 2 ( - 2 + K ) e - ( " - 1 ) a + 4e - ( " + |)" 

+ (« - K ) e - < " + 3>«)cos(« + 1)0 + {(n + K)e~l-"-i)a 

- 4 e - ( " - ' ) 0 , + 2 ( - 2 + K)e"(" + 1)a 

+ («-3)e-("+3,a-)cos(«-l)/? 

- ( (« + *)<?-<"-""+ ( « - l ) e - ( " + 1 ) a jcos(«-3)0], 

(17) 
oo 

= (1/16)C3 /T4 J ] S„n[{ (« - 3)e- ("~1)a 

+ (« -K)e^ ( " + 1)a)cos(/3 + 3)(3 

+ { - ( « - l ) e - < " - 3 ) a + 2 ( - 2 + «)(?"-<"- | )D '+4e-(" + 1»a 

- ( « - K ) e _ l " + 3)or}cos(n + l ) /3 - {(/? + K)e-<"~3)a 

+ 4 e - ( n - D « + 2 ( _ 2 + K )e" ("+')« 

+ (« + l ) e - ( " + 3)ajcos(/j-l)/3 

+ [ (n + K)e~<"-»»" + (« + 3)e~<" + 1)a ]cos(«-3)0], 

2GC/« 

c0 

c0 

= (l/16)c3/!4 J ] £ „ « [ - { ( « - l ) e - ( " - l)a 

+ ( « - K ) e - ( " + 1)a)sin(« + 3)l8 

+ [ (« + l ) e - < " " 3 ) a - 2 ( - 2 + K ) e - ( " - 1 ) a 

+ ( n - K ) e - ( ' , + 3 ) a jsin(/j+l)/3+| (n + K)e~'"-3)a 

+ 2 ( - 2 + K)e- ("+ 1 ) a + ( « - l ) e - ( " + 3 ) a!sin(fl-l) |8 

- ((n + K)e-("-l)a+(n + l)e-{n + l)a}sm(n-3)t3]. 
oo 

For <j>0 = c0 2^ A„ coshna cosnft, 
« = i 

= h 2_j A„n sin/ma cos/j/3, 
n=\ 

oo 

= —h\j Ann coshna sinn/3, 

c0 

2G£/, 

2GU, 

= (l/4)c/j £ ) 5 „ ( ( / j + K)sinA(n-l)a 
n = l 

+ (« — R)s'mh(n + l)a] 

X jcos(n + l)/3 + cos(«-l)(3j , 

= -(l/4)c/z ]T] 5„{cos / ! (n - l )a + cos/!(« + l )a! 

( («- /c )s in(« + l)/3 

+ (« + K)sin(«-l)j8), 
oo 

= (l/16)c3/)4 ^ B „ « [ - | ( « . + l )cos / ! (n- l )a 
n=i 

+ (n — R)cosh(n + l)a} cos(« + 3)/3 

+ ( (« + 3 ) c o s A ( « - 3 ) a - 2 ( - 2 + «)cosA(«- l )a 

+ 4cos/!(n + l)a + (n — R)cosh(n + 3)a}cos(n + l)/3 

+ j (n + R)cosh(n-3)a —4cosh(n — l)a 

+ 2 ( - 2 + K)cos/!(« + l)a 

+ (« - 3)cos/i(/J + 3)a)cos(« - l)/3 

- { (« + /<)cos/j(/j-l)a + (/7- l)cosh{n + l )a) 

cos/!(«-3)(3], 

= (l/16)c3/!4 X) 5„«[j (« - 3 ) c o s h ( n - l )a 

+ (« — K)COS/; (n + 1 )a j cos(« + 3)/3 

+ [ - ( n - l ) c o s / ! ( « - 3 ) a + 2( -2+K)cos / j («- l )o : 

+ 4cos/!(n + l)a— (n — K)cos/?(n + 3)a)cos(« + 1)0 

- ( (n + R)cosh(n — 3)a + 4cosh(n — l)a 

+ 2(-2+K)cos/i(/i + l)a 

+ (n + l)cos/i (/J + 3)a) cos(« - 1)(3 

+ ( (n + R)cosh(n — l )a 

+ (« + 3)cos/;(fl + l)a)cos(n-3) |3] , (19) 

Co 

Co 

'a/3 = (l/16)c3/!4 ^ B „ « [ [ ( / i - l ) s i n / ! ( / i - l ) a 

= - ( l /4)c 2 / i 4 ^^„«[ («- l )cos / !nacos( /z + 2)(3 
« = i 

- ( (« + l)cos/)(/ j-2)a+ (n- \)cosh{n 

+ 2)a)cosn|S 

+ (« + l)cos/z«acos(rt - 2)/3], (18) 

-^_ = (l/4)c2/!4 £ ) ^„n[(« - l)cos/zna cos(« + 2)/3 
co „ = i 

- ( (« + l)cos/?(rt-2)ar+ ( « - l)cosh{n 

+ 2)a}cosn(3 

+ (« + l)cos/2«acos(« - 2)/3], 

- I H L = ( 1 / 4 ) C 2 / I 4 £,4, ,«[(«-l)sin/!r tasin(« + 2)|3 

- [ (« + l )s in/ ! ( /7-2)a+(n- l )s in/ j (« + 2)a)sin«l3 

+ (« + l)sin/wa sin(« - 2)/3]. 

Journal of Applied Mechanics 

+ (n — R)sinh(n + l)alsin(/i + 3)j3 

+ { -(rt + l)sin/!(fl-3)a + 2 ( - 2 + £)sin/!(rt- l)a 

- (n - R)smh (n + 3)a ] sin(n + 1 )/3 

- ( (« + K)sin/?(n-3)a + 2 ( - 2 + /c)sin/!(n + l)a 

+ (n - \)smh (n + 3)aJsin(« -1)/3 

+ ((n + R)smh(n — l ) a + (« + l)sin/i(n + l)a) 

sin(n-3)/3]. 

Using the results above and considering the symmetry of 
the problem about the y axis it is seen that An (n = 1, 3, 5, 
. . .),A„ (M = 1 , 3 , 5, . . .),B„ (n = 0 ,2 , 4, . . . ). andB„ 
(« = 0, 2, 4 , . . . ) vanish. 

Determination of the Unknown Constants 

The remaining unknown constants A,•., A,•, B,•, B,^ and F0 are 
determined from the boundary conditions (11). 

The condition Ua = Ua + U%ata = a0 yields 
oo 

^ 0 + Yi UkAi<4„ +kmB„_l +kB2Bn + i) 
n="0 
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Fig. 2 The stress distributions along the x axis 
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Fig. 4 Slip magnitude along the interface of inclusion 

+ SmB„_i +SmB„_! +SBiBn + l +SmBn + i) 

-(SA\An_2 +SA2A„ +SA3An+2 + SmB„_i 

+ SB1Bn_l+SmB„ + ]+SlMB„+i)]cosnP = 0 

The condition Ta(3 = 0 at a = a0 corresponds to 

^DFQsin2/3 + X] (.tMAn_2 + tA2An->rtAlAn + 2 
n=l 

;+rB,jB„_, + /B3£« + i +/B45„+3)sinn/3 = 0. (22) + / f l i f l , fll-°fl-3 T'B2an-l 

The condition f a(3 = 0 at a = a0 yields 
GO 

2«f ((AiAn-2 + tA2A„ + tAJA„+2 + tmB B\"n-1 

+ tBiB„-i +tBiBn + l + /fl45„ + 3)sin/?/3 = 0 

where T = GIG. The constants kAh_kBh kAh kBh S^,, 

(23) 

SBI> SAI> SBh tpQ, tAi, tBi, tAh and tm are known functions of 
n, a0, K and K. Equating the coefficients of COSHJS and sin«j6 (n 
= 1, 2, 3 , . . . ) in (20) or (23), we obtain an infinite system of 
algebraic equations for F0,A„,B„,A„, and B„. 

Numerical Calculations 

For a numerical example we calculate the stress field and 
slip magnitude when an elliptic inclusion of the same material 
as the matrix and with an axis ratio b/a = 1 / 2 undergoes the 
eigenstrain e* = 2e*. The stress components along the x and.y 
axes inside the inclusion are shown in Figs. 2 and 3. The solid 
curves are for the slipping inclusion and the dotted curves for 
the perfectly bonded inclusion. The stress field for the slip­
ping inclusion is not uniform as it is for the perfectly bonded 
inclusion. The stress field generally relaxes but may increase 
locally due to slip at the interface. The corresponding slip 
magnitude along the interface is shown in Fig. 4. The point x 
= a, y = 0 corresponds to /3 = 0 and the point x = 0, y = b 
corresponds to /3 = 90 deg. The slip direction is indicated by 
the arrows in Fig. 4. 

Since the problem contains a large number of independent 
parameters, an exhaustive representation of the results 
numerically is not feasible. It may be noted, however, that 
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similarly to problems with specified surface tractions, 
(Dundurs, 1969) eigenstrain problems also show a reduced 
dependence on the elastic constants. Thus, instead of a 
general dependence on T, K1 and K2, the stress components in 
eigenstrain problems are of the form G/[T(K1 + 1) + K2 + 1] 
times a function which contains only two combinations of the 
elastic constants. The derivation of this result is given in the 
Appendix, and it was confirmed for some numerical runs 
which are not quoted here. 

Acknowledgments 

This research was supported by the U.S. Army Research 
grant No. DAAG29-81-K-0090. 

References 

Dundurs, J., 1969, Discussion of a paper by D. B. Bogy, ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 39, pp. 650-652. 

Eshelby, J. D., 1957, "The Determination of the Elastic Fields of an Ellip­
soidal Inclusion and Related Problems," Proceedings of the Royal Society of 
London, Ser. A, Vol. 241, pp. 376-396. 

Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, 
4th ed., Cambridge University Press. 

Mura, T., and Furuhashi, R., 1984, "The Elastic Inclusion with a Sliding In­
terface," ASME JOURNAL OF APPLIED MECHANICS, Vol. 51, pp. 308-310. 

Muskhelishvili, N. I., J953, Some Basic Problems of the Mathematical 
Theory of Elasticity, Noordhoff. 

A P P E N D I X 

To show the reduced dependence of the stress components 
on the elastic constants we use the complex-variable for­
mulation of plane elasticity (Muskhelishvili, 1953) in which 
the displacement and stress components are related to the 
complex potentials <j>(z) and \p(z) through 

2G(Ux + iUy)=K<t>-zjP'-# (Al) 

(rxx + ayy=2(<i>'+47) (A2) 

Cyy - °XX + Kaxy = 2(Z</> " + ^ ' ) (A3) 

It is seen from (A2) and (A3) that the stress components 
depend on the elastic constants in the same way as the 
complex potentials. When the eigenstrains are compatible, the 
elastic constants can enter the complex potentials only 
through the boundary conditions at the interface. The 
requirements that the normal tractions be continuous and that 
the shear tractions vanish at the interface are homogeneous 
and contain no elastic constants. Hence, only the condition on 
the normal displacements need be examined in detail. 

The normal component of displacements in the complex 
formulation is given by the expression 

4GU„=e-ie(K<t>-zf' -^)+ei(,(.K4>-z(j>' -i/<) (A4) 

where 0 is the angle from the x-axis to the outer normal. The 
differential relation 

d(cj> + z4>7+i')=iVx + ity)ds (A5) 

is also needed in the derivation. In (A5), tx and ty denote 
traction components, and the arc-coordinate must be chosen 
so that the material is on the left when moving in the direction 
of increasing 5 along the boundary. 

Whenever the eigenstrains in the inclusion are compatible 
and can thus be integrated for displacements, the required 
continuity of normal displacements at the interface can be 
written as the first equation in (Al) or 

U\P + U? =f(s) (A6) 

For (A6), the superscripts 1 and 2 refer respectively to the 
matrix and the inclusion, Un is normal displacement caused 
by stresses and reckoned positive in the direction of the outer 
normal. Moreover, f(s) is a known function corresponding to 
the normal displacement of the integrable eigenstrain in the 
inclusion. It is important to note that (A6) is the 
nonhomogeneous condition in the problem. Substituting 
(A4), (A6) becomes 

r[exp(-('01)('<:i</>i - z0 , ' - i / ' i ) + exp((01)(«,()!>, 

- z<t>[ - h)] + exp( - J02)(K2</>2 -z4>{ - fo) 

+ exp(/62)(/c202 -z4>i-^2) = WJis) (A7) 

where the subscripts 1 and 2 are used to refer to the matrix 
and the inclusion, and T = G2/G{. At this point, the left side 
of (A7) contains the three elastic constants T, K,, and K2. 

Newton's third law requires that at the interface 

d(4>1+z$i+:fi)=d(<t>2+zJI + :h) (A8) 

Due to the fact that the interface does not transmit a net force 
and, moreover, that an arbitrary complex constant y can be 
added to 4>(z) and ay to i//(z) without affecting the 
displacements, it is easy to show that (A8) yields 

4>l+z^{+:fl=<f>2+zJl+i2' (A9) 

at the interface. Noting that exp (id2) = - exp (/0,), it follows 
from (A9) that 

exp(-/f?1)(^1+z</) i + \j/i) 

+ exp(-ie2)(cj>2+z^>i + ~f2)=0 (A10) 

exp(/0 ,)(</>, +z4>,' + i/<i) 

+ exp(/02)(02~ + z>2' + tf2) = O (AH) 

Finally forming the linear combination (A7) + Vi ( r + 1 ) 
[(A10) + (Al 1)] of the preceding equations and dividing by T 
(K, + 1) + K2 + 1, the result is 

(2 + a +18) [exp( - idl)<t>, + exp(/0, ) 0 J 

-(&-$) [exp( - /0, )(zJl + J~i) + exp(!0, )(.Z<$>[ 

+ ih)] + (2 - & - j8) Iexp( -102)*2 + exp(/02)02] (A12) 

+ (a-/3)[exp(-/02)(z^I + ^ ) + exp(/02)(z</>2 + i/<2)] 

4G2 
= f(s) 

r ( K , + i ) + K2 + i 

where 

. ru1 + i)-(K2 + i) . r ( * , - i ) - o < 2 - i ) 
a= , p = ( A I J ) 

r ( K , + i) + K2 + i F (K, + I ) + K2 + I 
The constants & and /? (Dundurs, 1969) are measures for the 
mismatches in the uniaxial and voluminal compliances of the 
two elastic materials. It may be noted that - 1 < a < + 1, -
Vi < (3 < 'A, that a = (3 = 0 for identical materials, and that 
& and (3 simply assume opposite signs upon interchange of the 
two materials. The last fact is clear by reflected in the 
structure of the left side of (A12). 

Since (A 12) is the only nonhomogeneous condition among 
those that determine <f>{z) and i/<(z), it is clear that the 
complex potentials are of the form ( G 2 / [ T ( K I + 1) + K2 + 
1]) F (z; a, j3). Consequently, on basis of (A2) and (A3), the 
stress components have the same dependence on the elastic 
constants. It may be noted that the shape of the inclusion does 
not enter this derivation. 
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Harmonic Wave Propagation in 
Nonhomogeneous Layered 
Composites 
A new method for analyzing plane wave propagation in a periodically layered, 
elastic, nonhomogeneous composite body is proposed. The nonhomogeneity con­
sidered is a variation of the material properties within each composite layer. Results 
from probability theory are used to arrive at the two fundamental solutions of the 
governing second order ordinary differential equations. Floquet's wave theory is 
combined with a Wronskian formula to yield the dispersion relationship for this 
nonhomogeneous composite. Numerical results show that the presence of material 
nonhomogeneity affects the range of frequencies which can pass through the com­
posite unattenuated. 

1 Introduction 

Problems of wave propagation in layered elastic composites 
have attracted a great deal of attention from researchers dur­
ing recent years [1-6]. Several studies [7-9] have used Flo­
quet's theory for one-dimensional wave propagation or 
Bloch's theory for three-dimensional wave propagation. These 
investigations have shown that when the wavelength of a har­
monic wave is comparable to the characteristic length of the 
composite layers, successive reflection and refraction of the 
waves from the interfaces between layers leads to a significant 
dispersive effect. Such phenomena cannot be predicted by so-
called "effective modulus" theories. For anti-plane or plane 
strain waves, the dispersion relationship can be interpreted 
geometrically as a surface in the wave number-frequency 
space. The important feature that was discovered is the 
presence of pass bands and stop bands, i.e., regions in the fre­
quency spectrum where harmonic waves are either propagated 
freely or attenuated, respectively. The curves on the surface 
which define the boundary between the pass bands and stop 
bands divide the surface into so-called Brillouin zones. 

The analyses made by Delph, Herrmann, and Kau [7-9] and 
by other researchers were performed with the assumption that 
the material properties within each layer of the composite were 
homogeneous. However, considering realistic manufacturing 
processes and/or naturally occurring variations it may not be 
reasonable to expect a uniform distribution of the elastic con­
stants and mass density throughout each composite layer. It is 
the purpose of this paper to present a general method to 
analyze the sitution in which the cells in the periodically 
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layered composite structure are nonhomogeneous, i.e., the 
elastic constants and mass density depend on the spatial coor­
dinates within each layer. 

This method is based on a procedure of representing the 
solution of the governing second order ordinary differential 
equations by means of a technique taken from probability 
theory. Combining Floquet's wave theory with properties of a 
special Wronskian formula, the dispersion relationship for 
wave propagation in certain nonhomogeneous composites is 
derived. Numerical calculations pertaining to the dispersion 
relationship for nonhomogeneous composites have shown that 
the presence of a material nonhomogeneity within each layer 
of the composite alters the width of the stop band and affects 
the dissipative characteristics of the medium. 

2 Derivation of the Dispersion Relationship 

The system under consideration consists of an infinite se­
quence of two alternating layers, each of which are taken to be 
nonhomogeneous and elastic. Perfect bonding is assumed be­
tween the adjoining layers. A unit cell is defined as the union 
of any two adjacent layers. As shown in Fig. 1, the two 
lamellae of the N-th unit cell have variable Lame moduli 
[\„,(x), tsm(x)i , [\j-(x), Hf{x)}, variable mass densities 
{p,„{.x), pf(x)], and thicknesses [2hm, 2hf], where the 
subscripts m and / refer to "matrix" and "fiber" layers, 
respectively. 

Let u, v, and w be the three Cartesian components of the 
displacement vector in the x, y and z directions, respectively. 
The layers lie in the.y-z plane. Consideration will be given only 
to waves propagating in a direction normal to the layers. For a 
one-dimensional longitudinal strain wave propagtaing in the 
x-direction, only the u component of displacement is nonzero. 
Therefore, we take 

u = u(x,t) v=w = 0 (2.1) 

where the function u(x, t) satisfies the equation of motion 
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I 2fe„ 

1 2A, 

(N+l) 

^W.C.W.PmW 

A/fcJ./i/fcJ.p/fc) 

(N) 

xf (N) 

Fig. 1 Geometry of nonhomogeneous layered composite 

d2u 8 / ^ du \ 
(2.2) 

where D(x) = \(x) + 2\x.(x). The material properties /?(*) 
and /o (x) satisfy periodicity conditions 

D(x + d)=D(x) p(x + d)=P(x) (2.3),_2 

where rf = 2(hm + hf) represents the thickness of one unit 
cell, while 

D„,(x), for matrix 
D(x) = 

and 

(2.4) 

P(*) = 
(>m (*) -

(2.5) 

for /ffter 

for matrix 

[pf(x), for fiber 

The global coordinate x is replaced with two local coor­
dinates, xm and xf, in the N-th unit cell, as shown in Fig. 1. 
Thus, (2.2) holds in each layer 

Pm (xm ) 
d2u„ 

mKm' dt2 dx, 

d2U 
Pf(*f) 

" /_ 
dt2 

(pm(x,„) -£-) (0<xm<2hm) (2.6), 

-•klP'W-it) (0=S*'SS2*') (2-6)2 
•V 

The solutions of (2.6),_2 are taken in the form of harmonic 
plane waves as 

Dm(0) i * 
(2.7), 

(2.7)2 

where o> is the circular frequency measured in radians per 
second, Um(xm) and Uf(xf) are two unknown functions 
representing the amplitude of vibration. The longitu­
dinal wave speeds will be denoted by cm = VZ>,„/p„ and cy = 

We next introduce nondimensional parameters and non-
dimensional dependent and independent variables according 
to 

2hf 2hn 
Uf 

2hf 
Um=-

2h„ 

fi=-

V-

2wh 'L „__ 
Lfo 

<"fo 

2hf DAO) Dm(0) 
(2.8) 

Df(*f) = 
Df(xf) 
DM) 

Urn \Xm ) 

D,„(0) 
Dm(xm) 

where cm? = -JDJOypJO) and cf0 = VS/OJ/p/O) represent 
the longitudinal wave speeds at the interface between the 
matrix and fiber, respectively. The stresses in the matrix and 
fiber layers are indicated by a,„ and oy, respectively. Using 
these nondimensional quantities and substituting (2.7),_2 into 
(2.6),_2, the equations of motion are reduced to a system of 
second order Sturm-Liouville ordinary differential equations 

dP-Tj - — 
"•-+Vm(x„„Q)Um dx2 

CPU, 

= 0 (2.9), 

dx) 
+ VAxf,Q)Uf = 0 (2.9)2 

with variable coefficients given by 

fi27T*2 1 
Vmlxm,Q)=-

^m \ %m ) 
2 dx,.. 

i / i dDmy 
4\D,„ dx.J 

d I 1 dDm\ 

x ^D dx ' 

(2.10), 

Vf{xI,Q)=-^r-
2 dx, 

/ I dD,\ 

\Df dxt) 

4 \Df dxf' 
(2.10)2 

where ir* = IT • 
hmc m^fo 

hfcmo 

For convenience, we now revert to mathematical notations 
introduced initially to indicate the corresponding nondimen­
sional quantities, thereby dropping the barred notation. It is 
hoped that this will not confuse the readers. Furthermore, 
since both independent variables x,„ and xf vary between (0, 
1), there is no need to distinguish between them. In the follow­
ing derivation, we will let x stand for both xm and xf. 

Let Umi (x, fi) and Ufi(x, Q) (i = 1, 2) be the two fun­
damental solutions of (2.9),_2> respectively, satisfying the 
boundary conditions 

£/„„(0,Q)=[/m2(l,Q) = £/y,(0,Q) = £7,2(1,0)= l (2.11), 

t/„„(l,n)=[/m2(0,fi) = C/yl(l,Q) = t//2(0,fi) = 0 (2.11)2 

Since the coefficients Vm (x, 0) and Vf (x, Q) vary with x, 
determination of analytical expressions for the fundamental 
solutions is not a simple task. However, when fi is not an 
eigenvalue of (2.9),_2, a method recently developed by Chung 
[10] which uses probability theory allows the solutions Umi (x, 
Q) and Ufi (x, fi) to be expressed in closed-form as 

L/Ml(*,0) = j exp(jo
T Vm(Bl,Q)dt)dpx 

t/m2(x,G) = { i exp(jo
T Vm(B„Q)d?jdP

x (2.12), 

UfiOc.Q) = | B o exp(|Q
T Vf(B„Q)dt)dpx 

Ufl.(?c,Q) = \ , exp(Jo
T Vf(B„Q)dt)dpx (2.12)2 

and 
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where [BT: T > 0 ] stands for a Brownian motion process, r 
means the first exit time from the interval (0, 1), andyj* is the 
probability distribution of the process [Bt: t>0] starting at x. 
In fact, using a random walk instead of Brownian motion, a 
second order finite difference scheme can be formulated to 
calculate the fundamental solutions (2.12),.2 very accurately. 
This procedure will be illustrated in a separate paper. 

Complex forms of the fundamental solutions are given in 
terms of Umi (x, 0) and Ufi (x, 0) by 

cU.ml(x,Q)=Uml(x,Q) + iUm2(x,Q) (2.13), 
<U„,2(x,Q)= Uml(x,Q)~iUm2(x,Q) (2.13)2 

% (x,Q) = Ujt <x,Q) + iUflfr.Q) (2.14), 
cU.nfr,Q)=UflQc,Q)-iUnQc,Q) (2.14)2 

They must satisfy the boundary conditions 

m ^ o . o ) = ^,,,2(0,0) = ^ ( 0 , 0 ) =01^(0,0) = 1 (2.15) 

and 
t U m l ( l ,0 )= 'U / 1 ( l ,0 )= i , 

01^(1,0) = 0 1 ^ ( 1 , 0 ) = - / (2.16),.2 

The general solution for the displacement in the matrix layer 
of the N-th unit cell can be written in the form 

M m ( X , Q ) = -
1 

[yl„,tUml(x,n) 

+ Bm^Lm2(x,U)]e-^ (2.17) 

where A m and Bm are nontrivial complex constants yet to be 
determined. Using the stress-strain relations, the stress in the 
matrix layer of the N-th unit cell is given by 

du„, 1 
]e-,slT (2.18) ,=D„ 

dx yjDm{x) 
\Amam\ +Bmam2l 

where 
aml =D„,<Vi;„l(x,n)-- D^ml0c,Q) (2.19), 

aA =Df^}i(x,Q)~jD}^n(x,Q) 

an = Df<Vij2(x,U) - — DfUJ20c,Q) 

(2.22), 

(2.22), 

To complete specification of the problem, continuity of 
displacement and traction must be enforced at the interface 
between matrix and fiber layers, which leads to 

and 

« /( l )f i)=| t /m(0,0) oy(l,Q)=r/am(0,Q) (2.23), 

« ^ 0 , 0 ) = | M „ ( 1 , 0 ) o^0,Q)=ijffm(l,Q) (2.24), 

where £ = hm/hf and i\ = pmocjno/pfocj0. Moreover, u) and af 
represent the displacement and stress in the fiber layer of the 
(TV + l)-th unit cell, respectively. 

According to Floquet's one-dimensional wave theory, (2.7)2 

with its periodic variable coefficients admits quasi-periodic 
recurrence relations for the displacement and stress between 
two adjacent cell units as follows 

uf(0,Q)=uf(0,Q)eikd o)(0,a)=of(0,Q)eikd (2.25),_2 

where k = ky + ik2 is the complex Floquet wave number. 
Combining continuity conditions (2.24),_2 with (2.25),_2, we 
obtain 

uf(Q,U)eikd = ^um(\M) of(0,Q)e*d = v<Tm(l,Q) (2.26),_2 

Substitution of expressions (2.18) and (2.21) for the stresses 
a,„ and ay into (2.23)2 and (2.26)2, respectively, yields a set of 
four homogeneous algebraic equations from which the 
unknown constants Amy Bm, Aj, and Bj can be determined. A 
nontrivial solution for these constants exists if the corres­
ponding determinant of the matrix of coefficients vanishes. 
Setting the determinant equal to zero leads to the following 
dispersion equation 

le 

eeikd 

<u;,(i ,0)+i/3m 

(ti;1(0,0)-|8 (B)e'** 

— le 

eeikd 

11^(1,0) -ipm 

(%'m2(0,Q)-Pm)eikd 

- 1 

— i 

-111,(1,0)-ify 

- 1 

i 

-1^(0,0) + fy 

-'U.£(1,0)+//S/ 

= 0 (2.27) 

, =DmWm2(xM)-l- D'm<VLm2(x$) (2.19)2 

The prime represents a derivative of the associated quantity 
with respect to x. Similarly, in the fiber layer of the N-th unit 
cell, the displacement and stress take the forms 

uf(x,Q) = - 7 = = ^ [/1/llfl(*,£!) +B/%f2(x,Q)]e~'ilT (2.20) 
JDJX) 

where three new parameters have been introduced as 

1 1 
Pf = -D!{0) f3m=-D'm{0) (2.28),. 

We see from (2.27) that the dispersion relationship depends on 
derivatives of the complex fundamental solutions tUm,-(JC, 0) 
and llyy (x, 0) evaluated at the end points x=0 and x=l. 
These derivatives are related to the corresponding derivatives 
of the real valued fundamental solutions as follows 

<u;„,(o,fi) = (7/„,(o,fi)+/t//„2(o,fl) 11^(0,0) = t/;,(o,n) -/t/;2(o,o) 
%;,(i,o) = u;nl(i,U)+iu;n2(\,u) 11^(1,Q) = c/;,(i,o) -»i/^(i,Q) 
ai/1(o,n) = c//\(o)n)+;t//i(o,n) oi^o.fl) = c//\(o,n)-/t/^(o,Q) (2-29) 

11/, (1,0) = £//(!,0) + 11/̂ (1,0) 1l£(l,0) = £# (1,0)-/£/£(!,0) 

du '/. 1 

where 

OV/i + Vy2>e" 
- ;SJT 

Before expanding the determinant (2.27), we will examine 
some important features of the fundamental solutions Uml (x, 

(2.21) fi) and I//,(x, 0). Henceforth, we assume that the material 
properties in each layer of any unit cell are symmetric with 
respect to the midplane of that layer. 
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Proposition 1. If the coefficient Vf(x, 0) in (2.9)2 is sym­
metric with respect to the midplane x = 0.5 in the interval (0, 
1), such that 

Vf(x,Q) = Vf(l-x,Q) (2.30) 

then the derivatives of the fundamental solutions U^x, 0) 
and Ufzix, 0) at both ends x = 0 and x = 1 satisfy 

£/;, (1,0) +£7^(0,0) = 0 £7̂ , (0,0) +£7^(1,0) = 0 (2.31)j_2 

Proof: The Wronskian Wf[Ufl, £7^] of the fundamental 
solutions Uflix, Q) and Up[x, 0) is defined as 

UflQc,Q) Un0c,Q) 

U}i(pc,Q) U^xfi) 

Furthermore, due to the symmetry of V/(x, 0) and based on 
the basic behavior of the Wronskian, we have 

Ufl(x\Q) = 0 (2.42) 

Obviously 

Ufl(l,Q)=0=> UA(0,Q) = 0 (2.43) 

However, this conclusion is in contradiction to the original 
assumption (2.11),, and therefore £7/,(l, 0) must not vanish. 
The same argument can be made concerning £/,'„, (1, 0). 

Proposition 3. If Q is not an eigenvalue of (2.9), the 
derivatives Un(0, 0) and [7/,(l, 0) can be expressed in the 
form 

W, lUfl.Uj fit (2.32) £#(0,0) = 

t//,(l,Q) = 

b2Ui(l,Q)-biU2(l,Q) 

a 2 H,(1 ,0 ) -0 ,^ (1 ,0 ) 

a2b1-aib2 

(2.44), 

(2.44)2 

dWf 

~~dx 
= 0 ( 0 < x < l ) 

Thus 

Wf(0,Q) = fVf(l,Q) 

or written in expanded form 

UA(0,Q) 1/^(0,0) 

£7^,(0,0) 1/^(0,0) 

t/y,(l,0) £7^(1,0) 

t/^u.n) t/^a.Q) 

(2.33) 

(2.34) 

(2.35) 

fl2M,(l,fi)—a1M2(l,0) 

where the functions u,(x, 0) ((' = 1, 2) are solutions of the 
following initial value problems 

cP-u, 
^•+K /(jf,Q)« l = 0 (/= 1,2) 

u,(0,0)=a, u,X0,Q)=b, 

(2.45), 

(2.45)2 

Therefore, according to the boundary conditions (2.11),_2, 
(2.35) is equivalent to (2.31),. Using the symmetry condition 
(2.30), (2.31)2 is easily confirmed. The same argument follows 
for the behavior in the matrix layer. 

Making use of (2.29) and (2.31), the dispersion relationship 
(2.27) reduces to the simple form12 

e2ikd+F(Q)eikd + 1=0 (2.36) 

whereF(fi) is called the "spectrum function" and is given by 

where (a,, b{) and (a2, b2) are two pairs of arbitrary constants 
satisfying the condition 

axb2-a2bx^*Z (2.46) 

Proof: We form the Wronskians Wf[uu £7̂ ,] and Wf [u2, 
Ufl], and then use (2.34), which leads to 

fV/[u1,Ufl] = ul(0,U)U}1(0,Q)~u;(P,Q)Ufi(0,Q) 

= K,( l ,a )C#( l ,0) -« 1 ( l ,0) t fy i ( l ,0) (2.47), 

W/[u2,Ufl] = u2(0,Q)U}1(0,a)-ui(0,Q)U/l(p,Q) 

= «2(1,0)£7;,(1,0)-«2 '(1,0) £7^(1,0) (2.47)2 

F(Q)=-

( c # ( l , 0 ) ) + e 2 ( f / ; , ( l , n ) ) - ( l / / , ( 0 ,Q)+e t / ; 1 (0 ,Q) - j8 / - e j8 m ) ' 

et /A(i ,Q)t/ ; ,( i ,o) 
(2.37) 

The derivatives of the first fundamental solutions Uml(x, 0) 
and Ufl {x, 0) must be known at the ends x = 0 and x = 1 in 
order to determine the function F(0) . For this reason, we pre­
sent two basic properties of these derivatives. 

Proposition 2. If 0 is not an eigenvalue of (2.9),_2, then 
the derivatives C/^,(l, 0) and £7^,(1, 0) must not vanish. This 
will insure that F(Q) remains bounded. 

Proof: If the independent and dependent variables are 
transformed according to 

x* = \-x Ufl(x*,n) = Ufl(l-x,Q) (2.38) 

and the symmetry condition (2.30) is used, (2.9)2 takes the 
form 

Invoking the boundary conditions (2.11),„2 and initial condi­
tions (2.45)2, (2.47),_2 reduces to 

fljt/^O.O)-II,(1,0)C#(1,0) = 6 , (2.48), 

fl2L^,(0,O)-«2(l,O)[/^(l)O)=fc2 (2.48)2 

If 0 is not an eigenvalue of (2.9), we can select the constants a, 
and a2 such that 

a,M2(l ,0)-a2H, ( 1 , 0 ) ^ 0 (2.49) 

cP-U} 

dxf 
+ Vf(x*,ti)U}=0 (2.39) 

On the other hand, according to (2.11),_2 and (2.38), we find 
that 

£7/1(l,0) =0 => £7j?,(0,O) = 0 (2.40) 

Therefore, if £7/, (1,0) is to vanish, according to (2.38), Uj^* 
(0,0) must vanish also, i.e., 

C/y(0,Q)=0 (2.41) 

The existence and uniqueness theorem states that if 0 is not an 
eigenvalue of the ordinary differential equation (2.39), and 
homogeneous boundary conditions (2.40) and (2.41) are 
posed, then (2.39) has only a trivial solution 

Therefore, the algebraic equations (2.48),_2 have the unique 
solution given by (2.44),_2. From (2.44),_2 we conclude that 
the problem of finding the derivatives £7 ,̂(0, 0) and t//,(l, 0), 
which are needed to specify the dispersion relationship (2.27), 
reduces to solving the initial value problem (2.45),_2 to obtain 
the values of «, at the end x = 1. An identical procedure is 
followed to find the derivatives £7^,(0, 0) and £7^,(1, 0). 

In order to calculate stresses in the entire interval (0, 1), we 
need to find the derivatives of the fundamental solutions 
[/,„,• (x, 0) and Ufi (x, 0). They can be calculated by the follow­
ing procedure. 

Proposition 4. If 0 is not an eigenvalue of (2.9)M we can 
use Chung's method to express the derivatives of the first and 
second fundamental solutions Un(x, 0) and U^ix, 0) as 

Uiiix,0) = 
VAx.Q) 

VM,Q) 
( [ / / . (O .OJL^O) 
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+ u}l{i,a)L/l(x,a)) 

UfripcQ) = -
VAx.Q.) 

VAO,Q) 
(UUQMLjoix.Q) 

+ U}1(.0,Q)L/l(x,Q)) 

and likewise for [/,„, (x, fi) and Um2{x, fi) 

rv.. 
f/;„,(x,Q)=. K,„(0,fi) 

([//„, (0,fi)Z,m0(*,fi) 

+ t/;„1(i,fi)L,„1(x,fl)) 

t/;2(jf.o) = 

where 

V„(x,Q) 
([/,;,(!,fi)z,m0(x,fi) 

Km(0,0) 
+ t//„1(o,n)Lml(x,fi)) 

Lm0(x,Q) = \ exp(V H„, {B„Q)dt)dp* 
J [BT — 0] \ J 0 / 

Lmi(x,Q)=\ cxp(\T Hm{B„Q)dt)dp* 
J [BT — 1] \ J 0 / 

LyoOcO) = j fi _o exp(J^ Hf(B„Q)d?jdpx 

L/l(x,Q)=\ _ exP(jr
oHf(B„Q)dt)dpx 

The functions H,„ and /fy are given by 

#m(*,0) = K m ( x , 0 ) + y - ^ r [log F,„(x,fi)] 

1 

(2.50), 

(2.50)2 

(2.51), 

(2.51)2 

(2.52), 

(2.52)2 

(2.53), 

(2.53)2 

Hf(x,Q) = Vf(x,Q) + 

2 dx1 

4^[logKm(, ,fi)] 

1 d2 

2 dx2 [log Vf(x,Q)] 

T dx 
[log FfUQ)] 

(2.54), 

(2.54)2 

C//,(l, Q), 0/i(l , fl), C/^(0, fi), and C/^(1, O) are known after 
considering (2.31) and (2.44). 

Proof: We introduce a new function Yl (x, fi) by 

r,(*,0) = 
K,(0,Q) 

Kr(jt ,0) 
£^(Jf,0) (2.55) 

Substituting (2.55) into (2.9)2 and using the symmetry condi­
tion Vf(0, fi) = Vf{\, fi), we obtain a boundary value problem 
for the unknown function Y{x, fi) as follows 

cPYf 

dx2 + H,(x,Q)Yl(x,Q) = 0 (2.56), 

7,(0,0) = L^(0,fi), F,(l,fi) = i/^(l,fi) (2.56)2 

Thus, following the same procedure that lead to (2.12),_2, we 
obtain the first and second fundamental solutions of the above 
boundary value problem as expressed in (2.50),_2 and 
(2.51),_2. 

3 Pass and Stop Bands in Nonhomogeneous 
Composites 

The most important feature regarding wave propagation in 
a periodically layered, elastic, homogeneous medium is the 
presence of stop band characteristics. Next we investigate how 
this characteristic is affected by specific material non-
homogeneities. 

When the basic dispersion relationship (2.36) is expanded, 
the following two equations emerge 

e 2 cos2k2d + F(n)e 2 cosA: , t f+ l=0 (3.1), 

e *2rfsinAr,cNe *2</cos kld+— F(fi) 1 = 0 (3.1)2 

where the complex Floquet wave number k has been decom­
posed into a real part kx and an imaginary part k2, called the 
dispersion coefficient and dissipation coefficient, respectively. 
In order to find the specific dependence of kx and k2 on fi, 
(3.1)^2 possesses must be solved simultaneously. The solution 
depends on the magnitude of the function F(fi) as follows 

(1) When 

F(fi) < 1 

(3.1),.2 possesses the unique solution 

coskid= F(fi) 

(3.2) 

(3.3), 

k2d=0 (3.3)2 

Thus, the dissipation coefficient k2 vanishes, and the pass 
band in the dispersion spectrum consists of all nondimensional 
frequencies fi which satisfy (3.2). In other words, harmonic 
waves are propagated without attentuation for values of fi 
which satisfy (3.2). 

(2) When 

I— F(fi)|>l (3.4) 

then (3.1),„2 possess the solution 

kld = nir (« = 0,1,2, 

k7d= -log( 
F(fi) m i 

(3.5), 

(3.5)2 

Here the dissipation coefficient k2 does not vanish. Therefore, 
when the frequency fi results in (3.4) being satisfied, harmonic 
waves are attenuated as they pass through the medium. This is 
the proof of the presence of stop bands, and (3.5)2 predicts 
how the dissipation coefficient depends on the frequency. 

We have assumed that the nondimensional frequency fi is 
not an eigenvalue of (2.9),_2, so that the function F(fi) must 
be finite. We now examine the case when fi becomes an eigen­
value of (2.9), or (2.9)2. In the following, we refer to the 
eigenvalue as fi*. 

Proposition 5. U'n (1, fi) and Ufa (1, fi) tend to infinity if 
and only if fi tends to fi*. 

Proof: Let u* = u* (x, fi*) be one of the eigenfunctions 
corresponding to fi*. According to the definition of the eigen­
value, we must have 

w*(0,fi*) = w*(l,fi) = 0 (3.6) 

If we further assume that 

w, =«*(x,fi*) «,=0 6,=M*'(0,f i*)^0 (3.7) 

From (2.44),^2, we find that when a, = 0 and w, (1, fi) = 0 

C/̂  (0 ,0)-oo £// ,( l ,n)-oo (3.8) 

On the other hand, for \u[ (0, fi*)l to become unbounded, it 
is seen from (2.44)2 that for any two nontrivial constants u2 

(0, fi) and u2 (1, fi), the expression 

w,(l,fi*)«2(0,fi)-M*(0,fi*)«2'(0,fi)-0 (3.9) 

Obviously, this is the case only if both u* (0, fi*) and u* (1, fi*) 
tend to zero simultaneously. This also means that fi must be 
one of the eigenvalues of (2.9),„2. 

The eigenfrequency fi* could reside in either the pass band 
or the stop band. This depends on the behavior of function 
F(fi) as fi tends to fi*. We take 
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= lim F(Q) 
n-n* 

(3.10) 

Therefore, as stated in (3.2), if IF* I < 2, $2* is in the pass 
band, otherwise, it falls in a stop band. For nonhomogeneous 
composites, there may exist a special eigenfrequency where 
IF* I becomes infinite. We would call such an eigenfrequency 
a pole in the frequency spectrum. If a pole would occur, the 
dissipation coefficient k2(0*) would become infinite. The 
amplitude of any harmonic waves would be immediately at­
tenuated at this frequency. In the next section, we show by ex­
ample that at this special frequency all eigenfrequencies for 
homogeneous layered composites lie entirely in the pass band. 
Therefore, a pole cannot exist for homogeneous composites. 
This raises a very natural question: For nonhomogeneous 
composites, can a pole actually occur? It has been proved that 
the derivatives of the first and second fundamental solutions 
Uji(x, $2) and Un(x, $2) become infinite at both ends x = 0 and 
x = 1 when $2 is one of the eigenfrequencies. In this case, the 
spectrum function F($2) is approximated by 

F($2)» 
(L^(1,0))2-(I/^(0,Q))2 

U'n(l,Q) 
- +const 

Efl(0,0) 
£//i(l,fl) 

(3.11) 

Thus, if I U}i(0, $2)1 * \Ufl(\, $2)1 as $2 tends to $2*, then 
F*(Q*) tends to infinity. This must indicate the presence of a 
"pole." A more detailed discussion on this interesting pro­
blem is actually needed and will be addressed in another 
paper. In what follows, we give some examples to illustrate the 
differences in the behavior of the dispersion relationship be­
tween homogeneous and nonhomogeneous composites. 

4 Examples and Discussion of Numerical Results 

Example 1. As a special case of the general theory 
presented above, we will calculate the spectrum function and 
associated dispersion characteristics for an elastic composite 
with homogeneous layers. In this case, the mass density and 
elastic moduli are constant within each matrix and fiber layer. 
We then have 

Km=7T*2$22, Vf=TT2Q2, (4.1), 

The first and second fundamental solutions of (2.7)^2 are 
given by 

sin 7r*$2(l —x) sin ir*Qx 
Uml(x,Q)= _;_ _ \ n Una(pc,Q)= ^ _mn (4.2),_2 sin 7r*$2 sin 7r*Q 

rr , ^ sin7r$2(l-x) n sin irQx 
Ufl(x,il)= , ; Un(x,Q)=- 4.3),_2 

sin ir$2 J sin 7r$2 
Therefore, the derivatives of the first two fundamental solu­
tions Umi (x, $2) and U^ (x, $2) are given by 

cos 7r*$2(l-*) 
C//„l(Ar,$2) = -7r*$2 

{//,(JC,G) = -7T$2 

sin ir*$2 

cos TT$2(1 -x) 

(4.4), 

(4.4)2 sin 7rQ 

From (4.2),_2, (4.3),_2, and (4.4),_2, 

t/;„,(0,$2) = -7r*$2cot7r*$2, 

t/,;„(l,fi) = -ir*$2csc7r*$2 (4.5),_2 

6^(0,$2) = -ir$2cot7rQ t/^(l,$2) = -TTQ CSC TT$2 (4.6),_2 

Substituting (4.5),_2 and (4.6),_2 into (2.37), we find the spec­
trum function has the form 

G($2) = — = cos TTQ COS -?r*$2 —X sin TTQ sin 7r*$2 

where X = - \P'»°C™ + pf°cf° I , 
2 L Pf„Cf0 Pmt>cmo J 
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Thus, based on previous arguments, we obtain the spectral 
behavior as follows 

cos kxd = 
G(Q), for IG($2)I<1 

J - l ) " , for 1G(0) I>1 

where n is a positive integer and 

K), for IG($2)I<1 

(4.8) 

k2d = (4.9) 

_ log ( lG(Q) l -V(G7Q)T r : : l ) . f o r IG(Q)I>1 
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Thus, when the relation lG(fi)l < 1 is satisfied, the cor­
responding frequency is in the pass band. Otherwise, the fre­
quencies are in the stop band. These results are the same as 
given by Lee and Yang [5] and Delph et al [7-8]. From these' 
solutions, we see that there are two sets of eigenfrequencies 

fi* n, Q*=n (4.10), 

at which both derivatives £//,(*, fi), and U'mX(x, Q) tend to in­
finity at the boundaries x = 0 and x = 1. After substituting 
(4.10)1_2 into (4.7), we obtain 

G(Q})=(-l)ncos nir* 

G ( 0 * ) = ( - l ) " c o s — 

(4.11), 

(4.11)2 

For these eigenfrequencies, we always have 

l G ( 0 / ) l - s l , I G ( Q ' ) l s l (4.12),.2 

which means that for homogeneous, layered materials, all 
eigenfrequencies are in the pass band. 

Figure 2 shows the spectrum function G(fi) = - ViF(Q) 
versus Q for this composite. In this example we have assumed 
that h„,/hf = 0.25, Dm(0)/Df(0) = 0.02, and pm(0)/p/(0) = 
0.33. These values are the same as those used in the paper by 
Delph et al. [7]. Figures 3 and 4 show the dispersion relations 
Q versus kxd and fi versus k2d, respectively. Figures 5-8 show 
the behavior of the derivatives of fundamental solutions £/,'„, 
(0, 0), [/,;, (1, Q), U'n (0, U), and U'n (1, 0), respectively. 

Example 2. As an example of a nonhomogeneous elastic 
composite, we will consider the following variation of the 
material constants in each of the layers 

Pm (*) = !• 
Po 

D. 

[1+cos TT(2X-1)] 

and 

Dm(x) = \ [l + cos 7r(2x-l)] 

pf{x) = l + — [l+cos 7r(2x- l)] 

Df(x) = l + - — [l + cos 7r(2Ar- l)] 

(4.13), 

(4.13)2 

(4.14), 

(4.14)2 

where p0 and D0 axe, two positive parameters each less than 
unity. 

The spectrum function - F ( f i ) / 2 is shown in Fig. 2 for this 
nonhomogeneous composite. We have assumed the same 
values for the parameters h,„/hf, Dm(0)/Df(0), and 
p„,(0)/pf(0) as in Example 1. The parameters D0 and p0 were 
both chosen to be 0.5. Figures 3 and 4 show the dispersion 
relations, while Figs. 5-8 show the derivatives of the fun­
damental solutions for this example. 

Example 3. As another example of a nonhomogeneous 
elastic composite, we will assume the following quadratic 
variation of the material constants 

Pm(x) = l+Pox(l-x) 

Dm(x) = \+D0x(\-x) 

(4.15), 

(4.15)2 

and 
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pf(x) = l+p0x(l-x) (4.16)! 

Df(x) = \+D0x(\-x) (4.16)2 

where p0 and D0 are two positive parameters each less than 
4.0. For this case, the values of all parameters were taken to be 
the same as in Example 2, except D0 and p0 were both equal to 
2.0. This meant that at x = 0.5, the magnitude of the material 
properties was the same as in Example 2. The spectrum func­
tion, dispersion relations and the derivatives of the fundamen­
tal solutions are shown in Fig. 2, Figs: 3 and 4, and Figs. 5-8, 
respectively. 

Figure 2 exemplifies the effect of material nonhomogeneity 
on the behavior of the spectrum function. The nonhomogene­
ity is seen to affect both the amplitude and phase of the spec­
trum function. Figures 3 and 4 show how the material 
nonhomogeneity changes the basic dispersion relationship. 
The vertical line segments in Fig. 3 are the stop bands and in­
dicate the range of frequency where attenuation of the wave 
amplitude will occur. The nonhomogeneity is seen to affect 
the width of the stop bands, particularly at low frequencies. A 
sharp decrease of the attenuation coefficient k2d at low fre­
quencies can be seen from Fig. 4. The material 
nonhomogeneities which have been considered are seen not to 
affect the high frequency behavior of the spectrum function 
and the corresponding dispersion relationship when compared 
to composites constructed of homogeneous layers. 

Figures 5 and 6 show the derivatives of the fundamental 
solutions U,'„i (0, fi) and U'mX (1, fi). Eigenfrequencies are in­
dicated where the derivatives become unbounded. Figures 7 
and 8 show the derivatives Ufa (0, £2) and Ufa (1, 0). Here 
eigenfrequencies also exist. On comparing these results with 
Figs. 2 and 3, it is seen that the eigenfrequencies lie within the 
stop bands for the nonhomogeneous composites and within 
the pass bands for the homogeneous composites. In addition, 
a "pole" was not discovered during the calculation. Further 
studies to either discover or rule out the presence of such a 
feature is necessary. 

Our attention has focused only on the investigation of the 
dispersion relations for nonhomogeneous composites by com­
bining Floquet's wave theory with Wronskian properties of 

the fundamental solutions of the associated differential equa­
tions. We will defer the calculation of the vibrational mode 
shapes and discussion of further details of Chung's probabili­
ty theory to a later paper. 
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Temperature Distributions and 
Thermal Stresses in 
Asymmetrically Heat Radiated 
Tubes 
The transient and stationary temperature distributions in a tube wall caused by an 
asymmetrical heat flux distribution are evaluated. The results are represented for the 
case of a heat radiating half-space. In addition, the accompanying stress distribu­
tions are computed. 

Introduction 

The mechanical behavior of asymmetrically heated tubes is 
of interest in solar energy and fusion energy generation. In 
both cases the tubes are cyclically heated. For a fatigue evalua­
tion the cyclic temperature and stress distribution of these 
tubes have to be known. For fusion reactors the temperature 
distribution must also be known because creep and swelling 
are temperature dependent. 

While stationary temperature distributions in asymmetri­
cally heated tubes are well-known from analysis [1], non-
stationary distributions are often treated through the 
numerical solution of the equation describing transient heat 
conduction [2, 3] and in the last 10 years by finite-element-
analysis [4, 5]. In this paper an analytical solution of this 
problem is communicated. 

1 Temperature Distribution in Tubes 

1.1 Basic Equations and Boundary Conditions. The basis 
of the following calculations is the equation for transient heat 
conduction 

dT 

~dt~~ 
-xAT (Acd) • (1) 

where !Tis the temperature, t the time, 1/A the thermal con­
ductivity, c the specific heat, and d the density. The Laplacian 
is written in cylindric coordinates as 

1 3 d2 I d 2 

w+— A=-
3p - + - d<p2 (2) 

where the radius p and the angle <p are describing a point in the 
tube wall. The boundary conditions are given by a constant in­
ner surface temperature (arbitrary chosen: T = 0) and the heat 
flux Q at the outer surface. 
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r ( p = r ) = 0 

dT 
— (P=R) = -AQM 
dp 

(3) 

(4) 

1.2 Fourier Components of the Time Dependent 
Temperature Distributions. To solve equation (1) under 
boundary conditions given by equations (3) and (4) it is usual 
to carry out a Laplace transformation to eliminate the time 
dependence. If f denotes the Laplace transformation of the 
temperature T 

{
oo 

T(t)exp(-pt)dt 
o 

(5) 

one obtains from equation (1), considering the initial condi­
tion T(t = 0) = 0, 

d2T dT d2f __ 

dp2 pdp p2d(p2 

with q2 = P/K. 
Since equation (6) is dependent only on p and <p, insertion of 

the usual set-up 

T(p,<p)=f(p).g(<p) (7) 

into equation (6) gives after separation of both variables 

P2d2f . pdf 
- P V = 

-82g 

fdp2 fdp H* gd<p2 

The Laplace-transformed boundary conditions are 

= 0 
D 

D=-AQ 

T{p = r)-. 

D dT 
~(P = R) = 
dp P 

D 

(8) 

(9) 

(10) 

If D„ denotes the nth Fourier component of D, the «th 
Fourier component of the related temperature becomes after a 
lengthy analysis [6] for heat flux distributions symmetrical to 
<p = 0 (only cos-terms) 
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Fig. 1 Time dependent temperature distribution in a tube in front of a 
heat radiating half-space 

T _D R (p/r)"-(r/p)" 
"" " n (R/r)"+(r/R) 

--rD^e-xti 

J'„{akR)J„(akr)[Jn{akp) Y„(akr) - Jn(akr) Y„(akp)] 

a t[( l - n*/alR2)Jl(akr) - J'n
2{akR)} 

for«>0 

and 

Top =D0Rln (p/r) + -KD0 £ e~A! 

Ji(oikR)JQ(oikr)[J0((xkp)Y0(akr) - J0(akr)Y0(akp)] 

ak[Ji{akr)-J\(akR)\ 

for n = 0 

where a* are the positive roots of the equation 

n 

li \Yn (akr)Jn (akR)-J„ (akr) Yn (akR)] 

-ak[Y„(akr)J„ + i(akR)-Jniakr)Yn + l(oikR)]=0 

Journal of Applied Mechanics 

(11) 

(12) 

J„ and Y„ are the Bessel functions of order n. 
The case n = 0 is also treated in [1]. The results are in agree­

ment. The general solution is given by 

T(p,<p,t) = ^ Tm (p,t) cos rap (14) 

1.3 Temperature Distribution. Since the Fourier com­
ponents of the temperature are known, any possible heat flux 
distribution which is symmetrical with respect to <p = 0 can be 
evaluated. Here only results for a tube in front of a heat 
radiating half-space will be communicated. In this special case 
the heat flux is given by 

G(^) = -^~G(0) [ l+cos^] (15) 

The Fourier series has only two terms and evaluation becomes 
very simple. Figure 1 shows the time dependent temperature 
distribution for a thick-walled tube with R/r = 2 for <p = 0,7r/2 

(13) and w. The temperature values are normalized to the 
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temperature of the hottest point on the outer surface (<p = 0, 
P = R). 

The stationary temperature distribution follows from equa­
tions (11) and (12) for f— oo 

T00(p,<P)=-^-AR[lnp/r+ R/r + r/R cos yj (16) 

Figure 2 gives a representation of this relation in isotherms. 

2 Thermal Stress in the Tube Wall 

Thermal stress calculations can be performed by application 
of the temperature results reported in Chapter 1. This will be 
shown also for the case of a heat radiating semi-infinite body. 
To simplify the notations the geometrical data are normalized 
to the inner radius r by setting r= 1. 

Axial strains and deflections caused by bending moments 
should be prevented, i.e. ez = 0. The elasticity equations are 

- K l - z O ^ + ^ - O + j O a T l 

[(l-/*)e „+ |*e p - ( l+ / i )«71 

Q 

T/T(R.0) = 1 

< v = 1 + 

(1+MX1-

E 

( l + / i ) d -

E 

-2/t) 

-2n) 

(17) 
/* 

Fig. 2 Isotherms in case of a heat radiating half-space 

where apv and epv are the shear stress and strain, /i is Poisson's 
ratio, a the coefficient of expansion, and E the Young's 
modulus. 

Two equilibrium conditions are given by 

da 

dp p 

u=AlP+A2p~l 

v = 0 

for n = 0 (23) 

dp 

dtp 

1 flo-„ 

g'-g*=o 

+ - ^ = 0 
3<p p 

(18) 

and 

l—4 î _ _, , 
u=Ai p2+A2p'2 + 

5 — 4/z 

. 4 A 
—/4 , j - ^ 4 l n p 

The strain components can be expressed by the displacements 
(w, y) in cylindric coordinates 

du dv u 

dip p 

2 V p 

du dv 

o / 

L3-4/x 

for n = l (24) 

D = ^ 4 i P 2 + ^ 2 P ' ~ 2 + ^ 3 + ^ 4 ' « P 
A particular solution of the non-homogeneous system can be 
evaluated by the method of "variation of parameters". 

For TI = 0 only a single differential equation follows. Its 
solution is 

• , / ( 1 9 > 

dtp dp p 

Since the temperature distribution is given by a Fourier series 
it can be concluded that the displacements are 

u= HuniP) c o s n9\ v= J^v„(p) sin n <p (20) 

For n = 1 the respective displacements are given by 

a l+n I" 1 

By introducing equation (20) into equations (17-19), one 
obtains a system of two coupled differential equations 

2 ( l - ^ ) 7 2 2 " 

1-2/* J"" 1-2/* 
D„"p + y„'p- j^l+-

'"1 n 3-4/* 
-J v„ - 1 _ 2 _ />«„' - 7! - — — w„ 1-2/x 17; = -

"/ = « - T£d£ 
1 —/* p J i 

respective displacements a 

l - /x Lp2 Ji Ji 

' ( 1 ) ( ^ + i ^ r - 4 / ^ - 5 _ 4 . 

(25) 

T 
1-4/* 

"„"p + "„ ' p - [1 + 

1+/* 

~ ~ 1-2/* 

( l -2/*)7? 2 

2apnTn + l - r ' ( 1 ) (^ -^- 4 ^) (26) 

«„+-2{ l - / i ) J " 2(1-/*) Pfn 

3 - 4 u 1 + u 
-« - - . v=- <*P2Tn 2(1-/*) l - / t 

The solution of this system will yield the displacements and 
using equations (17) and (19), the related stresses in the tube 
cross-section. Application of the general set-up. 

v=AP
k u=Bpk (22) 

gives the solution of the homogeneous form of equation (21) 

118/VOI.53, MARCH 1986 

The unknown constants Au A2, A3, A4 have to satisfy the 
boundary conditions at the outer and inner surfaces 

ffp(JR)=ffp(l) = a w ( J R ) = a w ( l ) = 0 

For n = 0 one can find 

aE \p2-\ 1 f* 

(27) 

u„o-

-Vo-

1 h\s±7\'**-?\'rt> 
<Vo - ° 

? T P 2 + I 1 f" i f 1 
(28) 
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Fig. 3 Instationary circumferential stresses in a tube in front of a heat 
radiating half-space 

and for n = 1 the following expressions hold 

-5-4/ t 

aE r i ar 
+ - I - T - — (D(/0- J + 1 - /x L 8 dp V 3 -4ft 5-4/x ' ) 

1 f 
r £ 2 r ^ 

PJ Ji 

ail / 2 1 - 2u 
v4,p-2/42 Jo~3-- 3-4/x 

aE ( 

aE f 1 dT / , 6-4/* , 1 \ 

1 f , 
r £2Trf£ 

PJ Jl 

(29) 

1+/* \1 1+/* V5-4/x " 1 K ' " ' ^ 3-4 / i 
w4,p + 2y42p_3+-

- ^ - ^ — ( ^ ( - T — r - P-P — ; — A — P 1 
~ix L & dp V 5 - 4/t 3-4ft / 

I f , 1 ET 
+ — \ ?Tdl - a -

with 

-4i = -
1 l + / i 

2 \-n 

1 
2 2 

1 + j W 

1-M 

£27tf£ 
i a r J I 

— — (l)-(5-4rf———— 
8 dp i ? 4 - 1 

i ar I. w « 

^4,J-L±fLiz:(1) 

Journal of Applied Mechanics 

Fig 4 Stationary stress distributions for different values of <p 

Taking into account the first terms of equations (11) and 
(12) the stationary stress components can be written after 
dropping the restriction r= 1 (i.e., R^R/r and p—p/r) as 

I aE • \p2-r2 1 / , R 

I - ix L Rl - r2 p2 \ r " joO " 4 1-

1 uE 
-Vo -

R2 + A-2ln— r-r+l 
/ r p1 

aE . \p2 + r 2 \ / ^ R 

R2 + r2)-2\n-~- + -^—1] 
(30) 

% = 0 ; az = n (ap0 - <Ty0) - aEAQ0R In 

and 

a £ . r /• pr R2 ,~| 

«£• . T r pr R2 ,~1 

l - / x L p r2+Rl R2 + rz J 

1 afi 

(31) 

aZl=^K1+^1)-«EA6^(-f-^-)/(4 + ̂ -) 
The stresses are then given by 

<V=<W0+ffWl
 s i nv (32) 

By use of equations (11), (12), (28) and (29) the transient 
stresses can be evaluated. Figure 3 shows the circumferential 
stresses av as a function of the normalized time for a thick-
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walled tube (R = If). Maximum stress values are reached in the 
stationary case. Figure 4 represents the stationary stress 
distributions for av, ap, apip and different values of <p. It is well 
known that temperature components T„ with n > 1 have no 
influence on stationary stresses in tubes [7]. Thus it is possible 
to compose all stationary stress distributions by use of the 
components with n = 0 and n = 1. 

3 Summary 

The Fourier components of the instationary temperature in 
an asymmetrically radiation heated tube have been evaluated. 
As a result the temperature can be composed for an arbitrary 
heat flux distribution. The situation of the heat radiating half-
space was outlined. From the temperature distributions 
related thermal stresses are calculated. It was found that max­
imum stresses occur in the stationary case. 
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On the Wave Propagation in an 
Elastic Hollow Cylinder With Long-
Range Cohesion Forces 
After a brief derivation of the formula for the nonlocal moduli, Fourier transforms 
of the stress components in their nonlocal aspect are established. Satisfaction of the 
traction-free boundary conditions leads to the frequency equation of the problem. 
A particular case involving longitudinal Lame modes is analyzed in more detail. A 
numerical example solved shows a considerable decrease of the speed and the 
frequency of the short waves as compared with those of long waves studied in the 
classical theory. 

Introduction 
Wave propagation in cylindrical rods of circular cross 

section is, as is well known, one of the classical subjects of 
elastodynamics, initiated and rigorously treated in the papers 
of Pochhammer and Chree about a hundred years ago. Since 
then, various facets of problem were examined in numerous 
publications, the reviews of which may be found in the books 
and articles of Kolsky [1], Ewing, Jardetsky and Press [2], 
Abramson, Plass and Ripperger [3], Miklovitz [4, 5], and 
Achenbach [6], to name only a few. All of this work was done 
within the framework of the conventional (whether linear or 
nonlinear) theory of elasticity, one of whose principal 
postulates states that the interactions of particles in solids 
represent contact forces with the range of action limited to 
zero. 

Unlike the conventional (local) theory, the nonlocal theory 
of elasticity, or more broadly the nonlocal continuum theory 
of deformable bodies, developed in the third quarter of this 
century1, asserts that the cohesion forces are long-range 
forces, and on account of this the thermomechanical state at a 
point of the body is influenced by all of the particles of the 
body. More explicitly this means that the stress at the ob­
servation point X, which in the classical elasticity is a function 
of the deformation at X, in the nonlocal theory becomes a 
functional of the deformation field at every point X' of the 
body. This standpoint is not as academic as it may seem at the 
first sight, inasmuch as according to the experimental 
evidence interactions of particles reach occasionally their 
fifteenth closest neighbors. In addition to that, solutions of 
problems treated in the context of the non-local elasticity 

Mostly due to the efforts of Edelen, Eringen, Kroener and Kunin (cf., e.g., 
[7] through [10]). 
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display occasionally an impressive agreement with the data of 
experiments and observations. As illustrations of this fact, the 
following may serve as a few examples: 

1 Contrary to the predictions of the classical theory of 
elasticity, and in agreement with experimental evidence, the 
nonlocal theory concludes that elastic waves in unbounded 
media are dispersive. This new kind of dispersion has a 
strictly constitutive character and was found for plane waves 
in an infinite medium [8], for the Rayleigh waves [21], and for 
the Love waves [11]. 

2 Likewise, the stress singularities at the tips of the 
Griffith cracks predicted by the local elastic theory (as a result 
of the inadequacy of this theory to describe physical 
phenomena on a submicroscopic scale) become removed in 
the nonlocal theory, and replaced by regular stress 
distributions. The latter display a striking agreement with the 
conclusions of the atomistic theory [22].. 

3 Similar corrections are suggested by the nonlocal theory 
with regard to the classical singularities at the cores of 
dislocations. Here not only the infinite stress concentration is 
smoothed out, but also some interesting byproducts are 
obtained like, for example, the theoretical shear strength of 
the materials that compares favorably with the data of ex­
periments [23]. 

4 In the case of seismic waves, the nonlocal elasticity 
predicts a lower bound for the speed of Love waves that 
agrees better with the seismological observation than the 
bound inferred from the classical theory [11]. 

5 So far as the fluid dynamics is concerned, the secondary 
flow pattern in rectangular pipes found experimentally agrees 
well qualitatively with the pattern calculated on the basis of 
the nonlocal dynamics of a viscous flow [24]. 

6 Finally, it is worth noting that the nonlocal theory of 
elasticity serves as a rather natural link between the classical 
local elasticity and the atomistic theory of lattice dynamics of 
Born and Von Karman. In fact, by bringing the equations of 
nonlocal elasticity into a discrete form, one arrives at the 
equations of the lattice dynamics (cf., e.g., [18], equation 
(2.5)). 
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Although a final verdict on the usefulness of the nonlocal 
elasticity may be brought in only after further theoretical and 
experimental studies, this author - prompted by the foregoing 
and similar facts - examined recently the nonlocal aspects of 
wave propagation in a solid circular cylinder [12]. This 
problem is, in a certain sense, a special case of the problem 
analyzed in the present paper but with different boundary 
conditions. It was found in [12] that in addition to the known 
configurational dispersion, the non-local theory predicts a 
second type of dispersion associated with the constitution of 
the matter and determined by the constitutive equations. 

The present note intends to extend the study [12] to hollow 
circular cylinders. To save on space, some calculations 
common to both cases are not reproduced in the present text. 
When the need arises, however, we refer to the appropriate 
place in [12]. 

With respect to the hollow cylinders, the conventional 
features of the wave propagation in such cylinders were 
examined in the comprehensive articles by Greenspon [13], 
Gazis [14], [15], Bird et al. [16], and Armenakas et al. [17],2 

among others. 
We first recall the derivation of the dispersion equation in 

the case of longitudinal waves in an infinite space that leads to 
the formula for the nonlocal moduli in terms of the wave 
number. We then derive the equations for the Fourier trans­
forms of the stress components for a hollow cylinder with 
nonlocal material characteristics. Satisfaction of the boun­
dary conditions prescribing traction-free surfaces of the 
cylinder leads to the heavily transcendental frequency 
equation of the problem. 

Two particular cases are considered, one of which involving 
Lame's longitudinal modes is treated in more detail. A 
numerical example, showing a considerable decrease of the 
wave speed and frequency of short waves as compared with 
those of long waves studied in the classical theory, is 
illustrated graphically. 

1 Nonlocal Moduli 

In order to determine the elastic nonlocal moduli, we 
imagine a plane longitudinal wave to propagate in an infinite 
elastic nonlocal medium. Since the nonlocality of the medium 
brings about a (constitutional) dispersion of the wave, the 
associated dispersion equation may be compared with the 
corresponding equation derived on the basis of the Born-von 
Karman lattice dynamics. A longer calculation (see [12], pp. 
191-192) yields 

ka 

2ja'(/c)-j-X'(/c) 1 

2/X + X V2~7T 

sin2 — 
2 

L ( T ) " J 
(1-1) 

and X are Lame's constant, /i'(fc) and X'(Ar) the 
transforms of the nonlocal moduli, k the wave 
and a the interatomic spacing. The foregoing 

where n 
Fourier 1 
number, 
equation rests on the assumption that the interactions of 
particles are limited to the closest-neighbor atomic planes (cf., 
[18], equation (1.3)). 

2 A Hollow Circular Cylinder 

Let us now consider an infinitely long hollow circular 
cylinder whose inner and outer radii are c and d, respectively. 
The cylinder is referred to a cylindrical r, 4>, Z coordinate 
system, and a plane longitudinal wave is transmitted in the 
z-direction along the axis of the cylinder. Referring for details 

Mainly from the point of view of shells. 

of calculations to the paper [12], pp. 192-194, we note that in 
the Kroener-Eringen representation the nonlocal constitutive 
equations become: 

T,, = X0 + 261 + 2fi-£ + | v | \ '( | r ' - r I, 

\z' -z 1)0' +2//( Ir'-rl, \z' -z\)~]dv', 
or J 

TU=\e + 2n- + j ^ [ \ ' ( l r ' - r l , 

\z' -z 1)0' +2n'( lr' - r I, \z' ~z l )^] r fw' , 

rzz = \6 + 2^y + j ^ [x ' ( I r ' - r l , 

\z' -z 1)0' +2M ' ( lr' - r I, \z> - z |) ^ ]dv>, 
oz J 

/ d u dw\ f 

../du' w' \ , , 
(2.1) 

where V is the volume of the rod, r the position vector, 
u' = «'(/•', z ' ; Oandw' = w ' ( r ' , z'\ 0 the displacement 
components, and 0 the dilatation. We subject the just-written 
equations to the double Fourier transformation (designated 
by the overbar) and obtain, 

with 

u 

Trr=a\U,r+a2 lkd2 W, 
r 

ii 
Tu=a\ ~ +a2Uir-ika2w, 

frz=a3(wyr-iku), 

a i = X + 2Ai + (27r)1/2(X'+2/i'), 

« 2 = X + (2TT)1 / 2X', 

a3=/x + (27r) l /2/i'. 

(2.2.1) 

(2.2.2) 

(2.2.3) 

(2.3) 

As shown in detail in Section 2 in [12], pp. 194-196, the 
governing equations of the problem are 

where 

r + - 0 i , + 720 = O, 

},„.+ - f i r + ( 7
2 - — ) n = 0, 

0 = ii, H ikw, 
r 

Cl= -(iku+w r) , 

(2.4.1) 

(2.4.2) 

(2.5.1) 

(2.5.2) 

u and w are Fourier transforms of the radial and longitudinal 
displacements, respectively, and 

Yf 
h a3 

(2.5.3) 

A lengthy but standard calculation leads to the following 
solution of the system (2.4.1) and (2.4.2): 
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0.237 

Fig. 1 Nondimensional frequency and wave speed versus the non-
dimensional wave number and the nondimensional nonlocal modulus 

« = C171(7 lr) + C2y1(7 l/-) 

+ C3J1(y2r) + C4Yl(y2r), 

w = Ci—J0(ylr) + C2—Y0(ylr) 
7i 7i 

-C3^J0(y2r)-C4^Y0(y2r), 

(2.6.1) 

(2.6.2) 

where /,-, Yh j '=0, 1, are Bessel functions of the first and 
second kind, respectively. Substitution of the above equations 
into the equations of the stress components relevant to the 
present investigation gives, 

rn = C, \a4J0 ( 7 , r ) - 2 o 3 — - — J 

+ C2[a4Y0(y1r)-2a3^^]+2aiCi[y2J0(y2r) 

Jdyir) J + 2a3C4 | j 2 Y0 (y2r) J , 

fn = ia3 [ - 2kCx 7, ( 7 l r ) - 2kC2 Yx (7 l r) 

+ aiC3Ji{llr) + asC4Yi(y2r)\ 

where 

(2.7) 

(2.8) 

«4 
k2 

7i 
a<=i-k. (2.9) 

The assumption that the inner and outer surfaces of the 
cylinder are free from external tractions, that is, in symbols, 

(2.10) 
frr(c)=frr{d) =0, 

Trz(c)=frz(d)=0, 

furnishes a system of four homogeneous linear algebraic 
equations for the four unknown coefficients C,, /= 1, 2, 3, 4. 
A nontrivial solution of the system requires, naturally, the 
vanishing of the principal determinant of the system. 

A general solution of the associated frequency equation, 
which even in the classical case requires a comprehensive 
study (cf., e.g., [14]), is not of our primary interest here. 
Instead, we wish to confine our attention to a brief 
examination of two particular cases of the problem. The first 
of these is rather trivial; the second one permits us to make 
some observations as to the impact of the nonlocal treatment 
on the dispersion of a certain type of wave, (a) We first note 
that if the inner radius of the cylinder c—0, then in order for 
the stresses to remain bounded at /• = (), one has to set 
C2 = C 4 = 0 . The equations (2.7) and (2.8) then (after an 
appropriate translation of notation) reduce to the equation 
(2.12) derived directly in [12] for a solid cylinder. A more 
detailed analysis of this case is found in [12]. (b) The second 
case deals with longitudinal waves known as the 
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equivoluminal Lame modes ([19], p. 795). These waves are 
associated with the value of the Lame constant X = 03 and 
72 = k2. Combining this with the second pair of the boundary 
conditions (2.10), we find that a2-a5 =0, a, =2«3, pb32/ax 
= k2, 71 =0, C2=0, and ?,.;,= 0. The remaining two of the 
boundary conditions now provide the characteristic equation 
of the problem, 

Jl(y2c)Y{ {y2d)-J[{.y2d)Y[(y2c) = 0. (2.11) 
The foregoing transcendental equation has the same form 

as the one derived by Gazis ([14], equation (34)) in the 
framework of the classical elasticity; the only difference 
between the equations lies in the presence of the nonlocal 
modulus jX' in the coefficient al. Proceeding further, we find 
from the relation pcoVa, =k2 (after appeal to the equation 
(1.1)) for very long waves cn0n|0c/c2l0c = 1.41, and for ad­
missibly shortest4 waves cnonloc/c2 ioc =0.91, where cnon,oc is 
the actual wave speed and c2 loc is the speed of conventional 
equivoluminal waves. 

For a thin cylindrical shell for which h/c< <1, we may 
assume that y2c>>\ and, consequently, y2d>>\ where 
d=h + c. With this in mind, we are permitted to approximate 
the development of the Bessel functions appearing in (2.11) by 
the first two terms of their Hankel asymptotic series (cf., e.g., 
[20], formulas 808.4 and 812.4). A lengthy calculation leads 
to the equation 

7yih 
smy2h-~1—cosy2h = 0, (2.12) 

ay2ca 
which, after assuming that y2h = nir + e and e< <1, n = 1, 2, 
3, . . . , (cf., [15]) gives finally the value of the frequency co in 
terms of the ratio h/c: 

^ p h L 8 («TT) 2 V c J J ' 

n = l , 2 , 3 , . . . , (2.13) 
where again 

— = ^ I O C ( I + V 2 T T ^ - ) . (2.13a) 
P ^ A1 ' 

The graphs in Fig. 1 depict the nondimensional wave speed as 
well as the nondimensional wave frequency (the latter for the 
first three modes) as functions of the product ka (£ = wave 
number, a = lattice constant) for the first Brillouin zone,5 

0<ka<w. The value of the thickness h is assumed bo be equal 
0.1c. It is seen that for the waves of the minimal length 2a, the 
wave frequency drops to 0.64 of its value established in the 
conventional treatment. The same decrease is observed in the 
value of the wave speed. 

3 Concluding Remarks 

The following few remarks sum up the main differences 
between the local and the nonlocal aspects of the problem 
under discussion: 

(a) Apart from the configurational dispersion, registered 
by the classical theory, and associated with the presence of the 
boundaries, the nonlocal theory discloses a new type of 

We extend this assumption to the nonlocal material, that is, we also set -
X '=0 . 

As shown in lattice dynamic, the wave frequency being a function of the 
wave number, the wave length is not completely determined for the given 
frequency. This ambiguity is avoided if the wave length 1 is restricted to the 
interval 2a < 1 < <x>, where a is the lattice parameter (cf., e.g., [23], p. 6). 

As noted in the preceding footnote, there is 2 a s l s ° o . Since l~2ir/k 
(£ = wave number), then the ambiguity mentioned before disappears if 
0 < ka s T; the interval [0, it] of the accepted variability of to is known as the 
first Brillouin zone. 

dispersion - the constitutive dispersion - distinct from the 
former, and associated with the internal structure, or con­
stitution, of the matter. 

(Jb) The nonlocal theory plays the role of a link between 
the classical elasticity and the atomistic approach: it converts 
into the conventional theory in the limit of the (infinitely) long 
waves, but turns into an atomic scale theory in the limit of the 
short waves and the discretization of the equations of motion. 

(c) With regard to the wave velocity, in the range of short 
waves (beyond the reach of the classical theory), the nonlocal 
theory predicts the wave velocity less than that of the con­
ventional long waves. In particular, in the case discussed in 
Section 2, for short waves the wave velocity (and the wave 
frequency) drops to 0.64 of its value established by the 
conventional theory. 
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Direct Measurement of Flexural 
Strains in Plates by Shearography 
Strains in a flexed plate are directly related to the second derivatives of the plate 
deflections. A technique is developed which enables shearography to measure 
second derivatives of deflection directly. The technique is based on generating 
fictitious carrier fringes in the form of periodic linear fringes of uniform spacing. 
The carrier fringes are distorted when the plate is deformed. The change in the pitch 
of the carrier fringes due to deformation yields the flexural strain directly. The pitch 
of the carrier fringes is equivalent to gage length. 

Introduction 
Plates are common structures used in engineering to resist 

bending loads. Experimental techniques are often used to 
measure strains in plates of complex geometry and loading 
conditions. Mechanical and electrical strain gages indicate 
strain at the two faces of the plate. From these strains, 
moments can be computed. However, this information can 
only be obtained on a point-by-point basis. Optical methods 
are more interesting since they can give whole-field in­
formation and no contact with the plate is required. These 
optical methods are classified into two categories: non­
coherent light methods and coherent light methods. The 
noncoherent light methods are the moire method [1,2] and 
the classical optical method [3]; the coherent light methods 
included holography [4, 5] and speckle interferometry [6]. 
The practical use of the moire method is limited by their 
deficiency in sensitivity. Holography, one the other hand, is 
too sensitive for many practical applications. Furthermore, 
holography measures deflections; therefore, it is necessary to 
differentiate the measured deflections twice [7, 8]. The work 
of differentiation is not only laborious but also creates a 
major source of error. Speckle photography [9, 10] and 
speckle-shearing interferometry [11-13], including 
shearography [14, 15], measure the slopes of deflections. 
Thus, one differentiation is still required to obtain the 
flexural strains. 

Several methods have been suggested for obtaining the 
flexural strain directly [16-17]. However, all the proposed 
methods possess one or more severe limitations. Con­
sequently, these methods demand complex experimental 
apparatus, complicated fringe interpretation, or apply only to 
special surfaces such as a mirror-like surface. Shearography 
seems to be a practical tool for the flexural strain 
measurement, as the experimental design is very simple, no 
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OBJECT 

Fig. 1 Schematic for generating carrier fringes by shifting virtual light 
source 

surface treatment is needed and the fringe patterns produced 
are of high quality. 

This paper describes a new technique of shearography that 
allows the second derivatives of deflections in plates to be 
measured directly. 

Method 

The experimental procedure is illustrated in Fig. 1. The 
object under study is illuminated by a point source of coherent 
light through a lens as shown, and it is imaged by an image-
shearing camera. If a photographic plate at the image plane of 
the image-shearing camera is doubly exposed with the 
illuminating lens being translated along the illumination 
direction, a "fictitious fringe carrier" not due to the 
deformation is formed. The carrier fringes are in the form of 
linear fringes of equal spacing. If, in addition to the lens 
translation, the plate is deformed between exposures, a 
perturbed linear fringe carrier is obtained. The local per­
turbation depends on the local deflection gradients. The 
change of the spacing is directly related to the second 
derivatives of the plate deflections. Therefore, the flexural 
strains are directly determined by measuring the spacing of 
the fringe carrier. 

Generation of Carrier Fringes 

The linear carrier fringes are generated by translating the 
illumination lens. When a point light source is located inside 
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the focal length of the lens, a virtual image of the point source 
is formed. This is equivalent to a spherical wave diverging 
from the virtual point in [18]. If the lens is translated, the 
virtual point source is also translated. The translation of the 
virtual point source induces a quadratic phase variation of 
wavefront across the object's surface. The image-shearing 
camera measures derivatives of the phase variation, and the 
derivative of a quadratic phase change is a linear variation. 
Therefore, a set of linear fringes are produced by the lens 
translation and the fringe lines are perpendicular to the 
direction of shearing. Since this set of fringes is not due to 
deformation of object, it is referred to as "fictitious carrier 
fringes." 

Analysis of Carrier Fringes 

As illustrated in Fig. 1, shearing in the .^-direction through 
the image-shearing camera is considered. The intensity of the 
total light field on the image plane, Ix has been obtained in the 
general form in [14, 15] as 

Ix = 2a2(l+cos<j>x) (1) 

where 4>x is a random phase angle. Equation (1) represents a 
random intensity variation pattern commonly known as 
speckle pattern. 

When the light source position is shifted from S to Sd, as 
shown in Fig. 1, the relative phase shift Ax between the two 
sheared wave fronts induced by the relative optical path 
change SI (see the Appendix) can be obtained as 

2TT 
A,= y ( 5 / ) = 

2ir 
(ksx5x) (2) 

where X is the wave length of a coherent light, k{ =(RS — 
Rd)/RsRd (see Appendix) and Sx is the magnitude of 
shearing. Therefore, with the translation of the light source, 
equation (1) is modified as 

/ ; = 2 « 2 [ l + c o s ( ^ + A.v)] (3) 

If a photographic film at the image plane is double exposed 
sequentially to Ix and Ix< the total energy recorded can be 
expressed as 

IT = 4 + / ; 
= 2a2 [2 + cos0x + cos(0x + A )] (4) 

where the energy is recorded linearly. Equation (4) represents 
a frequency variable fringe; this type of fringes is not readily 
visible as explained in [14, 15]. However, equation (4) can be 
rewritten as 

IT = 4a2 1 + cos 
2<I>X + AX 

cos — I] (5) 

The second term in equation (5) represents the amplitude cos 
(2<j>x + Ax/2) of high-frequency random carriers modulated by 
the low-frequency factor cos Ax/2. Fringe lines are areas 
where the high-frequency carriers are nulled. This 
corresponds to 

that is 

A* 
cos — = 0 

2 

2TT . 
Ax = (2n + l ) i r = —(£,*)&<: (« = 0,1,2) 

A 

(6) 

(7) 

where n is the fringe order. Therefore, fringes are lines of 
equal Ax. 

It should be emphasized that this type of fringe pattern is 
different from the conventional fringe patterns. Conventional 
fringes are loci at which intensity is minimal. The con­
ventional fringes are readily visible to the eye, whereas the 
present frequency variation type fringes are not visible. 
However, these invisible fringes can be converted to the 

visible intensity variation type by an optical high-pass Fourier 
filtering process. 

Equation (7) shows that the fringe pattern produced by the 
translation of the illumination source consists of periodic 
linear fringes. The fringe lines are perpendicular to the 
shearing direction x and their pitch is \/kxdx. This fringe 
pattern is referred to as "carrier fringes." 

When the object is deformed in addition to the point light 
source translation, the relative phase shift A ' x induced by the 
relative optical path change for the deformation case (Ap­
pendix), is obtained as 

K - £(*/•) 
dv ( du 

^X+ATx+B-3x 
. dw 

dx) 
+ C—)5x (8) 

_ 2TT 

X V ' dx dx dx > 

where A, B, and C are sensitivity factors which can be varied 
(see Appendix). Equation (3), therefore, is modified as 

/ ; = 2 a 2 [ l + c o s ( A + A;)] (9) 

If a photographic film at the image plane that is doubly ex­
posed to an object before deformation and again after 
deformation with the light source position shifted, it records 
the total energy given by 

I'T = Ix+Ii 
= 2a2[2 + cos<^+cos(</>_c + Ax)] (10) 

Equation (10) is the same type as equation (4), thus we can 
rewrite equation (10) as 

/ f = 4 « 2 [ l + c o s ( ^ + ^ ) c o s ^ ] (11) 

Again, fringe lines are areas where the high frequency carriers 
are nulled. That is 

A ; „ 
c o s — = 0 

2 
(12) 

or 
dv 

t 

' dx 

(13) 

27r / du 
A'x = (2n+\)it = — (kxx+A—~ +B 

X \ ox 

dw\ 
+ C — )&c(rt = 0,l,2) 

dx / 

Equation (13) represents a perturbed carrier fringe. The local 
perturbation is related to the second derivatives of 
displacement. For measuring flexural strains in plate 
structures in which the out-of-plane displacement dominates, 
equation (13) becomes 

2ir / dw\ 
( 2 « + 1)TT= — ik,x+C-— \5x (14) 

Direct Flexural Strain Measurement 

Flexural strains in a flexed plate are related to the second 
derivatives of the plate deflection by 

, d2w , d2w „, d2w 
=hW'e>=hW'yxy=2h~ted-y 

(15) 

where h is the distance from the neutral plane to the plate 
surface. 

The second derivatives of the plate deflection can be 
determined directly by measuring the change in pitch in the 
deformed carrier fringes. 

If we consider the difference between the fringe order / + 1 
at position xi+l and / at position x, in equation (7), we can 
define the fringe pitch as follows: 

X 
p=xi+l-x,= k,5x 

(16) 
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Fig. 4 The second derivative distribution of deflection along the
centerline
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Fig.2 Carrier fringes without deformation

Fig.5 The moire fringe pallern of the second derivative of deflection

Fig. 3 Carrier fringes with deformation Should the shearing be in the y-direction, equation (20)
becomes

In equation (16), '" k l , and ox are known constants.
Therefore, the pitch of the carrier fringe for the case where
there is no deformation can be obtained as the constant pitch
in the direction of shearing.

Considering the carrier fringe positions Xi and Xi+ I for the
deformed carrier fringes, the fringe spacing p* is defined as
the same manner as equation (16). It can be written as

p* =x, 1 -x. = _"__ .£ (awi
+] _ aWi) (17)

1+ 1 k]ox k l ax ax

For simplicity, let us assume that the object is illuminated
and observed from a large distance and both along the z­
direction. The sensitivity factors of equation (17) can be
approximated by C= 2, and equation (17) becomes

( aWi+ 1 _ aWi) = ~ (~_p*) = k, (p_p*) (18)
ax ax 2 klax 2

We can consider p*as the small increment &, then

(
aWi+ 1 _ aWi)/&= k 1 (p-p*) (19)

ax ax 2 p*
If & is small, the right-hand side of the above equation
approximates as a2 wiax2 , the second derivative of deflec­
tions.

Therefore

a
2
W=(aWi+ 1 _ aWi)/&=_~(P*-P) (20)

ax2 ax ax 2 p*
Equation (20) shows that it is possible to obtain the second
derivative of deflection by measuring the deformed carrier
fringe pitchp* and the undeformed carrier fringe pitchp.

02 W k l (P*-p)
ay2 = - 2" ----;;.- (21)

To determine a2 wlaxay, shearing in a third direction is
needed, say in a direction inclined at an angle a with the y­
axis. This "rosette" information allows 02 wiaxay to be
calculated with the following equation

a2 w a2 w a2 w a2 w
-02 =-02 sin2a+ -aa sin2a+ -2 cos2a (22)
x" x x y ay

Experimental Demonstration

To verify the validity of the technique, a square plate made
of aluminum and of dimension 110 mm x 110 mm x 2 mm
was chosen for the study. The plate was built in along all
edges and subjected to a uniform pressure of 3.45 KPa. An
argon laser emitting light of wavelength "=0.515I-tm was
employed as the coherent light source.

The aluminum plate was illuminated and observed at a
large distance normal to the plate so that the sensitivity factor
A =B=O and C=2.

Figure 2 shows an undeformed carrier fringe pattern ob­
tained by translating the illuminating source between the two
exposures. The fringes were made visible by a high-pass
optical Fourier filtering technique. Figure 3 shows the
deformed carrier fringes. In both fringe patterns shearing in
the y~direction was used. a2 w/ay2 along the centerline of the
plate was deduced with equation (21). The comparison of the
experimental results with the theoretically expected results is
shown in Fig. 4. Good agreement between the results of the
two approaches is seen. Hence, the validity of the proposed
technique is confirmed.
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Another avenue of obtaining the second derivatives of 
deflections is to form a secondary moire fringe with two 
identical deformed carrier fringe patterns, one shifted relative 
to the other. Figure 5 shows a moire fringe pattern depicting 
d2w/dy2 distribution in the square plate. Here, the carrier 
fringes enchance the visibility of the moire fringe pattern. 

Conclusion 
A technique employing shearography is developed that 

allows direct determination of the second derivatives of plate 
deflections and thus the flexural strains. Though the outputs 
of the technique are fringe pattern, it does not require 
identifying fringe orders. Instead, only the measurement of 
the carrier fringe spacing is needed to deduce the data. It 
should be pointed out that the differentiation process of 
shearography is a finite difference approach. 

The removal of the need to identify fringe orders lets 
shearography acquire a high potential of being developed into 
a computer based automatic data reduction system. 
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Fig. 6 Optical path diagram for analyzing carrier fringes 

A P P E N D I X 

Analysis of Carrier Fringes 

The optical path difference for the ray travelling from the 
light source Sd(xd,ydza) and S(xs,ys,zs) to the camera 
O(x0,y0,z0)

 v*a t n e point P on the object, is obtained as 
follows: 

Before Deformation. 
SP = [(xs-x)2+(ys-y)2+(zs-z)2]l/2 (Al) 

R,[l + 
x2+y2+z2-2xxs-2yys -2zzs 1' 

2Rl J 

SaP = l(xd-x)2 + {yd-y)2 + (zd-z)2]l/2 (A2) 
x2 + y2 + z2 - 2xxd -2yyd- 2zzd' Rd[l + 

Where Rj =x2+y2
s + Z2

s and R2
d=xd+y2

d+z2
d. The fore­

going equations are obtained by neglecting high-order terms 
in the series expansion. Therefore, the optical path change / 
from S and SD to the point on the object is 

I(x,y,z) = (SdP+OP)-(SP+OP) 

= R„-R,+ ^kiR2 (A3) 

where OP is a constant due to no deformation 

k, = \^,R2=x2+y2 + z2 

RsRd 

For the neighboring point P\(x + bx,y,z), the optical path 
change /, (x+5x,y,z) can be obtained as follows: 

h(x + bx,y,z) = (SdPi+OPO-iSPi+OPt) 

= Rd-Rs+ -ki[(x+Sx)2+y2+z2} (A4) 

Small terms in the foregoing equation are neglected. 
Therefore, the relative optical path change is expressed as 

67 = /, (x + bx,y,z) - l(x,y,z) =-kl (2x8x + 8x2) 

= k]x5x (A5) 

where 5x2 can be neglected if the magnitude of shearing 8x is 
small. Consequently, the relative optical path change is given 
by the linear function in the direction of shearing. Similarly, 
inthej-direction, 

5l = kty8y (A6) 

128/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



After Deformation. P(x,y,z) is displaced to P'(x + u, 
y + v, z+vv) and Px{x + 8x,y,z) is displaced to 
P{(x+8x+u + 8u, y + v + 8u, z + w + 5w). By the similar 
derivation, it can be shown that the relative optical path 
change 5/* between the two neighboring points due to the 
deformation plus lens translation is 

5/* = -kl(2x8x) + A8u + B8v + C8w 

r, > 5 " „<5i> 

lkiX+Ato+%-
8wl 

cTx\8x (A7) 

where 

Xo 

R0 
Rd Rd R0 

ya 

Ro 

ya 

Rd 

x x 

A = — + — 
Rd R0 

> o %d 

Rd R0 R0 Rd 
If the magnitude of shearing 8x is small, the foregoing 

C--

equation can be approximated as 

du 
81* <>• x+A-

dx 

dv 3wN 

B—+C — 
ax ox i 

Similarly, in the shearing direction^ 

/ , 3w du dw 
8l' = (kiy+A—+B—+C — 

\ dy dy dy 

8x 

8y 

(A8) 

(A9) 
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Bimodal Optimization of 
Compressed Columns on Elastic 
Foundations 
We consider columns attached to elastic foundations and compressed by axial end 
loads. Pinned-pinned, clamped-clamped, andpinned-clamped boundary conditions 
are treated. The columns have rectangular sandwich cross sections with a fixed 
lightweight core and identical face sheets of variable thickness. For given total 
volume, we optimize the variation of the thickness along the column so as to 
maximize the buckling load. In most cases, the optimal design is bimodal (i.e., 
associated with two buckling modes). The optimal designs depend on the foun­
dation stiffness, and the largest increase in buckling load relative to a column with 
constant thickness is 22percent. 

Introduction 

Optimization of columns for maximum buckling load has 
been a topic of widespread interest (e.g., see the reviews by 
Haug and Olhoff in [1]). Part of this interest has been due to 
the existence of bimodal solutions [2], in which the optimal 
design has a double eigenvalue and two distinct eigen-
functions. However, only a few examples have been treated 
for columns which are attached to elastic foundations. 

Kamat considered columns with solid cross sections of 
similar shape in his Ph.D. dissertation [3]. The ends were 
pinned and the area was assumed to be constant in 10 or 16 
equal-length sections of the column. For two values of 
foundation stiffness, a unimodal formulation was used to 
maximize the buckling load. Similar problems were analyzed 
in Turner's Ph.D. dissertation [4], except that 20 sections 
were used and columns with clamped ends were treated as 
well. The results for the clamped-clamped columns were 
published in [5]. 

The dual problem of minimizing the total volume for a 
given buckling load was considered by Kiusalaas [6]. He 
assumed that the column had a sandwich cross section with 20 
sections of constant face-sheet thickness. His analysis allowed 
for multiple eigenvalues. One example was presented, in­
volving a pinned-pinned column with a given foundation 
stiffness, and his iterative solution procedure led to a bimodal 
optimal design. 

Since the previous work on this problem is sparse, and some 
of it is restricted to a unimodal analysis, we decided to carry 

out the present study. We use a bimodal formulation and 
consider a range of foundation stiffnesses and three sets of 
boundary conditions: pinned-pinned, clamped-clamped, and 
pinned-clamped. An idealized sandwich cross section is 
assumed, for which the moment of inertia is proportional to 
the effective area. For given length and total volume of the 
column, the buckling load is maximized. 

Formulation 

We consider an elastic column of length L, which is at­
tached to an elastic foundation of the Winkler type with 
constant stiffness coefficient K and is subjected to a com­
pressive axial end load P. The horizontal coordinate is 
denoted X, with 0<X<L. The cross section is assumed to be 
rectangular with constant width B, consisting of a lightweight 
core of constant height H and Young's modulus Ec, covered 
by identical thin face sheets, each with variable thickness T(X) 
and Young's modulus Ef (see Fig. 1). The bending stiffness of 
the cross section is given by 

£ / = — E/BH2T(I + 
IT AT2 

H 3H2 

ECH 

6E/T ) • 
(1) 
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We assume that the ratios T/H and EcH/(EjT) are suf­
ficiently small so that the last three terms inside the paren­
theses in (1) can be neglected. 

The volume of each face sheet, denoted Vj, is fixed in our 
optimization problem. We denote the face-sheet cross-
sectional area and the bending stiffness of a reference uniform 
column (having the same total volume) as A„ and EIU, 
respectively. It follows that 

A „ = V}/L ,EI„ = EfH
2 Vf/(2L). (2) 

The buckling load is the lowest of the eigenvalues P = P ; . If 
Y;{X) denotes the corresponding mode, the governing 
equilibrium equations are 
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T(X ) 

T(X: 

Fig. 1 Geometry of cross section 

[EI(X)Y?(X)]" +PiY'i'{X)+KYi(X) = Q, /=1,2, . . . (3) 

We introduce the nondimensional quantities 

x = X/L,y,(x)=Yi(xL)/L,a{x)=Af{xL)/Aln 

p, = P,L2/{EIU), k = KL*/(EIu). (4) 

The design variable is a(x), which is the nondimensional face-
sheet area (or thickness). With the use of (4), the governing 
equations become 

[aOcW (x)]" +Piy!' (x) + kyi (x) = 0,/ = 1,2 (5) 

and the constraint of constant volume becomes 

1 a(x)dx = 1. (6) 

At a pinned end, y,= 0 and ay "=0. The latter condition will 
lead to a = 0 at a pinned end of an optimal design. At a 
clamped end, y-, = 0 a n d / / = 0. 

If we multiply (5) by y, (x), integrate, and carry out ap­
propriate integration by parts, we obtain the standard 
Rayleigh quotient for the eigenvalue /?,-. We normalize the 
modes such that the denominator of this quotient is unity, 

i.e., 

j o ( y / ) 2 d * = l . 7=1,2, 

and then we obtain 

Pi^^aiy'i'fdx + k^y} dx, /=1,2 . 

(7) 

(8) 

For a given set of boundary conditions and a given 
foundation stiffness k, we wish to determine the design 
function a(x) which satisfies (6) and maximizes the minimum 
eigenvalue (i.e., the buckling load). The optimal solution may 
be multimodal, and it is convenient to utilize a bound form­
ulation [7] in which we maximize a lower bound /3 o n p ; . We 
construct the following augmented functional £ to be 
minimized: 

£=- /3+£7/ (0 -P, - + 0/) 

£^[JV,O 2^-I]+M[J^^-I] (9) 

where the/?, are given by (8), 6, are slack variables, and 7,, r/,-, 
and fi are constant Lagrange multipliers. 

Stationarity of £ with respect to y, and 0, leads to the fact 
that T , = 0 if Pi is not the minimum eigenvalue, while 
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Fig. 2 Buckling loads for pinned-pinned columns (dotted line is 
second buckling load for optimal column when unimodal) 

stationarity with respect to /3 implies that the sum of the 7, 
values is unity. Stationarity of £ with respect to y^x) leads to 
(5). Finally, stationarity with respect to a(x) leads to the 
optimality condition 

ET/LV/'W]2 --/x. (10) 

We seek solutions to the set of equations (5), (6), (7), and 
(10), along with the derived conditions on the 7,. Equation 
(10) is a necessary condition for stationarity of buckling load, 
and the numerical procedure converges to a maximum value 
of the buckling load. We will discuss the results separately for 
the three sets of boundary conditions. 
Pinned-Pinned Column 

For a uniform pinned-pinned column (a= 1) attached to an 
elastic foundation, the buckling load and mode are as follows 
[8]: for the integer n such that 

(/7-l)2fl27T4<£<«2(«+l)27r4, (11) 

we have 

Pm\i = n2-K2 + J i W = 
V2 

nr 
-sin(«7ur). (12) 

The mode shape changes from symmetric to antisymmetric 
(or vice versa) as k is increased past a transition value (n -
l)2«2ir4, and at these values the buckling load is a double 
eigenvalue and is associated with two modes. In Fig. 2, the 
dashed lines depict pu n i f for 0<k< 2,000, with a transition 
value from n = 1 to n = 2 at k = 389.6. 

If the foundation stiffness k is zero, the optimal design and 
corresponding buckling load and mode are given by [9] 

a(x) = 6x(l -x), popl = I2,yt(x) = V3x(l -x). (13) 

The design a.{x) is shown in Fig. 3(a), along with the reference 
uniform column having the same volume. This optimal 
solution is unimodal. The second buckling load, p = 36, 
corresponds to an antisymmetric mode. 

In the range 0<£<376 , we find that the optimal solution 
remains unimodal. The governing modeyx{x) is given in (13), 
and using this mode in (5), along with the conditions a(0) = 0, 
a(l) = 0, and (6), leads to the optimal design 

)x- (6+ —)x2+ —x 3 

120/ V 2 0 / 12 
and the corresponding buckling load 

a(x) ={6 + l x * 
24 

(14) 
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Table 1 Critical loads 

(a) k = 0 

(b) k = 500 

(c) k = 1,000 

Fig. 3 Optimal designs for pinned-pinned columns 
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Fig. 4 Buckling loads for clamped-clamped columns 

20 

po p t = 12 + (£/10). (15) 

As with the uniform column, this load increases lihearly with 
£. The second buckling mode associated with the design (14) 
was computed by applying a finite-difference method to (5), 
and the resulting values are depicted by the dotted line in Fig. 
2. At £ = 376, popt (shown by the solid line) and the second 
buckling load coalesce. 

If £>376, the optimal solution is bimodal. We obtained a 
numerical solution to the governing equations with the use of 
finite differences. We assumed ot(x) and^OO to be symmetric 
and y2(x) to be antisymmetric, and we used 16 knots in the 
region 0<x< 1/2. Then (5), (6), (7), and (10) become a system 
of nonlinear algebraic equations in the following quantities: 
p, c,, c2, and the unknown values of a, yu and y2 at the 
knots. In order to avoid solutions involving negative values of 
a, we replaced a by </>2 and used the </> values as unknowns. 
The resulting system of equations was solved directly with the 
use of a standard computer program. 

The maximum buckling load obtained from this procedure, 
popi, is plotted in Fig. 2 for the range 376 <£<2000 and listed 
in Table 1 for £ = 500, 1000, 1500, and 2000. The 

P i n n e d -
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500 
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2,000 

corresponding optimal designs a(x) for £ = 500 and £=1000 
are shown in Figs. 3(b) and (c), respectively. The optimal 
designs for k~ 1500 and £ = 2000 are almost identical to that 
in Fig. 3(c). We also note that the design obtained by 
Kiusalaas [6] (for the dual problem) corresponds to £ = 443 
and has a local minimum in the center as do the designs shown 
in Figs. 3(b) and (c). 

The governing modes change shape as k is increased. As for 
the uniform column, the modes become more wavy and have 
more nodes with increasing £. The optimal designs also 
become more wavy as £ grows larger. 

Clamped-Clamped Column 

For a uniform column with both ends clamped, the 
buckling load/»unif is the lowest root of the equation [8] 

•J rp^2\f^sm( — ^p + llPj = ±^p~+2Jksm( — ^J^lik) 

(16) 
Transitions between symmetric and antisymmetric modes 
occur when 

£ = (« 2 - l ) 2 7r 4 ^ u n i f = 2(n2 + l)7r2,n = 2,3 (17) 

Some other values of punif are listed in Table 1. In Fig. 4, pmif 

is plotted versus £ (dashed curve), and a transition from 
symmetric to antisymmetric buckling occurs at £ = 97r4. The 
buckling load is almost linear in £ between transition points. 

The optimal designs are found to be bimodal for all values 
of £ > 0. At £ = 0, the maximum buckling load for a sandwich 
column with clamped ends is popl =47.956 [10]. Optimal 
buckling loads for the range 0<£<2000 are plotted in Fig. 4, 
and some values are listed in Table 1. The optimal designs 
a(x) for £ = 0, 500, 1000, and 1500 are shown in Fig. 5, and 
the design for £ = 2000 is almost identical to that in Fig. 5(d). 
These results were obtained by the procedure described in the 
previous section, except twice as many knots were used in this 
case. Again, the optimal design and the associated modes 
become more wavy as k increases. 

Pinned-Clamped Column 

Here we assume the column is pinned at x = 0 and clamped 
at x= 1. For the uniform design (a = 1), the buckling load/?unif 

is the lowest root of the equation 

^p~2\fk&in'Jp^2^ = ^p + 2\fksm^p-2\fk (18) 

It is plotted in Fig. 6, and some values are listed in Table 1. 
Some other solutions are 

Puna = (n2 + l)Tr2/2 at £ = (/72-l)27rVl6,« = 2,3, . . . (19) 

Since the boundary conditions are not symmetric, this case 
does not involve symmetric and antisymmetric modes. 

132/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(a)k=0 

(b)k=500 

(c)k = l,000 

y,(x)--

y2(x) = 

where 

r(\-y[2)x + (r/2)x2 

-(r/2)(\-x)2 

r[l-(l/^2)]x-(r/2)x2 

-(r/2)(l-x)2 

i fO<*<l /V2, 

if 1 / V 2 < J C < 1 , 

i fO<x<l /V2, 

if 1 /V2<x<l , 

(21) 

(22) 

= 6/(3V2-4) = 24.73. (23) 
The design (20), depicted in Fig. 1(a), has a hinge at x= 1/V2 
(where a = 0). The mode )>\(x) in (21) has continuous slope, 
while the m o d e ^ M m (22) has a discontinuity in slope at the 
hinge and can be obtained from yt(x) by reflection of the 
section from x = 0 to x= 1/V2 across a chord connecting the 
pinned end with the hinge [12]. Both modes have constant 
O,")2, 0<x<\, and thus satisfy the unimodal optimality 
condition as well as the bimodal one. 

When k>0, we find that the optimal solution is bimodal 
and does not contain an inner hinge (a unimodal solution with 
a hinge can be obtained analytically, but it has a lower 
buckling load). The boundary conditions are not symmetric, 
and therefore we cannot separate y{(x) and y2(x) into sym­
metric and antisymmetric functions. We used 32 knots in the 
region 0 < ^ < 1 and again solved the governing equations 
directly. 

Results for the pinned-clamped case are presented in Table 
1 and Figs. 6 and 7. They exhibit similarities to the previous 
results in the form of the curve of popl versus k and in the 
increased waviness of the optimal design and associated 
modes with increasing k. 

100 
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(d)k=l ,500 
Fig. 5 Optimal designs for clamped-clamped columns 

For k = 0, the optimal solution is bimodal and is given by 
[11,12] 

f r2x{\ - V2x)/(2V2) if 0 <x< 1 /V2, 
a(x) = < (20) 

{_r2(^[2x-\)(j2-~x)/(2-42) i f l / V 2 < x < l , r 
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Fig. 6 Buckling loads for pinned-clamped columns 

20 

(a)k=0 

(b)k=500 

(c)k= 1,000 

(d) k= 1,500 

(e)k = 2,000 

Fig. 7 Optimal designs for pinned-clamped columns 

Concluding Remarks 

We have determined optimal designs for pinned-pinned, 
clamped-clamped, and pinned-clamped sandwich columns 
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attached to elastic foundations. For pinned-pinned columns 
with a sufficiently small foundation stiffness coefficient 
(0<£<376), the optimal solution is unimodal (i.e., associated 
with a single buckling mode). In all other cases, the solution is 
bimodal. The percentage increase in buckling load over that 
of a uniform column is 22 percent when £ = 0 and less than 
that when the foundation is present. 

For uniform columns, the governing modes become more 
wavy as k increases (e.g., see (12)). This is also true for the 
optimally designed columns. In addition to the results 
presented here for 0<^<2000 , we carried out a few com­
putations for values of k up to 20,000, and the trend con­
tinued: the solutions were bimodal and the modes and designs 
had increasing numbers of local minima and maxima. 

The columns were assumed to have ideal rectangular 
sandwich cross sections of fixed width, so that the moment of 
inertia was proportional to the effective area. The results can 
also be applied to some other cross sections, such as ideal I-
beams. For the case of a solid rectangular cross section of 
fixed height and varying width, however, the results will only 
be applicable if the foundation stiffness is constant; for 
example, if the restoring force were proportional to the 
contact area, then the stiffness would be a function of the 
width and would vary along the column [13]. 

Finally, we note that the occurrence of bimodal optimal 
designs for columns is not restricted to symmetric boundary 
conditions where the modes associated with the lowest 
eigenvalue can be assumed to be a symmetric mode and an 
antisymmetric mode. This was demonstrated in the case of a 
pinned-clamped column, previously in [12] for no elastic 
foundation (where the optimal design possesses an inner 
hinge), and here in the presence of an elastic foundation 
(where no inner hinges occur). 
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Optimal Forms of Shallow 
Cylindrical Panels With 
Respect to Vibration and 
Stability 
Thin, shallow, elastic, cylindrical panels with rectangular planform are considered. 
We seek the midsurface form which maximizes the fundamental frequency of vibra­
tion, and the form which maximizes the buckling value of a uniform axial load. The 
material, surface area, and uniform thickness of the panel are specified. The curved 
edges are simply supported, while the straight edges are either simply supported or 
clamped. For the clamped case, the optimal panels have zero slope at the edges. In 
the examples, the maximum fundamental frequency is up to 12 percent higher than 
that of the corresponding circular cylindrical panel, while the buckling load is in­
creased by as much as 95 percent. Most of the solutions are bimodal, while the rest 
are either unimodal or trimodal. 

Introduction 

Cylindrical panels are used in a variety of structures, such as 
airplanes, rocket boosters, ships, and submarines [1]. They are 
often subjected to disturbances which cause vibrations, or to 
axial compressive forces, which can cause buckling. Hence, 
there has been extensive research on the vibration and buck­
ling of cylindrical panels. In most cases, the form of the panel 
perpendicular to its generators has been taken to be circular. 
Here, however, we consider shallow cylindrical panels with ar­
bitrary form, and we seek the form which maximizes the fun­
damental vibration frequency or the buckling load. 

A few representative papers dealing with cylindrical panels 
can be mentioned. Various sets of boundary conditions have 
been treated in the literature [2-4]. The vibration of noncir-
cular cylindrical panels was analyzed in [5-7]. References 8 
and 9 considered nonuniform compressive forces, while 
postbuckling behavior was discussed in [10-13]. Elastic-plastic 
behavior [1, 12], stiffened panels [14], and composite panels 
[15] have received attention, and some optimization studies 
have been carried out [1, 16, 17]. 

In the present work, the governing equations are based on 
Donnell's theory. The curved edges of the panel are assumed 
to be simply supported with no tangential displacement, while 
the straight edges are assumed to be either simply supported or 
clamped, with no normal displacement. For the case of buck­
ling, a compressive, normal load is applied uniformly along 
the curved edges. 

In the optimization formulation, the boundary conditions, 
material, thickness, and surface area of the panel are 

specified, and the form is variable. Hence, the total volume 
and mass of the panel are given. The optimality conditions for 
maximum fundamental frequency and maximum buckling 
load are derived with the use of the calculus of variations, 
allowing for multimodal solutions. To obtain numerical 
results, an iterative technique based on the optimality condi­
tion is applied to get close to the optimal solution and deter­
mine its governing modes, followed by a direct solution of the 
governing equations. The results depend on the boundary con­
ditions, aspect ratio, and surface area parameter. Twelve cases 
are solved for both the vibration problem and the buckling 
problem. Three of the resulting optimal solutions are 
unimodal, 18 are bimodal, and three are trimodal. 

We note that a similar type of investigation was carried out 
in [18, 19] for shallow, axisymmetric shells with a circular 
boundary. 

Shell Equations 

We consider a thin, shallow, elastic, cylindrical panel with 
constant thickness h, density p, Young's modulus E, and 
Poisson's ratio v. It has a rectangular planform with X = 0, a 
along its curved edges, and Y = 0, b along its straight edges. 
The height of the middle surface above the base plane (i.e., the 
form) is Z{Y), which will be chosen in an optimal manner. At 
the straight edges Y = 0, b, the slopes Z'(Y) are not specified. 

The area S of the middle surface can be written as 

5=+4D z ' ) 2 r f r 
0) 
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under our shallowness assumption. We define the nondimen-
sional surface area parameter /32 by 

P2=2(S-ab)a/{q2b) (2) 

where 
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Fig. 1 Geometry of cylindrical panel (in nondimensional terms) 

q = h/4YU\-vr). (3) 

For shallow, circular cylindrical panels with height H and 
radius of curvature R, we have Z(Y) = AHY{b — Y)/b2 and /32 

= \6a1H1/(iq1b1) = a2b2/(12q2R2). 
With T denoting time, we let W(X, Y, 7) be the upward 

deflection of the panel and F(X, Y, T) be the Airy stress func­
tion. In-plane inertia is neglected. The linear equations of mo­
tion, based on Donnell's theory with uniform axial prestress, 
are [20] 

D\74W+PWxx-Z"Fxx + phWTT = 0, (4) 

V4F+EhZ"Wxx = 0, (5) 

where P is a uniform, normal, compressive force per unit 
length on the edges X = 0, a, 

Eh3
 A / d4 d4 a4 \ 

and subscripts X, Y, and T denote partial derivatives. 
To study vibrations with frequency Q, we let 

W(X,Y,T) = W(X,Y)cosQT,F(X,Y,T) = F(X,Y)cosQT. (7) 

We then define the nondimensional quantities 

x = X/a, y = Y/a, c = b/a, z = Z/q, w - W/q, 

f = F/D, p = Pa2ID, co = QaNph/D (8) 

where 0 < x < l , 0 < j < c (see Fig. 1), and we define the design 
function g(y) by 

g(y) = z'(y). (9) 

In nondimensional terms, equation (2) becomes 

— [ g2dy = /32 (10) 
c Jo 

and the governing equations for w(x, y), f(x, y) become 

V4w+pwxx-g'fxx~o>2w = 0, (11) 

V4f+g'wxx=0, (12) 

where 

/ d4 d4 d4 \ 
V 4 ( > = ^ + 1-3xW+ V-)( } ( 1 3 ) 

and subscripts x and y denote partial derivatives. 
Classical simply supported boundary conditions are as­

sumed on the curved edges x = 0,1. Normal displacement is 
allowed, but not tangential displacement, and [13] 

w = wxx = f = fxx = 0. (14) 

On the straight edges y = 0,e, we assume either simply sup­
ported or clamped conditions, with tangential displacement 
but no normal displacement. These conditions are denoted 
552 and CC1 in [4], and lead to 

w = wyy = fxy = fyyy = 0 (15) 

and 
W = ™y = fxy = fyyy = °> (16) 

respectively (see the Appendix). 
. We now consider the two optimization problems separately. 

Maximum Fundamental Frequency 

For the case of free vibrations, we set p = 0 in (11). Further, 
we denote the nondimensional natural frequencies by con, n = 
1 , 2 , . . . , and the corresponding vibration modes and stress 
functions by wn(x, y) and/„(;<:, y), respectively. Multiple fre­
quencies may exist; for example, we may have a double fre­
quency cj| = o)2 with corresponding eigenfunction pairs tf,,/, 
and w2,f2-

From (11) and (12), we can obtain a Rayleigh quotient for 
GJ2, which becomes 

^ = J o O ( V 2 w „ ) 2 - ( V 2 / „ ) 2 

+ 2(wn)Kif„)xg']dxdy (17) 

if we normalize its denominator by 

\cXw2,dxdy = I, (18) 

where 
/ d2 d2 \ 

V 2 ( > = ( ^ + ^ ) ( > • ( 1 9 ) 

Our objective is to determine the design function g{y) which 
maximizes the fundamental (i.e., lowest) vibration frequency 
for a given value of the surface area parameter /32. The op­
timal solution may be multimodal, and it is convenient to 
utilize a bound formulation [21, 22] in which we maximize a 
lower bound B on a>2,. With the use of Lagrange multipliers y„, 
a„, and /x, and slack variables #„, we construct the following 
augmented functional: 

L = -B+ t , y„(B-U
2
n + d2,)+ f; a „ [ ( C ( ' w2,dxdy-\\ 

+ n[-^\i
Qg2dy-(l2] (20) 

where G>„ is given by (17) and we have incorporated the con­
straints (10) and (18). 

Stationarity of L with respect to y„ and 8n leads to the fact 
that y„ = 0 if co„ is not the fundamental frequency, while sta­
tionarity with respect to B implies that the sum of the y„ 
values is unity. Stationarity of L with respect to w„ and /„ 
leads to (11) and (12), respectively. Finally, stationarity with 
respect to the design function g furnishes the optimality condi­
tion 

A4 „ = i J o 

If the straight edges of the shell are clamped, it follows from 
(9), (16), and (21) that the optimal form has z' — 0 (i.e., zero 
slope) at these edges. 

Maximum Buckling Load 

For the case of buckling, we set OJ = 0 in (11) and denote the 
eigenvalues by pn, n = 1,2, . . . , and the corresponding 
eigenf unctions by w„(x, y) and/,, (x, y). If we now normalize 
the modes by 

iXliwJxVdxdy = 1, (22) 

the appropriate Rayleigh quotient becomes 

^ = I „ 0 ( V 2 w „ ) 2 - ( V 2 / „ ) 2 
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. a) c = 2/3 ; /32 
a) = 2/3 ; /3 =500 

b ) c- 2 / 3 ; / 3 2 = 1,000 b ) c= 2/3 ; /9 = 1,000 

C ) c= I ; /3 = 500 c ) c •= I ; /B = 500 

d ) c= I ; /3 = 1,000 d ) c= I ; /3 =1,000 

e) = 1.5; /3Z e ) c = 1.5 ; /S = 500 

f ) c = 1.5 ; /S =1,000 

Fig. 2 Optimal forms for maximum fundamental frequency with simply 
supported edges 

+ 2{w„)x(f,l)xg'\dxdy. (23) 

The optimization formulation is similar to that in the 
previous section. In (20), a)2, is replaced by pn (which has the 
same formula) and the normalization condition (18) is re­
placed by (22). The optimality condition again is given by (21). 

Solution Procedure 

For both optimization problems, we let 

w„(x,y) = wm„(y)sm(mirx), 

f„ (x, y) = f,„„ (y)sin(m TTX) . (24) 

Then (11) and (12) become 

wZ,n - 2/n27r2<„ + (m47r4 - m2ir2p„,„ 

-w2„n)wmn + m2ir2g'fm„ = 0, (25) 

fmn~2m2ir2f;;m + m4ir'ifmn-m
2T2g'wm„ = 0 , (26) 

where we denote the corresponding frequency and load by oimn 

and pmn, respectively, with p„m = 0 when the frequency is op­
timized and oi,„„ = 0 when the buckling load is optimized. The 
optimality condition (21) can be written in the form 

£<>)= E T,v,m,[w,m,(y)f,„„(y)}' (27) 

where the Tmn are constants which are zero except for pairs m, 
n associated with the minimum eigenvalue. For example, if the 
lowest frequency is bimodal with oiu=oill, then all coeffi­
cients r,„„ in (27) are zero except Yu and T12. 

The boundary conditions (either (15) or (16)), aspect ratio c, 
and surface area parameter /32 are specified. Two phases are 
used in the solution procedure. In the first phase, we choose 
an initial design g(y) and solve (25) and (26) for different 
values of m to find the lowest eigenvalue (either the fun-

f ) c= 1.5 ; /3 = 1,000 

Fig. 3 Optimal forms for maximum fundamental frequency with 
straight edges clamped 

damental frequency or buckling load) and the associated 
eigenfunction pair (or pairs) wmn, fmn. Equation (27) is 
employed to modify the design, and (25), (26) are solved using 
the new design. This is repeated to increase the lowest eigen­
value until the multiplicity of the optimal eigenvalue and the 
forms of the associated eigenfunctions become clear. Next, in 
the second phase, we solve (27) directly for g(y), using (25) and 
(26) to furnish wmn(y) and f,„„(y). When the solution is 
trimodal, for example, this procedure involves a set of seven 
nonlinear differential equations. The constraints (10) and 
either (18) or (22) are incorporated to scale the functions. 

To obtain the numerical solutions, we divide the length 
0<y<c into 32 sections and apply finite differences at the 
knots. A standard eigenvalue program is used in the first 
phase of the solution procedure, and a quasi-Newton method 
in the second phase. 

A number of locally optimal solutions may exist. We at­
tempt to determine the global optimum for each case by 
starting from several initial designs, converging to a local op­
timum, and then selecting the best of these as the optimal 
design. 

Results 
We computed optimal solutions for aspect ratios c = 2/3, 

1, and 1.5, and surface area parameter values /32 = 500 and 
1,000. In all cases, the optimal forms z(j>) turned out to be 
symmetric about the center, y = c/2. 

First, consider the free vibration problem. The optimal 
forms are depicted in Figs. 2 and 3 when the straight edges are 
simply supported and clamped, respectively. In the figures, we 
plot z(y)/c versus y/c. The optimal panels in Figs. 2 and 3 lie 
above the base plane. As mentioned earlier, at a clamped edge 
the optimal form z(y) has a zero slope. 

Some frequencies associated with these optimal designs are 
listed in Table 1, along with frequencies of a circular cylin-
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Table 1 Vibration frequencies for circular and optimal forms 

SS 

SS 

SS 

SS 

SS 

SS 

CC 

CC 

CC 

CC 

CC 

CC 

c 

2 /3 

2/3 

1 

1 

1.5 

1.5 

2/3 

2/3 

1 

1 

1.5 

1.5 

B2 

500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

Ci rcu lar 

"1 ™2 

103.2 

107.8 

59.7 

68.4 

41.3 

50.8 

111.1 

144.4 

69.6 

80.5 

44.7 

52.1 

121.8 

157.6 

86.4 

109.3 

65.5 

80.5 

126.3 

158.8 

87.3 

109.3 

65.8 

80.5 

panel 

"3 

154.5 

187.2 

i23.0 

142.9 

105.8 

117.0 

160.2 

189.8 

124.8 

143.7 

106.4 

117.4 

»4 

210.8 

237.2 

183.7 

198.2 

170.0 

177.4 

216.8 

241.2 

185.5 

199.6 

170.6 

177.9 

Opt 

"1 

104.5 

116.0 

63.4 

74.7 

42.6 

50.8 

124.7 1 

150.8 

74.8 

85.1 

46.2 

54.8 

imal pa 

"2 

118.6 

132.6 

81.6 

97.2 

64.4 

80.5 

140.6 

164.6 

92.1 

104.3 

67.3 

80.6 

nel 

u3 

151.8 

166.8 

120.1 

135.1 

105.4 

117.0 

175.6 

195.5 

129.4 

141.8 

108.6 

119.4 

<°4 

208.7 

222.7 

182.1 

194.0 

169.9 

177.4 

231.6 

247.5 

189.7 

200.9 

172.7 

180.2 

Frequency 
r a t i o 

1.01 

1.08 

1.06 

1.09 

1.03 

1.00 

1.12 

1.04 

1.07 

1.06 

1.04 

1.05 

unimodal; a l l other optimal solutions are bimodal 

SS 

SS 

SS 

SS 

SS 

SS 

CC 

CC 

CC 

CC 

CC 

CC 

c 

2/3 

2/3 

1 

1 

1.5 

1.5 

2/3 

2/3 

1 

1 

1.5 

1.5 

/ 
500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

500 

1,000 

Table 2 Buckl ing loads for c 

Circu la r panel 

Pi 

1080. 

1178. 

361.0 

474.4 

172.9 

261.6 

1251. 

2113. 

491.1 

655.9 

202.2 

274.7 

"2 

375.7 

629.0 

189.1 

302.8 

108.6 

164.2 

404.0 

639.0 

192.9 

302.8 

109.5 

164.3 

"3 

268.7 

394.6 

170.3 

229.8 

126.1 

154.1 

289.1 

405.5 

175.3 

232.4 

127.5 

155.1 

P4 

281.3 

356.4 

213.6 

248.8 

183.1 

199.3 

297.5 

368.6 

218.0 

252.3 

184.3 

200.4 

rcular an 

Opt 

Pi 

547.1 

687.2 

201.4 

298.2 

167.3 

296.9 

966.9 

914.4 

252.1 

394.9 

185.4 

302.6 

d optimal form 

imal panel 

P2 

288.9 

414.4 

201.4 

298.2 

185.4 

296.9 

416.3 

527.6 

252.1 

394.9 

185.4 

302.6 

P3 

28JL9 

i l i i i 
219.1 

298.2 

208.5 

321.4 

369.1 

527.6 

276.9 

394.9 

196.5 

302.6 

S 

P4 

327.4 

436.3 

259.1 

317.2 

249.6 

350.8 

390.7 

552.8 

317.1 

409.4 

237.9 

318.1 

Load 
r a t i o 

1.08 

1.16 

1.18 

1.30 

1.54 

1.93 

1.28 

1.43 

1.44 

1.70 

1.69 

1.95 

drical panel having the same boundary conditions and values 
of c and /32. For each value of m in (24), there are an infinite 
number of vibration frequencies, and we denote the lowest of 
these by co„, in Table 1. The lowest frequencies for m = 1,2,3, 
and 4 are presented in Table 1 for the optimal panels and the 
corresponding circular forms. (We note that the four frequen­
cies listed for each case do not necessarily include the second, 
third, or fourth lowest frequencies of the panel; for example, 
the second lowest frequency for m = 1 may be lower than o>2, 
co3, and o)4.) 

In these 12 examples, the fundamental frequency is 
associated with m = 1, i.e., one half-sine wave in the x direc­
tion. For the circular cylindrical panels, the lowest eigenvalue 
is distinct. This is also true for the optimal design in the case 
when the edges are clamped with c = 2/3 and /32 = 500. In the 
other 11 optimal solutions, however, mi is a double eigenvalue 
and the solution is bimodal. The vibration mode associated 
with co, in the unimodal case is symmetric about y = c/2 (with 
no nodes). For the other optimal solutions, the governing 
modes can be written as a symmetric and anti-symmetric pair, 
or any linear combination of those functions. In the circular 
case the governing vibration mode is antisymmetric about y 
= c/2 (with one node) for the first six rows and last three rows 
of Table 1, and symmetric for the remaining three rows. 

The last column of Table 1 lists the ratio of the optimal fun­
damental frequency to that of the corresponding circular 
cylindrical panel. In one case the optimal form is nearly cir­

cular and, therefore, the improvement is negligible. The 
largest increase shown is 12 percent, which occurs for the 
panel having a unimodal solution. 

Results for the buckling problem are presented in Table 2 
and Figs. 4 and 5. For most of these optimal forms, the panel 
does not lie completely above the base plane. In the case of 
clamped edges, the slope there is zero again. 

Similarly to the notation in Table 1, we denote the lowest 
eigenvalue for a given value of m by pm, and delist pi,p2,pi, 
and p4 for the optimal and circular cylindrical panels. In con­
trast to the vibration results, here none of the cases exhibits a 
multiple eigenvalue for a given value of m. Instead, eigen­
values for different values of m are sometimes equal to each 
other. 

In Table 2, the buckling loads (i.e., the lowest eigenvalues 
over all values of m) are underlined. For the circular cylin­
drical panel, the buckling loads are distinct eigenvalues and 
the associated mode for each case has either two, three, or 
four half-sine waves in the x direction. For the optimal panels, 
modes with lower values of m tend to govern or join in a 
multimodal solution. As an example, in the first row of Table 
2, the buckling mode is associated with m = 3 for the circular 
case, while the optimal solution is bimodal with m = 2 and m 
= 3. In the second row, p4 is the buckling load for the circular 
form, while p2 and/?3 again govern for the optimal panel. 

We note that there are three trimodal solutions in Table 2, 
corresponding to the designs in Figs. 4(d), 5(d) and 5(f). In 
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a ) c = 2 / 3 ; B = 500 a ) c = 2 / 3 ; /3 = 500 

b ) c= 2 / 3 ; B - 1,000 b ) c = 2 / 3 ; 0 • 1,000 

C ) c= I ; j3 = 5 0 0 

I 
C ) C = I ; /3 = 500 

d ) c= I ; B = 1,000 d ) c= I ; /3 = 1,000 

—=4 
e ) c - 1 . 5 ; /8 • 500 ! ) c - 1.5 ; 0 = 500 

f ) c = I. S ; £ = 1,000 

Fig. 4 Optimal forms for maximum buckling load with simply sup­
ported edges 

f ) c= 1.5 ;B , 000 

Fig. 5 Optimal forms for maximum buckling load with straight edges 
clamped 

these cases, there are buckling modes with one, two, and three 
half-sine waves in the x direction. 

In some of the examples, the second eigenvalues for one or 
more of the governing mode numbers m are close to the buck­
ling load. For example, if the straight edges are clamped with 
aspect ratio c = 1 and surface area parameter /32 = 1,000, 
then the optimal buckling load \sp, = p2 = P3 = 394.9, while 
the second frequencies for m = 2 and m = 3 are 396.8 and 
396.2, respectively. 

In all of the circular cases and most of the optimal cases 
listed in Table 2, the buckling modes associated with the 
buckling loads are symmetric about y = c/2 (with no nodes). 
The only anti-symmetric modes (with one node) are associated 
with the following eigenvalues of the optimal forms: m = 2 in 
the fourth, sixth, and last two rows, and m = 3 in the tenth 
row. When the optimal solution is multimodal, any linear 
combination of the individual buckling modes is also a solu­
tion of (11) and (12) at the buckling load. 

The last column of Table 2 lists the ratio of the optimal 
buckling load to that of the corresponding circular cylindrical 
panel. The increase ranges from 8 percent for the first case to 
95 percent for the last case. 

During the buckling optimization procedure for a given 
case, different initial designs sometimes led to different solu­
tions. In other words, there may be a number of local optima. 
For example, in the case of clamped edges with c = 1 and /32 

= 500, the maximum buckling load isp t = p2 = 252.1. There 
is another solution of the governing equations (25),' (26), and 
the optimality condition (27), for which p , = 359.8, p2 = p 3 

= 248.5, and p 4 = 282.0. Hence, this suboptimal design is 
also bimodal. Its form is similar to that in Fig. 5(c) except that 
its values z(y) are somewhat higher. 

An interesting feature occurred in the case of clamped edges 
with c = 2/3 and (32 = 500. The optimal solution is unimodal 
with buckling load p3 = 369.1. However, there is a subop­

timal solution which is bimodal, with px = 1392, p2 = 483.8, 
p3=p4 = 364.8, p 5 = 413.1, andp6 = 494.7. Its form lies 
slightly above that shown in Fig. 5(a). This demonstrates that 
it is possible to have a suboptimal design with higher modality 
(i.e., a larger number of coincident eigenvalues) than the op­
timal design. 

Concluding Remarks 

We have considered the problems of maximizing the fun­
damental vibration frequency and the buckling load of a 
shallow, cylindrical panel by varying its form. The boundary 
conditions, material, thickness, and surface area of the panel 
are specified. Numerical results are obtained for a number of 
cases. The optimal solutions are unimodal, bimodal, or 
trimodal. In comparison with the corresponding circular cylin­
drical panel, the increase in fundamental frequency is fairly 
small (less than 12 percent in the examples), while the increase 
in buckling load can be substantial (8-95 percent in the 
examples). 

When the straight edges of the panel are assumed to be 
clamped, the optimal forms have zero slope there. In Figs. 2 
and 3, for maximum fundamental frequency of natural vibra­
tions, the optimal panel lies above the base plane. In Figs. 4 
and 5, for maximum buckling load, the optimal panels usually 
lie below the base plane near the straight edges and above it in 
the central region, and tend to resemble corrugated plates. 

In the numerical solution procedure, we use a finite dif­
ference method to transform the differential equations into 
nonlinear algebraic equations in the displacement, stress func­
tion, and design function. After some iterations, the equations 
(including the optimality condition) are solved by a quasi-
Newton method. It appears that there are many local maxima, 
especially in the buckling problem. By starting from a variety 
of initial shapes, we have attempted to obtain the globally op-
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timal solution for each example. In some cases, the best solu­
tion does not have the highest modality of all the local 
solutions. 

We did not investigate the imperfection-sensitivity of the 
optimal panels. For shells, small imperfections may either 
decrease or increase natural vibration frequencies [23]. In the 
buckling problem, when the optimal solutions are bimodal or 
trimodal, we expect them to be more imperfection-sensitive 
than the corresponding circular cylindrical panels [24]. 
However, the increase in buckling load may be more advan­
tageous than a greater sensitivity to imperfections. 
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A P P E N D I X 

The boundary conditions on the stress function along the 
straight edges are derived in this Appendix. 

We denote strains by ex, ey. yXy, midsurface displacements 
by U, V, W, and stress resultants by Nxx, NYY, NXY. In the 
buckling problem, these represent incremental quantities with 
respect to the uniform prestressed state. 

If Z(Y) is the form of the middle surface, the strain-
displacement relations are [19] 

ex = U,x + (W,x)
2/2,eY = V,Y +Z'W,Y + (W,Y)2/2, 

yXY= U,Y+V,X + Z' W,x + W,xW,y (28) 

and the stress-strain relations are 

<* = (Nxx-vNYY)/{Eh),eY = (NYY-vNxx)/(Eh), 

yXY = 2(1 + P)NXY/(Eh), (29) 

where subscripts X, Y following a comma denote partial 
derivatives. The Airy stress function F is defined by 

Nxx = F,YY,NYY = F,XX,NXY = -F,XY. (30) 

At the straight edges Y = 0, b, we assume simply supported 
or clamped boundary conditions, which implies 

W = W,YY = Oor W= W,Y = 0, (31) 

respectively. For a third condition, we assume NXY = 0, 
which allows tangential displacements. Hence, from (30), 

F,XY = 0. (32) 

Finally, we assume there are no normal displacements, i.e., V 
= 0. 

It follows from V = W = 0 that V,x = W,x = 0 along the 
edges Y = 0, b. Since NXY = 0 implies yXY = 0 from (29), we 
then obtain U,Y = 0 from (28), and thus U,YX = 0. Now, if 
we differentiate ex in (28) with respect to Y, we get dex/d Y -
0. We then differentiate ex in (29) with respect to Y and use 
(30) and the previous result, which leads to 

F,YYY-vF,XXY = Q. (33) 

Differentiating (32) with respect to X yields F,XXY = 0, and 
(33) then furnishes the fourth boundary condition in the form 

F,YYY = 0. (34) 
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Plates in Unilateral Contact With 
Simple Supports: Pressure 
Loading 
The response of a square plate, simply and unilaterally supported, to pressure 
loading is numerically treated. The support system consists of discrete elastic 
springs whose stiffnesses range from near-rigid to compliant character. It is found 
that, except for rather low support stiffnesses, the plate will lift off the foundation. 
After demonstrating good agreement with a recent analytical work, the deflections 
and shear fields are provided. The response mode changes dramatically as the 
supports approach rigidity. 

Introduction 

The response of plates unilaterally supported by foun­
dations to transverse loading is complicated by the need to 
determine the contact region as well as the equilibrating 
reactions. In part this accounts for the scarcity of literature 
pertaining to the matter, particularly for the case where the 
foundation "simply" supports the plate periphery. To 
simplify matters, Keer and Mak (1981) treated an infinitely 
extended plate under a concentrated load near a corner. 
Unfortunately, their solution is not applicable to a centrally 
loaded square plate because the load is not sufficiently near to 
a corner. Dempsey, Keer, Patel, and Glasser (1984) provide a 
complicated solution for a square plate under pressure (a 
partial solution was presented by Dempsey, Keer, and Patel, 
1983). Results are only given for the deflections, and it is not a 
trivial matter to generate those for the shearing force. In the 
aforementioned works, the methodology involves integral 
equation and series formulations, and the lineal supports are 
rigid. Although rigid support systems are commonly 
associated with civil engineering, elastic support systems may 
often be closer to reality and indeed applications cover a 
spectrum of support stiffnesses, for example, gait devices in 
biomechanical engineering, (i.e., Harris, Salamon, and 
Weber, 1981). 

The present paper is a numerical study of plates under 
uniform pressure loads that are unilaterally supported around 
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the periphery by discrete elastic springs. After formulating the 
problem, it is demonstrated that results for plates on near-
rigid springs tally with those found by Dempsey et al., (1984). 
Then the behavior of elastic systems is discussed. From these 
discrete results extrapolations to continuously supported 
systems are made. It is found that the response mode changes 
dramatically as the elastic supports approach rigidity. 
Moreover, the shear load varies considerably across the 
supports. However, avenues are open to optimize the 
distribution. The problem is important because liftoff will 
occur even at low relative stiffnesses. 

The Problem 

Formulation. An iterative algorithm is used in conjunction 
with the finite element method for linear systems. The 
problem consists of a square plate of dimension L and 
thickness t resting on springs distributed about its periphery 
with spacing a. The plate is discretized into classic plate 
elements (called the ACM element in Cook, 1981) which are 
four node squares of spacing a; the foundation springs are 
linear with stiffness ks. If (w) contains the deflections (d | 
and the rotations (0X, 0y ]

 r , (R ] is the vector of loads and m 
is an increment counter, then upon assembly the linear system 
can be written as 

£>[#<"'>] [w)'" = [R) (1) 

provided that the stiffness matrix [K\ posesses diagonal 
elements associated with degree of freeedoms j d J of the form 

l4 = kn + on(ks/D) (2) 

where a, = 1 or 0, depending on whether a spring is attached 
to the rth degree of freedom or not. Here D = Ef/\2{\ - v2) 
is the plate rigidity with Young's modulus E and Poisson's 
ratio v. The general ktj are plate element stiffnesses with D 
factored out and are functions of element size and v. Fur­
thermore, if foundation/plate combinations are chosen such 
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Fig. 1 Quarter of the plate modeled where c denotes the half-length of 
contact 

that kJD is the same, then the product (wD) is the same for 
these combinations. 

For foundation/plate combinations, further utility is 
gained by considering the foundation as continuous and 
including the plate geometry. In this way a nondimensional 
relative stiffness K is defined as 

K=(ks/a)(L3/D) (3) 

Hence [K<m) ] = [K(v, K ;a,L; m)\ and in turn [ wD)M, Mthe 
last iteration, is a more general solution than equation (1) at 
first glance implies. It may be noted that K is analogous to the 
quantity (ksIAEId)x,A L, I the second moment of area and L 
the beam length, which originates in the theory of beams on 
elastic (springs) foundations. 

In the initial state, one physically views the weightless plate 
resting upon all of the springs. However for the simulation 
not all springs need be attached; the procedure only requires 
sufficient initial constraints, boundary conditions and spring 
attachments, to avoid rigid body motion. 

For any iteration m, the procedure solves (1 for (wD) 
consistent with the current constraint prescription. As 
described below, the next site i for a contact or separation is 
chosen and a,- set to 1 or 0, which updates [K{m)] to [KUn+x)]. 
If / is null, there are no new sites, hence m = Mand (wD)M is 
the solution; otherwise the procedure repeats. 

Since the springs are independent of each other, contacts 
and separations are sensed kinematically directly from the 
contents of iwDj. For the next event, site i is chosen by 
satisfying the criterion 

d-, = Max( ± dj), 1 <j<NC (4) 

where NC is the number of candidate sites, dj > 0 =» 
separation and dj < 0 =» contact, and the + sign is used for 
sites currently connected and the - sign for those currently 
disconnected. Should several sites yield the same value dit the 
minimum value / is chosen. 

Control of the procedure is maintained through a data 
structure which keeps track of the contact status of each 
candidate constraint and through a decision process enhanced 
by theoretical precepts for receding contact problems, 
Dundurs and Stippes (1970). A detailed discussion of the 
algorithm as applied to the solution of beam and plate 
problems is provided in a journal dedicated to numerical 
methods by Mahmoud, Salamon, and Pawlak, (1985). 

Numerical Model. One quarter of the square plate is 
modeled, Fig. 1, using 81 elements to fill a 10 x 10 nodal 
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777777 

Fig. 2 The end-of-contact region 
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Fig. 3 Deflections along edge for plates on rigid supports under 
uniform pressure 
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Fig. 4 Shear distributions along edge for plates on rigid supports 
under uniform pressure 

mesh. Symmetry is enforced at the centerlines by setting the 
rotations dx = 0 along x and 6y = 0 along y. Springs underlie 
the plate edges x = L/2 and y = L/2, but only those within 
length c remain in contact under load over each half-side. 
Springs located at symmetry points (x,y) = (0,L/2) and 
(L/2,0) are connected initially and their stiffnesses halved. 

The important field quantity generated by the computer is 
the deflection d, whence along a side the contact half-length c 
is computed as 

c = ( A / - l ) 0 + f (5) 
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Fig. 5 Deflections along edge for plates on elastic supports under 
uniform pressure 
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Fig. 6 Shear distributions along edge for plates on elastic supports 
under uniform pressure 

where N is the number of nodes along a half-side in contact, 
and £ is a linearly interpolated extension of contact between 
the last depressed spring and first lifted-off plate node, Fig. 2. 
In turn the loads in compressed springs are determined and 
converted into continuous shear distributions V by averaging 
the spring loads across an element span a or half-span (a/2); 
specifically at the centroid of the distribution 

V=ksd/a (6) 

except at the end-of-contact and £ < a/2; then it is taken as 2 
ks d/a. In this form the shear force per unit of length provides 
an approximation to the common case of continuous support. 
However if the discrete values are desired, one need only 
invert (6) or its end-of-contact counterpart to obtain the 
concentrated reactions, e.g., solve for ksd. 

Results 
Two types of loading are studied: uniform pressure 

distributed over the entire plate and a concentrated load P 
located at the origin of coordinates (Fig. 1). In the subsequent 
figures, discrete points are plotted as triangles and connected 
together by a cubic spline curve-fit. Data points for shear are 
located at the centroids of their distribution. The focus here is 
on pressure loadings; a sequel will cover concentrated 
loading. 

Rigid Supports. The behavior of a plate on rigid supports is 
approximated by setting the relative stiffness, and in effect the 
spring stiffness, to a very large value; in the present case K = 
1030. It should be noted that despite this extreme, the foun­
dation is not "infinitely" rigid and although the response to 
load is small, it still retains its deformable character. With the 
plate size, element discretization, and relative stiffness set, the 
deflection profiles and shear distributions along the plate edge 
are computed for the range of Poisson's ratio 0 < v < 0.5. 

Figures 3 and 4 show the deflection profiles and shear 
distributions generated by a uniform pressure load q. The 
deflections for v = 0.3 and 0.5 are seen to agree very well with 
those provided by Dempsey et al. (1984), that for v = 0.1 
agrees equally well, but is not shown because it spoils the 
figure arrangement. 

The effect of increasing Poisson's ratio is to stiffen the 
plate and in turn extend the length of contact (Fig. 3). Yet 
even with v = 0.5 almost half the plate edge (=45 percent) 
lifts off the supports. Although the displacement profiles 
illustrate the behavior, the shear distributions elucidate it. By 
concentrating Upon the values of shear load near the ends-of-
contact in Fig. 4, one can extract the following: (/) for v = 0 

the plate bears down hard on the last contacting support, 
however for v = 0.1 the plate stiffens sufficiently to extend 
the contact and bear down lightly upon the next suppport; (ii) 
for v increasing to 0.3, pressure increases on this new support 
until with ^ = 0.4 the plate siffness increases sufficiently to 
again cause the contact to grow and the process repeats. 

Elastic Supports. In order to view the role relative stiffness 
plays in the behavior of the plate, the Poisson's ratio is set to 
0.3. Then values for K are selected from a range such that the 
contact length varies from least to full extent. In the figures 
for the shear distributions, those for intermediate values of K 
are extrapolated from the last datum point to zero using 
dashed lines. 

The deflections and shear distributions along an edge of the 
plate are shown in Figs. 5 and 6. For very soft (relative) 
support the plate is in full contact, but incipient liftoff occurs 
when K = 135. With increasing K plate liftoff grows asymp­
totically (as will be discussed subsequently) to a maximum 
limit. The shear distributions illustrate the increased burden 
sustained by inboard supports as the contact length decreases, 
displaying a maximum at K = 3000. But for greater values of K 
the distribution goes through a transition characterized by a 
decrease in shear near the midside of the plate and a com­
pensatory increase near the end-of-contact; for K = 104 the 
increase reverses, tapering to zero as the plate lifts off of the 
supports, however for K = 1030 the increase appears singular 
(but its finiteness is clearly visible in Fig. 4). Hence when the 
foundation is relatively very stiff the last support in contact 
bears the brunt of the load. On the other hand, for relatively 
soft foundations, greater load is borne by the inboard sup­
ports. Clearly near-rigid and rigid supports markedly change 
the character of the shear distribution. 

Extent of Contact 
The growth of contact for a discrete system occurs in jumps 

or steps with respect to continuous change of an influential 
parameter. This is clearly conveyed by changes in the lengths 
over which the shear is distributed in Fig. 4. The subsequent 
sections, with the exception of that on incipient liftoff, are 
concerned with the extent of contact with respect to change in 
either relative stiffness or Poisson's ratio; it is convenient, and 
perhaps more relevant, to present these results as continuous 
phenomena. Hence they are approximations for the problem 
of plates on continuous support. Where the extent of contact 
involves many discrete supports, the accuracy should be good, 
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in agreement with the results for pressure load given by 
Dempseyetal. (1984). 

The data are easily fit to linear expressions. For the 
pressure load, these are 

, 0 < p < 0 . 5 (8) 
c f0.370p + 0.408 (upper bound) 

£ /2 lo.429*> + 0.326 (lower bound) 

A linear fit to the data of Dempsey et al (1984) gives 

c/(Z,/2) = 0.415x + 0.343,0<x<0.5 (9) 

so that indeed (8) brackets (9) and the maximum error be­
tween (8) and (9) is 5 percent for the lower and 19 percent for 
the upper bounds; the lower bound of (8) yields a maximum 
error of 4.4 percent with their exact data. 

l o g « 
10 

Fig. 7 Extent of contact with respect to the relative stiffness 

otherwise in this context it should be held suspect. Clearly 
improved accuracy will result from use of higher densities of 
discrete supports. 

Incipient Liftoff. It is of particular interest to know 
whether or not liftoff will occur because if it does not the 
problem is a linear one. The objective then is to find relative 
stiffness thresholds, denoted by K0, for the incipience of plate 
liftoff. This is done by iterating with respect to K for each of 
five different Poisson's ratios. It turns out that the data can 
be approximated by simple polynomials to an accuracy of 
three digits. 

Incipient liftoff will occur for pressure loading if 

K0 =97.0 (1.0+ v + v2) (7) 

Although K0 is nicely behaved with respect to v, the contact 
length is very sensitive to changes in K in this "soft support" 
regime as will be seen in the next section. Hence the deter­
mination of (7) required considerable effort. 

Effect of Relative Stiffness. In situations where K > K0, 
liftoff will occur and the problem becomes nonlinear. 
However it is helpful if the contact length is known. To this 
end Fig. 7 provides an estimate of the extent of contact with 
respect to the relative stiffness but, however, does so only for 
Poisson's ratio equal to 0.3. 

From the figure it is seen that near the liftoff threshold 
(c/ (L/2) = 1) the contact length is very sensitive to changes in 
relative stiffness. Alternatively as K approaches the condition 
of rigid support (K — oo), contact length decreases to an 
asymptotic value; cl (L/2) = 0.444 for pressure load and, for 
comparison, 0.222 for the concentrated load. Furthermore 
these asymptotes are reached when K = 5 x 106 for the 
pressure load and K » 5 x 105 for the concentrated load. A 
simple expression to fit the data was not found; the rather 
extensive range of relative stiffness is a contributing reason. 

Effect of Poisson's Ratio: Rigid Support. For the im­
portant case when the supports can be considered rigid, it is 
possible to set bounds upon the contact length as a function of 
Poisson's ratio. This is done by using information from Figs. 
4 and 6 together with the following argument: for continuous 
support the contact length will be greater than that achieved 
for values of Poisson's ratio that produce maximum values of 
shear force (for example, at v = 0.0, 0.3, 0.5 in Fig. 4). 
Alternatively the contact length will be less than that achieved 
for values of Poisson's ratio that produces minimum values of 
shear force (e.g., at v = 0.1 and 0.4 Fig 4). Taken in this 
manner, the extracted data are found to vary almost linearly 

Conclusion 

The results generated for plates on independent elastic 
supports are sufficiently general to permit design optimization 
of such systems. The results demonstrate accuracy to 
problems involving rigid support and provide insight into 
those involving elastic support. It is also possible to project 
the effect of continuous, lineal support. 

Optimal design of unilaterally supported systems is 
achieved through rational location of supports and 
prescription of system properties. On the one hand, for 
simply-supported plates, particular advantage can be gained if 
the relative stiffness is large. Then high singular-like shear 
loads may be avoided by shifting support locations; alter­
natively, the shear load may be more evenly distributed by 
varying the Poisson's ratio of the plate. While the former is 
readily possible, the latter is not impracticable especially if 
one considers the plate to be of a designable composite 
material. On the other hand, if the relative stiffness is not 
large, optimal distribution of shear may be achieved by 
tailoring the stiffness of individual supports as well as by 
varying the spacing between them. 

The importance of the effects of elastic support resides with 
the low value of relative sitffness necessary for full contact. 
Hence a wide range of practical problems exist for which it 
would be rather unusual for plate liftoff to tend not to occur. 
One interesting effect not directly portrayed in the results is 
that the curvature of the plate changes sign for high values of 
relative stiffness. As viewed on edge, for stiff supports the 
curvature at midside is convex (frowning) and at the ends 
concave (smiling), whereas for softer supports it is concave all 
along the edge. The implication is that the prescription of 
ideal, infinitely rigid supports prevents this natural mode of 
behavior and contributes to the generation of a mathematical 
singularity. 

It is possible to project the effect of continuous, lineal 
support upon the system. Discontinuous jumps in contact 
length with changes in Poisson's ratio or relative stiffness 
inherent in the discrete system will be eliminated; the 
relationships will be smooth and monotonic. Moreover for 
large values of relative stiffness, the shear distribution along 
the edge would rise from moderate values at midside to a peak 
and smoothly, albeit sharply, drop to zero at the ends-of-
contact. In contrast, if the continuous support is infinitely 
rigid as described above, the reaction fields would display a 
singular behavior at the ends-of-contact as discussed by 
Dempseyetal (1984). 

The effect of a centrally located, concentrated load are 
similar in form to that for pressure, but considerably different 
in magnitude and the extent of resulting distributions. This is 
evident in Fig. 7 by the short extent of contact for large values 
of relative stiffness. Further details will be discussed in a-
sequel to this paper. 
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Rectangular Plates on Unilateral 
Edge Supports: Part 1—Theory 
and Numerical Analysis 
The corners of a simply supported, laterally loaded rectangular plate must be an­
chored to prevent them from lifting off the supports. If no such anchors are 
provided, and the supports are unilateral or capable of exerting forces in one 
direction only, parts of the plate will bend away from the supports upon loading. 
The loss of contact when uplift of laterally loaded rectangular plates is not 
prevented is examined in this paper. Arbitrary centrally symmetric loading is 
considered. Finite integral transforms convert the coupled dual-series equations 
that result from the Levy-Nadai approach to two coupled singular integral 
equations. Different solution methods are applicable for sagged and unsagged 
supports; these two numerical approaches are discussed in detail. 

Introduction 
The corners of a simply supported, laterally loaded rec­

tangular plate must be anchored to prevent them from lifting 
off the supports (Timoshenko and Woinowsky-Krieger, 
1959). If no such anchors are provided, and the simple 
supports are unilateral or capable of exerting forces in one 
direction only, parts of the plate near the corners will bend 
away from the supports upon loading. The tendency of a 
laterally loaded, unilaterally constrained, rectangular plate to 
separate from its simple supports motivates one to consider 
the actual extent of contact. 

The present paper examines the natural contact of centrally 
loaded rectangular plates resting on unilateral supports; each 
support is viewed as a unilateral constraint allowing only 
upward motion of the plate. It is assumed that two opposite 
supports have sagged by equal amounts. The amount of sag is 
taken as uniform, so that the sagged supports lie in a plane 
parallel to the other supports. The plate will touch the sagged 
supports only when the loading has reached a certain level. If 
the loading is increased further, the contact between the plate 
and the sagged supports will spread or advance. With no 
anchors at the corners, the contact between the plate and the 
unsagged supports will decrease with increasing load. The 
contact problem for the case of sagged supports is therefore 
one of advancing contact (Dundurs and Stippes, 1970). For 
the case of a zero amount of sag, the extent of contact will 
diminish immediately upon loading; it therefore follows that 
this contact problem is one of receding contact and hence the 
extent of contact between the plate and the supports is in-
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Fig. 1 Rectangular plate on unilateral edge supports 

dependent of the level of loading and the support reactions are 
proportional to the load. While both types of contact problem 
are treated here within the same formulation, the 
aforementioned characteristics mean that a different solution 
method applies for the case of a finite amount of sag than for 
the case of a zero amount of sag. 

The plate geometry and coordinate system are shown in 
Fig. 1. The coordinates and dimensions shown are scaled by 
the factor ir/a, where a is the actual plate length in the x-
direction. The actual (barred) coordinates are, for instance, x 
= ax I v and y = ay/w. Without loss of generality it is 
assumed that the two sagged edge supports are those parallel 
to the .xr-axis. The amount of sag between these supports and 
the undeformed plate is defined by the constant distance 6. On 
contact, each simple support rigidly resists displacement in the 
positive ^-direction only. The loading distributed over the 
surface of the plate is assumed to be symmetric about x = 
7r/2, y = b and, in terms of the transformed coordinates, is 
given here by the expression 
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q(x,y)=Q J^ D amnSin(.mx)sm(niry/2b) (1) 
m = l,3, . . . n = l , 3 , . . . 

where Q is an appropriate load factor for the particular 
loading being treated; a,„„ = 0 for m or n even. Because of the 
symmetry of the deflection function that results, there are 
only two unknown contact lengths: ex and e2 (Fig. 1). The 
above loading is supplied in the positive z-direction, with the 
corresponding deflection given by w(x, y). The differential 
equation for the deflection of the plate is 

Dv'w = q(a/ir)\ D = Ehi/\2(\ V) (2a,b) 

the moments and supplemented, or Kirchhoff, shearing forces 
are given by 

Mx=-(w/a)2D(w,xx + vw, ) (3) 

(4) 

(5) 

(6) 

My= — (w/a)2D(w,yy + vw,xx) 

Mxy = -Myx = (it/a)2D{\ - v) w,xy 

Vx=-(,Tr/a)iD(w,xx + (2-v)w,yy),x 

Vy = -( Tr/a)3D(w,yy + (2-t>) w,xx),y 

while the corner force at x = 0, y = 0 is given by 

R = 2Mxy,x=ay__0 ( 8) 

The bending of partially supported uniformly loaded 
rectangular plates with anchored corners has been considered 
by Kiattikomol et al. (1974) and Dundurs et al. (1974) for 
simple support conditions involving unsagged and sagged 
supports, respectively. The loss of contact in the vicinity of a 
right-angled unanchored corner for a simply supported 
uniformly loaded quarter infinite plate has been examined by 
Keer and Mak (1981). The extent of contact between a 
uniformly loaded square plate resting on simple supports was 
solved by Dempsey et al. (1984). The solution technique and 
mathematical manipulations used here overlap, to a large 
extent, those used in the latter paper. In order to avoid undue 
duplication of many expressions, the results in the foregoing 
work will be cited freely. 

The approach used in the present paper gives rise to four 
coupled series equations that are solved using finite integral 
transforms. The particular type of transform used is governed 
by the strength of the singularity to be allowed at each point 
where the simple support changes to a free edge (hereafter 
called a transition point). The nature of the singularities in the 
bending fields at these points was first revealed by Williams 
(1952). Although this analysis treats finite plates, the infinite 
plate solution by Keer and Mak (1981) provides the correct 
singularity to be used in the vicinity of the mixed condition. 
The local behavior at the transition point must be the same for 
both finite and infinite plates, as the solution by Dempsey et 
al. (1984) verified. In conclusion, if the plate seeks its natural 
contact with either unsagged or sagged supports, no 
singularity in the moments can be allowed at the transition 
points. 

Formulation 

Because of the symmetry of the lateral load considered in 
(1), boundary conditions need only be written on one 
quadrant: y = Oandj ' = b, 0 <x<7r/2; x = Oandx = ir/2, 
0<_y<Z?(Fig. 1) 

(9) 

(I0a,b) 

(10c) 

(10rf) 

(Ua,b) 

w=Wc 

w,x = Q,w = b 

vy=o 
My=0 

vy=o, w,y=o 

x = Q,y = Q 

y = 0,el < X < T T / 2 

y = 0,0<x<el 

y = 0,0<x<ir/2 

y = b,0<x<T/2 

w,y = 0, w = 0 

vx = o 
Mx=0 

Vx=0,w,x=0 

: x = Q, e2<y<b 

: x = 0,0<y<e2 

: x = 0,Q<y<b 

: x=ir/2,0<y<b 

(I2a,b) 

(12c) 

(12a") 

(I3a,b) 

In (9), Wc is the deflection of the corner and is to be deter­
mined. Furthermore, since the corners are unanchored and 
corner forces are therefore not permitted, (8) and (5) give 

w,x -0: x = 0,y = 0 (14) 

Utilizing the Levy-Nadai approach (Timoshenko and 
Woinowsky-Krieger, 1959), the lateral deflection satisfying 
(2a) and (9) is taken as 

w(x,y) •• Qui 
2D m = l , 3 , . 

{W%{?cj) + W%(yjc)] + Wc (15) 

where 

W^ (u,v) =[*(*> (v) + y<*> (v)]sm(mku) 

(7) and 

n4Xtf)(u)= YJ amn(ml+n2
k)

 2sm(nku) 

(16) 

(17) 

(18) 

(19) 

(22) 

(23a,6) 

Y{m] (u) =Aj*)cosh(mku) +B}*}mku sinh(mku) 

+ C}£)smh(mku) +Dtf)mku cosh(mku) 

m]=m, m2=mx/2b, nl=nir/2b, n2=n 

Boundary conditions (10c?), (11a,b) and (I2d), (I3a,b) lead 
to the following relations for k = 1 and k = 2, respectively 

B<*> = - ( l - i / M < * , / 2 (20) 

C<*»=[jS i tsech2(/3 ik)-2(l-i/)- ,tanhC8 ik)](l-^M<*>/2 (21) 

£><f>=tanh(ft t)(l-vM<f>/2 

where 

[}{=m\b, @2=m2(-K/2) 

The boundary conditions in (10a,c) and (12a,c), mixed as 
they are with respect to slope and shear, give rise to four 
coupled series equations. Following the same procedure used 
in a related analysis by Dempsey et al. (1984), (10c) and (12c) 
are integrated with respect to x and y, respectively, to give 
symbolically [\Vy(xfi)dx + Cy\ and [\Vx(Q,y)dy + Cx]\ Cy 

and Cx are constants of integration. To determine Cy and Cx 

it suffices to first add and then subtract the two equations 
obtained by letting x = 0 and y = 0 in the latter equations, 
respectively. The expressions for Cy and Cx are simplified by 
using an identity given by the corner force condition in (14). 
Equations (10a), (12a), []Vy(x,Q)dx + Cy] and [\Vx{Q,y)+Cx] 
give finally, after substituting (15-23) and simplifying, the 
following coupled series equations 

]j miPWcos(mix) = 0, ex <x<w/2 
m = l , 3 , . . . 

] £ m2P%cos(m2y) =0, e2<y<b 

(24) 

(25) 

£ KP<»((l+/^>)COS(/771X)-C<,1,>) 
m = l , 3 , . . . 

-#niP®{Sg> (*)-<£>)] 

= 2 ] [//<>>cos(Wlx) - n ? (x) -d<Jl>«)) + dg>(0)] 
m = l , 3 , . . . 

0<x<el (26) 

Journal of Applied Mechanics MARCH 1986, Vol. 53/147 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



m = ! , 3 , . . . 

£ [-mlPZHSMW-cW) 
m = I , 3 , . . . 

+ m2/*? 1(1 +W)cos(m2y) - c ® ) ] 
GO 

X) [tfg>cos(m^) - 7™ (7) + 4!>(0) - d»>(0)] 

0«s><e2 (27) 

where 

P<*>=(l-«0/l<*>/2 (28) 

1+F<f> =tanh(/3,)-r?fosech2(/3 / t), r; = (l - «)/(3 +y) 

(29a,*) 

Si*' («) =i)sech(ft)[)3tsech((3t)cosh(mfc«) 

-mku cosh((3k—mku) + smh((3k—mku)] (30) 

cj*> =2 tanh(&) (3 + e) (31) 

/ 4* '= 4J,*'(6)+ i»ft «,*>((>) (32) 

Tl„k) («) = ̂ > («) -nH^ («) -**,*> («) + *tf'(0) (33) 
and 

(3 + . ) 7 r 4 / 7 7 , < > ( « ) 

shown that the above definitions for Pjjj' and Pi2) identically 
satisfy the two uncoupled equations (24) and (25), respec­
tively. The remaining coupled equations (26) and (27) can be 
reduced to coupled singular integral equations of the first 
kind 

— P (-l— + -l-)<t>iV)dt+\'lMdx,n<l>i(ndt 

7T JO \t—X t+X/ JO 

+ j o ' 2 N2(x,t)<fr2(t)dt=f](x), 0 < x < e , (40) 

1 f i / 1 1 \ ffi 
— ( - + T—)<t>2(t)dt+\ Nx(y,t)<j>,(t)dt 
•K Jo \ / - v t+y/ Jo s: (41) 

= E a,mnk(ml+nl) ]cos(nku) (34) 
1 = 1 , 3 , 

•jr46<*> ( u ) = m * £ amnnk(m
2
k + n2

k)
 2cos(nku) (35) 

n = l , 3 , . . . 

oo 

(3 + v)ir4mkg
l
m

k) (H) = £ amnnk
[cos(nku) (36) 

Equations (15-23), (28), and (35), together with (14) give the 
following expression for the corner force condition used in the 
derivation of (26) and (27) 

+ M2(y,t)<f>2(t)dt=f2(y), 0<y<e2 Jo 

where (/' = 1,2) 

•wMj{u,t) = (ir/lj)/sm[w(t-u)/lj]- l / ( / -w) 

+ (ir// /)/sin[7r(/ + M)//y-]-l/(f + M) 
CO 

+ 4(TT//,) £ [Ftf>cos(m;w)-c#>]sin(m,-0 
m = l , 3 , . . . 

(42) 
oo 

irNj(u,t) = -4(T/lj) £ [SW>(«)-cW>]sin(/nyO (43) 
m = l , 3 , . . -

oo 

tfi (*) = 4 E [Hi / ' cos^ .x) - 7<?(x) - ^ ( 0 ) + d«(0)] 
m = l , 3 , . . . 

(44) 
oo 

TT/2 (>>) =4(TT/ / 2 ) £ [/fS„2)cos(w2^) - 7™ (y) +d»)(0) 

and 

£ KPM+^M] 

-^,2>(0)] 

/ ,= i r , / 2 =26 

(45) 

(46a,b) 

m = l , 3 , . 
The corner force condition in (37) together with (39) 

becomes 

= E [b$(0) + b%\0)] 
m = l , 3 , . . . 

(37) P R^tUAOdt+V2 R2(t)<f>2(t)dt = B 
Jo Jo 

where 

(1 - v)a^ =(1 + v)tanh(0*) - (1 - ^ )^sech 2 (A) (38) 

The remaining boundary conditions (10Z?) and (12£>) are 
satisfied at a later stage. The problem is therefore reduced to 
the determination of the constants Pffl (k= 1,2) such that the 
four coupled series (24-27) are satisfied. In this respect, the 
constant 1 in each of (26) and (27) serves to isolate the 
singularities a tx = e, and.y = e2, respectively, since as w —oo 
the functions Fj*' -e"2*3* (AT = 1,2). 

Singular Integral Equations 

The coupled equations (24-27) may be reduced to two 
coupled singular integral equations by representing the 
unknown coefficients P,^*' in (28) by finite Fourier transforms 

where 

**(«) = E a{mk)sm(mku) (A: =1,2) 
/ n = l , 3 , . . -

CO 

B= E (bW(0) + b%(0)) 

(47) 

(48a) 

(486) 

Equations (40) and (41) both reduce to the corner force 
condition in (47) forx = 0 and.y = 0, respectively. 

Physical Quantities 

The edge displacements the plate undergoes near each 
corner as it lifts off the supports, using (15) together with 
(20-22) and (28), are given by 

m\ P^ = Vk 4>k(t)sin(mkt)dt (Ar=l,2) (39) D(\-v)w(xfi) = 2Qa* £ 7*l>sin(/n,*) 
Jo , „_ i i 

in which the auxiliary functions, <j>k (t) (k= 1,2), remain to be 
determined. 

The same procedure outlined by Dempsey et al. (1984) in an 
analysis of the contact between a uniformly loaded square 
plate and unilateral supports is now followed. It is readily 

m = l , 3 , 

+ W- 0 < X < T T / 2 (49) 

D(\-v)w(0,y) =2Qa4 £ ) P%hm(m2y) + Wc: 0<y<b 
m = i , 3 , . . . ( 5 Q ) 
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The edge displacements in (49) and (50), together with (39) 
can be used to determine Wc and then expressions for the edge 
displacements on those parts of the plate that lose contact. 
That is 

4D(l-p)w(x,0) = TrQa4yl <j>x(t)(x-t)dt 

+ 4(l-v)&D: 0<x<ei (51) 

2D(l-v)w(0,y)=bQa*\e2 <t>2(t) (y-t)dt: 0<,y<e2 (52) 

Compatibility of displacements in (51), (52) imposes an 
additional condition on the solution to the coupled equations 
(40) and (41), since w(x—0, 0) should equal w(0, y—0). It 
follows that 

( T T / 2 ) ^ ' t<t>x(t)dt-b^ t<j>2(t)dt = 2(l-v)8D/Qa4 (53) 

The supplemented, or Kirchhoff, shearing forces Vy and Vx 

at the contact with the two supports y = 0, ex <x<%/2 and x 
= 0, e2 <y £ b, respectively, are 

oo 

Vy(el<x<-w/2,y = Qi) = -7r3Qa(3/2+x/2) £ 
m = l , 3 , • • . 

[m\Ptf(l + F)l))sm(mlx) + m\P%S%]x(x) 

- m, //<," sin(w, x) -T%]x (x)} (54) 

CO 

Vx(x = 0,e2<y<b) = -ir3Qa(3/2 + v/2) £ 

m=l,3, . . . 

\m\P^S^\y(y) + m\P%(l + F™)sm(m2y) 

-m2H£hm(m2y)-7y,ly(y)) (55) 
Preliminary to discussing the solution of the coupled in­

tegral equations in (40), (41) and the additional condition in 
(53), it is necessary to clarify the end-point behavior of the 
auxiliary functions, <t>k(t) (£=1,2), in (39). It follows from 
(15-28) that 
D(l-p)[w,xx;wyyy] \y=0 

= QO* i-lir) £ m\P^hm(mix) 
m = l,3, . . . 

D(l-v){w,xx;w xx> w*yy i f x = 0 

:Qa4{p;-l\ £ m2
2P%hin(m2y) 

m=l,3, . . . 

(56) 

(57) 

for 0<x<ir/2 and 0<ysb, respectively. Given the identity 
(Gorman, 1982) 

2 2^ sin(W7r//2)sin(w7ru/2) = 5(« —/) (58) 

equations (56), (57) together with (39) provide that 

MAx.O); My(Q,y) = (l + v)Qa1-K2[^l(x)\ 2b4>2(y))/4 

(59a,b) 

Clearly, the auxiliary functions 4>\(x) and <f>2(y) have the 
same behavior at x = e,, y = 0 and x = 0, y = e2, respec­
tively, as do the moments there. The foregoing relationships 
establish that Mx(x, 0)~<M*) and My(0, y)~<j>2(y); 
boundary conditions (lOd) and (12c?) quickly determine, 
therefore, that <M°) = 0 (k = 1, 2). As discussed in the in­
troduction, the moments are bounded at the transition points. 
The shearing forces in (54) and (55) should therefore be 
singular as the inverse square root with distance from x = e]t 

y = 0 and x = 0, v = e2; only the terms involving the con­

stant 1 in these expressions contribute to the singularities at 
eit e2. Using (39) together with (54) and (55), expressions 
analogous to that obtained by Dempsey et al. (1984) in (44) of 
that paper (in which a factor of 1/2 is missing) are found. 
It follows that Vy(x, 0)~(x-e1)~

U2 and Vx(0, y) 
~(y — e2Y

x/2 as x, y — ex
+, e2 , respectively, as long as 

4>kU) ~(ek~ 0 U2 (k=l,2). As expected, the moments are 
bounded at the transition points from simple support to no 
contact. Furthermore, although each supplemented shearing 
force is singular at the ends of each contact interval, each is 
integrable because the singularities are of the inverse square-
root type. 

Numerical Analysis 

Equations (40), (41), and (53) are prepared for numerical 
analysis by first extending the ranges of integration to 
— ex <x<eu —e2 <y<e2\ it is useful to note also that Mj(u, 
t) and Nj(\u\, t) are odd in / but even in u. The functions 
fk(u) are also even in u. If it is assumed that the functions 
4>j(t) (/'= 1, 2) are odd functions, the above equations can be 
written in the form 

1 f e ' <j>< (t) 1 Ce> 
— TrJ-dt+ — \ Mx(x,t)4>At)dt 
•K J -« i t—X 2 J - e i 

+ 4- P M2(y,t)<l>2(t)dt=f2(y), 
2 J -e2 

—ex <x<e, 

1 f c 2 <A, ( r ) 1 f e i 

— ~1dt+-\ Nii^JHandt 
IT J -e2 t—y 2 J ~e\ 

+ 4- P M2(y,t)4>2(t)dt=f2(y), 
2 J -er 

(60) 

-e2<y<e2 
1 e2 

(61) 

t = exu, x = e]s, 4>x(t)=dx(u)4T^u2 

( T T / 2 ) P t<f>x(t)dt-b\ ' t<t>2(t)dt = 4(l-v)8D/Qa4 (62) 
J -ex J -e2 

Similarly, (47) can be written 

P i ? , ( 0 * i ( 0 * + [ ' 2 R2(t)<j>2(t)dt = 2B (63) 
J -ex J ~e2 

The Gauss-Chebyshev integration formulae (Erdogan et al., 
1973) are applied to equations (60-63). First, however, let 

(64a) 

(64ft) 

where 6X (u) and d2(v) are regular at ± 1. The foregoing 
definitions of 4>k ( 0 imply that the moments are bounded at / 
= ex, e2 for k = 1, 2, respectively. Equations (60-62) can 
thus be written in the following form 

Li 71~\ + -T-elMl(elshelUj)dl(uj) 
jrx n+1 L Uj-Sj 2 

+ y e2N2(ex \si\,e2vj)62(vJ)\ =/ , (e ,s , ) (65) 

t = e2v, y = e2z, 4>2 (t) =62 ( u ) V l -v2 

elNl(e2\zi\,eiUj)dl(uJ) fa n+l I v._Zj 2 

+ — e2M2(e2Zi,e2Vj)82(Vj)^ =f2(e2Zi) 

(1-uj) 

i=\ n + l 
•w(l+Uj)[(Tr/2)e\dx(Uj) 

-be2
262(uj)]= 4(1 - v)bD/Qai 

(66) 

(67) 
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where 

Uj=Vj=cos[/Tr/(n+l)], j=l,2, . . . ,n (68a) 

5,-=z /=cos[(2/-l)7r/2(/j + l)], /=1 ,2 , . . . , « + l (68*) 

Equation (63) becomes 

r « ( i - « ? ) 

+.e2R2(e2Vj)82(Vj)]=2B (69) 

Unsagged Supports. For the case of unsagged supports 
(5 = 0) a receding contact problem results. That is, the extent 
of contact is independent of the load level but the support 
reactions are proportional to the load. For 5 = 0 in (67), the 
solution method is as follows. There are (2« + 3) equations 
arising from (65-67) from which we wish to solve for n values 
each of 0) (Uj), 82(Vj) and one value each of ex and e2. For x 
= y = 0 each of (60), (61) reduces to the corner force con­
dition (63); the associated collocation points in (65), (66) are 
for i = n/2+ 1. The procedure is to solve the In equations in 
(65), (66) obtained by disregarding the two / = n/2+1 
equations and by first assuming values for e, and e2. 
Equation (67) and the corner force condition (69) then provide 
checking equations. A series of values of e, and e2 are tried 
until the correct ones that simultaneously satisfy the checking 
equations are found. 

Sagged Supports. For sagged supports (5^0) an advancing 
contact problem results for a load level greater than Q°, 
where Q° denotes the load at which the plates starts to touch 
the sagged supports (in which case e\ =TT/2) . In advancing 
contact problems the extent of contact depends upon the level 
of loading. The amount of sag & and the intensity Q of the 
distributed loading determine for a given plate the extent of 
contact defined by eit e2. As pointed out by Dundurs et al. 
(1974) it is more convenient to view e, and Q, rather than <5 
and Q, as the independent parameters. The solution 
procedure is to first set et at some value, then solve the In 
equations in (65), (66) obtained by once again disregarding the 
two / = n/2+ 1 equations after assuming a value for e2. The 
corner force condition (69) then provides a checking equation; 
a series of values of e2 are tried until one that satisfies the 
checking equation to the desired accuracy is determined. 

The load intensity at which the plate first touches the 
sagged supports Q° is found by setting e, = 7r/2. For Q > 

Q°, e, < 7r/2. An examination of (65), (66), and (69) reveals 
that for a given aspect ratio (2b/ir), e2 is a function solely of 
et. It then follows that (67) can be written in the form 

8 = y(el;b)Qa4/D (70) 

where the definition of the function y(ex ;b) is obvious from 
(67). For a given aspect ratio and contact length e,, therefore, 
the ratio Q/Q° is independent of the amount of sag <5 since 

G/e 0 = 7 (7r /2 ;d) / T (e 1 ; f t ) (71) 

The edge displacements, on the other hand, are directly 
proportional to 6, given b and e,; the latter observation can be 
verified by substituting (71) in (51) and (52). 

Conclusions 

The theory and solution methods required to determine the 
natural contact of rectangular plates resting on unilateral edge 
supports and subjected to centrally symmetric but otherwise 
arbitrary loading have been presented. The possibility that 
two opposite supports may have sagged was treated. The 
influence of different factors such as aspect ratio, amount of 
sag, and Poisson's ratio remain to be examined for a range of 
loading distributions and levels. 
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Rectangular Plates on Unilateral 
Edge Supports: Part 2— 
Implementation; Concentrated and 
Uniform Loading 
Rectangular plates in unilateral contact with sagged and unsagged supports laterally 
loaded by centrally concentrated loads and uniform pressure are examined. The loss 
of contact and the redistribution of deflections, moments, and support reactions are 
presented. Computer implementation aspects are discussed. 

Introduction 

In a companion paper Dempsey and Li (1986) presented the 
theory and solution methods required to determine the 
natural contact of centrally but otherwise arbitrarily laterally 
loaded rectangular plates on unilateral edge supports. In this 
paper, computer implementation aspects and two numerical 
examples, concentrated and uniform loading, are presented. 
Results for the loss of contact, uplift, and redistribution of 
deflections, moments, and support reactions are provided. 
The loadings chosen provide upper and lower bounds on the 
unilateral contact behavior that would result for intermediate 
classes of loading, such as circular or patch loads. 

The plate geometry and coordinate system are shown in 
Fig. 1. The actual (barred) coordinates are given by x = ax//w, 
y = ay/ir, b = ab/ir, etc. Without loss of generality it is 
assumed that the two sagged edge supports are those parallel 
to the x-axis. The amount of sag between these supports and 
the undeformed plate is defined by the distance 5. The support 
conditions are defined by (Fig. 1). 

w,x = 0 , w = b : y = Q and y = 2b , e\<x<-w-ex (la) 

w,y=0 , w = 0 : x = 0 and x=ir, e2<y<2b — e2 (lb) 
As revealed by (1), each support is level. Also each edge 
support rigidly resists displacement in the positive z-direction 
only. The loading treated in the companion paper (Dempsey 
and Li, 1986) is assumed to be symmetric about *= TT/2, y = b 
and, in terms of the transformed coordinates, is given there by 
the expression 

q(x,y) = Q 2rf ]C amnsm(mx)sm(nwy/2b) (2) 
m = l , 3 , 
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Fig. 1 Rectangular plate on unilateral edge supports 

where Q is an appropriate load factor for the particular 
loading being treated. 

Further details concerning the theory and numerical 
analysis are provided in the companion paper (Dempsey and 
Li, 1986). Equations in the latter paper will be cited freely and 
referred to using the notation (D:). It suffices to note here that 
the auxiliary functions 4>\{t), 4>2(t) introduced in (D:39) are 
solved for numerically from (D:65-D:69). By substituting 
these functions into (D:39), then (D:28) and (D:20-D:22) for 
A™ and fl<*>, C<*\ D<£>, respectively, and into (D:51) for Wc, 
the deflection function w(x,y) given in (D:15) can be deter­
mined for any position in the plate and so can the moments 
and shear forces. 

Concentrated and Uniform Loading 

For a uniform load of intensity q, the expansion in (2) is 
valid for 

Q = Q,am„ = 16/ir2mn (mornodd) (3a,£>) 
for even m or n, amn=0. The numerical solution of 
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Fig. 2 The auxiliary functions ^ ( t ) for a rectangular plate on un­
sagged supports (<• = 0.3): (a) uniform pressure, (b) concentrated load 

( b ) w D / 3 0 0 P a 

Fig. 3 Deflections w(x,0), w(x,x), and w(x,7r/2) for square plate on 
unsagged unilateral (u.s.) and simple (s.s) supports (̂  = 0.3): (a) uniform 
pressure; (6) concentrated load 

(D:65-D:69) requires the summation of three expressions 
involving (3). Using Hansen (1975), it is found that 
(D:34-D:36) become, for -lk/2<u<lk/2 (/, = ir,/2 =26) 

(3 + v)-KAlkm\d^{u) = 4sech((3;t)sinh(/3i -mk\u\) 

TT4lkmlb^(u)=2secm3k)[smhWk-mk\ul) 

+ mk IuIcosh((3fc - m k I w I) 

- /3/tsech(/3A.)cosh(w<:«)] 

{3 + i,)w4lkmlgW(u) = 4(Pk-mk\u\) 

In terms of the actual coordinates and dimensions, a 
concentrated load at the center of the plate can be expressed as 
q(.x,y) = P8(x - a/2)5(y - ab/'w); in terms of the transformed 
coordinates, the same load is given by 
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Table 2 Square plate on unsagged supports ex 

v e"/-w 

0.1 0.300 
0.3 ' 0.262 
0.5 0.218 

u = uniform pressure 
c = concentrated load 

e7 i r 

0.434 
0.400 
0.353 

= e2 =e 

2,u.s. 

- 0 . 4 

y = 7t /2 

Fig. 4 Moments M 1 (x,x), M2 (x,x), Mx (x, JT/2) and My (x, a72) for a square 
plate on unsagged unilateral (u.s.) and simple (s.s) supports (<• = 0.3): (a) 
uniform pressure, (6) concentrated load 

q(x,y) = P(ir/a)2 8(x - ir/2)8(y ~ b) (7) 

The equivalent double Fourier sine series in (2) is valid for 

Q = P/a2,a,„„ =4(7r/26)sin(WTr/2)sin(n7r/2) (&a,b) 

Equations (D:34-D:36) together with (8b) give, using Hansen 
(1975), 

(3 + v)ir3 d(,f;\u) = m~l s\n(nvw/2)szc\i($k)cos,\\(mku) (9) 

^m\b($(u) = (7r/2^)sin(/W7r/2)/34.[/3A.tanh((3<.)cosh(w^«) 

-mkus\nh(mku)\ (10) 

Q + v)-K*m2
kgM(u) = 2{-K/2b)sm(rmr/2)Pk (11) 

The closed-form expressions in (4-6), (9-11) may now be used 
to define (D:32), (D:33), (D:37), and then (D:44), (D:45), 
(D:48b) and, finally, (D:65-D:69). 

Implementation 

The foregoing numerical analysis requires the summation 
of 58 different series. The authors established a uniform error 
tolerance for each summation. A global check on the accuracy 
was obtained by using the fact that the support reactions are 
integrable and that therefore the total load must balance. The 
final results are believed to be accurate to three significant 
digits. 

Several of the series converge very slowly. Examples include 
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Table 5 Square plate on sagged supports: uniform pressure 
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e 2 / i r 

< 1 0 ~ 4 

< 1 0 ~ 4 
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0.135 
0.166 
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0.222 
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-Wc/8 

< 1 0 ~ 4 

< 1 0 " 4 

< 1 0 " 4 

0.00229 
0.0118 
0.0368 
0.0943 
0.228 
0.590 
2.48 

q/q° 

1.00 
1.67 
2.16 
2.73 
3.47 
4.50 
6.08 
8.82 

15.0 
43.9 

2.0 I- v/Qa 

1.0 -

0.0 X/ir 
Fig. 5 Support reaction Vy(x,0) for a square plate on unsagged 
unilateral (u.s.) and simple (s.s) supports: (a) uniform pressure, (b) 
concentrated load 

L sm(mx)/m2,L x'"/m2,L e 
m = l , 3 m = l , 3 m = l , 3 

first was summed by noting that (Hansen, 1975) 

m = l , 3 , . 

sin(/?u0 px/2 

= - ) o l n ln(tan0<# 

x/m2. The 

(12) 

ln(tan0 can then be expanded into a Taylor series (using 
MACSYMA). The second and third pose difficulties when 
x— 1 ~ andx—0+ , respectively. 

Many different methods that accelerate the convergence of 
series were tried; often, these methods worked well in special 
instances. However, crude term by term summation was used 
in most cases, with all possible check cases being evaluated to 
verify accuracy. The latter approach, unavoidably, led to 
undesirably lengthy computer runs. 

Unsagged Supports. Rectangular plates in unilateral 
contact with unsagged edge supports subjected to either 
uniform pressure or concentrated lateral loads were examined 
as described above. In Figs. 2{a,b) the resulting auxiliary 
functions, 4>k{t) (£= 1,2), introduced in (D:39), and solved for 
in (D-.65-D-.67), are plotted. The requirements that <j>k{Q) = 0 
and 4>k{t) ~(ek -t)Vl as t—ek, are clearly satisfied. In Table 
1, the extent of contact e, and e2, the magnitude of corner 
uplift Wc, the maximum displacement wmax = w(ir/2,b), the 
maximum moments (Mx)max = Mx(ir/2,b) and 
(My)n -My(-w/2,b), the mid-side support reactions 
(^)mid = ^(0 ,6) and (Vy)mid = V^TT/2,0), are tabulated for 
different aspect ratios. Poisson's ratio is taken as 0.3. 

The values in parentheses in the columns of Table 1 for 
wmax, (M,)max> (^y)max. (K^mid and (Vy)mii correspond to the 
associated simply supported solution provided by 
Timoshenko and Woinowsky-Krieger (1959) in Section 30 and 
Table 8, p. 120. In the simply supported solution, uplift is 
prevented, and concentrated reactions at each corner result. 
The magnitude of these corner reactions R are bracketed 
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0.0 

(b) 

q 

Fig. 6 Extent of unilateral contact versus level of loading given dif­
ferent amounts of sag for a uniformly loaded square plate on sagged 
supports (>• = 0.3): (a) e1 and e2 versus qlq°, (b) e1 and e2 versus q 

Table 6 Square plate on unsagged supports loaded by a 
combination of uniform and concentrated pressure 
(e, = e 2 = e ) 

i/ = 0.3 

P/qaL 

e/ir 
0 

0.262 
1 

0.294 
3 

0.326 
10 

0.344 0.400 

Table 7 Uniformly loaded square plate on unsagged 
supports: amplification of central moments (c = 0.3) 

26/TT 

1.0 
1.5 
2.0 
3.0 

k 

1.36 
1.22 
1.12 
1.05 

yx 

1.06 
1.05 
1.03 
1.00 

yy 
1.06 
1.03 
1.00 
1.00 

0.5 

y/7t 

-3 

/-1 

0.0 

1 

W/(f 

\ q/q<r = 43.9 

x/it 

.3.47 0.5 

î° 
^-8.85 

Fig. 7 The edge displacements near the corner for a unilaterally 
supported uniformly loaded square plate on sagged supports (c = 0.3) 

below the values for ex/-w in Table 1. The contact length e2 is 
normalized first with respect to ir and then 2b; from the 
former values it is clear that the extent to which the plate loses 
contact with the supports remains unchanged for aspect ratios 
greater than 3.0. 

From Table 1 it is obvious that, for aspect ratios 2 6 / T > 3 
the maximum deflection, moments, and (Vx)mid rapidly 
approach the values calculated for a simply supported rec­
tangular plate. The loss of contact, however, is significant. 
Also, the support reaction {Vy)mid differs significantly from 
the simple support solution. In the case of the concentrated 
loading, (Mx)mm and (My)max are infinite, for all aspect 
ratios. 

For the particular use of a square plate, the redistribution in 
deflections, moments and support reactions caused by 
allowing plate uplift is shown in Figs. 3, 4, and 5 respectively. 
The variation in contact lengths with Poisson's ratio is shown 
in Table 2; for a square plate ex = e 2 =e . The variation in 
selected deflections, moments and support reactions with 
Poisson's ratio is given in Table 3 for a uniformly loaded 
square plate. The behavior of the latter physical quantities for 
a square plate loaded by a concentrated load with c = 0.3 is 
tabulated in Table 4. 

Recently, Salamon et al. (1985) investigated, using the finite 
element method, the behavior of square plates resting on 
discrete elastic springs at the edges and subjected to uniform 
and concentrated loadings. The results of the latter paper are 
rather approximate for the case of infinitely rigid continuous 
supports, but qualitative agreement is obtained with the 
results in Table 2 and Fig. 5. 

Sagged Supports. A uniformly loaded square plate in 
unilateral contact with sagged supports is examined in this 
section. The dependence of the extent of contact on the load 

intensity for differing amounts of sag is shown in Figs. 6(a,b). 
The contact lengths ex and e2 are plotted versus q/q° in Fig. 
6(a); selected values are tabulated in Table 5. The load in­
tensity at which the plate starts to touch the sagged supports is 
given by q°, in which case e,=Tr/2 and e2~0 (in this 
problem). The ratio q/q° is independent of the amount of sag, 
5, as revealed by the expression in (D:71). In Fig. 6(b) the 
contact lengths ex and e2 are plotted versus q for different 
values of 6. Clearly, as the amount of sag decreases, the loss 
of contact stabilizes for lower load levels. In the limit as 5—0, 
e, and e2 tend to the values indicated in Table 1 for the square 
plate on unsagged supports, which do not depend on the load 
level q. The latter observation is consistent, since the un­
sagged support problem is a receding contact problem. 

The dependence of the edge displacements normalized with 
respect to the amount of sag, w(x,0)/8 and w(0,y)/8, for 
different values of the ratio q/q°, is shown in Fig. 7. The 
variation of Wc/b= vf(0,0)/5 with q/q° and e{, e2 is indicated 
in Table 5. The numerical results in this study are all for the 
square plate geometry and Poisson's ratio equal to 0.3. 

Combined Loading 

To model concentrated loading on plates including the self 
weight of the plates, combined loading is examined briefly. 
For a square plate on unsagged supports and Poisson's ratio 
equal to 0.3, the variation in the extent of contact with dif­
ferent values for the ratio P/qa2 is indicated in Table 6. From 
these numbers, it can be seen that the distributed load exerts a 
major influence on the extent of contact. 

Conclusions 

The clamping effect in the vicinity of the corners of a 
uniformly loaded simply supported square plate is plainly 
illustrated by the distribution of bending moments Mx(x,x) 
and M2(x,x) (Fig. 4(a)). If the corners of the plate are only 
partially secured against lifting, the clamping becomes 
ineffective and the bending moments in the outer portion of 
the plate increase accordingly. The amplification for 
unilateral edge supports with no restraint against lifting is 
evident in Table 1, where the simply supported and 
unilaterally supported values for (Mv)max and (My)max are 
presented. The German Code for Reinforced Concrete (1943) 
(see Timoshenko and Woinowsky-Krieger, 1959, p. 123) 
recommended that the simply supported values for 
(Mx) ms

ax
 a n d (Myym\x be multiplied by the factor k>\, 

where (using the current notation) 

k=-
3 7 r 4 - 5 7 r 2 6 2 + 4 8 6 4 

37T4 -107T262+48Z74 
(13) 

In this paper, let 
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7* = (ATXL/(MX& ,7, = ( M ^ C M ^ (14) 

For different aspect ratios, the values for k and yx, yy are 
presented in Table 7. Clearly, the approximate expression in 
(13) is always conservative; for the case of a square plate, the 
bending moments are overestimated by roughly 25 percent. 

It is important to recognize that (D:15) can be expressed in 
the form 

w(x,y) = 
Qa4 

Dw4 

2D 

s'm(mx)sm(niry/2b)/[m2 + (mr/2b)2]2 

CO 

I ] [yJ,l,)0)sin(/WA:)+ Y^(x)sm(miry/2b)] 

+ We (15) 

The first term corresponds to the deflection of a simply 
supported rectangular plate. The remaining terms give rise to 
the expressions involving the auxiliary 4>k(t) functions; they 
occur solely because the restraint on upward deflection has 
been removed. 

The unilateral contact behavior associated with uniform 

pressure and concentrated loading, and combinations of the 
latter loadings, have been examined. The influence of the 
level of loading, the aspect ratio, the amoung of sag, and 
Poisson's ratio has been determined. As a general guideline, 
the simply supported deflections and moments portray the 
unilaterally supported behavior reasonably accurately except 
near the corners of the plate. 
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Transient Gas or Liquid Flow 
Along a Preexisting or 
Hydraulically-Induced Fracture in 
a Permeable Medium 
Similarity solutions are derived for the transient two-dimensional flow of a gas or li­
quid along an isolated fracture in a permeable medium. The driving pressure at the 
fracture inlet is constant, and the confining stress is uniform. Two different cases 
are considered, preexisting fractures with uniform aperture as well as hydraulic frac­
tures with a variable aperture proportional to the local overpressure {fluid pressure 
less confining stress). The evolution of the pressure distribution is de­
scribed by a set of four asymptotic solutions, each having a self-similar form. At 
early times the flow in the fracture is turbulent, and Darcian seepage losses into the 
porous surroundings are negligible. At late times the flow in the fracture is laminar, 
and seepage losses become a dominant consideration. At intermediate times there 
are two alternative asymptotes, depending upon the physical parameters. The 
mathematical model also describes the flow along a fracture which is filled with 
high-permeability porous material as well as the flow in an assemblage of porous 
blocks. 

I Introduction 
Flow along narrow channels or fractures having permeable 

or impermeable walls is important in a number of engineering 
technologies. Most notable are the geologic energy-extraction 
applications involving gas or liquid flows in naturally frac­
tured [1] or hydraulically fractured media [2]. The particular 
application which motivates the present study is the contain­
ment evaluation of underground nuclear tests where radioac­
tive gasses may flow outward from the cavity along a number 
of possible paths, including: preexisting or explosion-induced 
fractures, hydraulically-driven fractures, rubblized frac­
ture/block media, permeable stemming column, and grouted 
or bundled electrical cables. In each instance there is a pre­
ferred channel or pathway through a permeable surrounding. 

In the two-dimensional configuration of Fig. 1, a preex­
isting fracture (or high-permeability porous layer) penetrates 
from the boundary into the interior of a permeable medium. 
Transient fluid motion is induced by an abrupt change in the 
pressure at the entrance to the channel. Such flows have been 
previously studied in petroleum applications [3, 4] where it is 
usually presumed that the fluid has a small and constant com­
pressibility, as appropriate for a liquid, but not for a gas. 
Also, it is usually presumed that the flow along the fracture is 
laminar or Darcian, although the non-Darcy flow of a liquid 
has been previously addressed by Guppy, Cinco-Ley, and 
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Flow 

Fig. 1 Preexisting fracture with uniform aperture, w. Domain extends 
to infinity in the x and y directions. Height in the z direction is large com­
pared to w. 

Ramey [5] using Laplace transforms and numerical 
techniques. 

Creation of a flow channel by the action of internal pressure 
is commonly referred to as hydraulic fracturing. The most 
familiar applications are stimulation of oil and gas wells [2] 
and blasting of rock formations [6]. The fracture geometry is 
often presumed to be planar, as illustrated in Fig. 2, where the 
fracture height is fixed and the length increases with time. If 
the fracture length is shorter than the height, the local aperture 
at any cross section depends upon the pressure distribution 
along the entire fracture, as assumed in the analyses of 
Geertsma and DeKlerk [7], Daneshy [8], and Nilson [9]. If, 
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Fig. 2 Hydraulically-driven fracture with fixed height, H, and increasing 
length, L(t). Cross section is elliptical with maximum opening displace­
ment, wm, proportional to local excess of internal fluid pressure over 
confining stress. 

however, the fracture length is considerably greater than the 
height, the local aperture depends mainly on the local pressure 
at any cross section, as assumed in the model of Perkins and 
Kern [10] and Nordgren [11] and in the present paper. 

Although the geometries considered here have been 
previously investigated by petroleum engineers, the present 
nuclear containment application requires a different class of 
solutions. Here, the driving pressure is prescribed, rather than 
the flow rate. The fluid may be either an ideal gas or a liquid, 
the friction may be laminar or turbulent, the fracture may be 
either preexisting or hydraulically induced, and the Darcian 
leakage into the walls of the fracture may be either a dominant 
or a negligible consideration. Of this very broad class of 
problems, only a small subset has been previously explored. 
Moreover, the comprehensive results reported here allow 
direct comparison among solutions which exercise a diversity 
of physical mechanisms. Also, the present solution procedure 
represents a somewhat different and relatively general ap­
proach which is currently being extended to more complex 
problems, such as evaporating and condensing flows of 
steam/water/air in fractured, permeable media. 

The evolution of the transient flow is described as a se­
quence of distinct asymptotic domains in which different 
physical mechanisms are dominant. 

1 At early times the seepage losses from the fracture into 
the porous medium are negligible; at late times these losses are 
dominant. 

2 At early times the fracture flow has a large Reynolds 
number and inertial or turbulent resistance is therefore domi­
nant; at late times the Reynolds number is small and molecular 
or laminar friction is dominant. 

Within each of the four possible flow regimes (lossless/tur­
bulent, lossless/laminar, loss-dominated/turbulent, loss-
dominated/laminar) the two-dimensional time-dependent 
solutions P(x,y,t) possesses a self-similar form P{d(x,t), rj{y,t)) 
which simplifies the computation and facilitates a comprehen­
sive presentation of results. The present nonlinear solutions 
with density variation and non-Darcy friction reduce to the 
known linear solutions [5, 12] when the pressure ratio is near 
unity and the Reynolds number is small. 

II Formulation 

The two related geometries illustrated in Figs. 1 and 2 will 
be analyzed in a parallel fashion. For either geometry the flow 
along the fracture is assumed to be one-dimensional in the x-
direction, and the Darcian seepage into the surroundings is 
assumed to be two-dimensional in the xy-plane, as appropriate 

when the fracture height, H, is large compared to the aperture, 
w. 

The preexisting fracture of Fig. 1 has a prescribed aperture 
which is uniform along the fracture and invarient in time. The 
aperture could, however, vary in the ^-direction (as in the 
hydrofracture geometry of Fig. 2) in which case an effective 
aperture or hydraulic diameter should be used in the one-
dimensional flow analysis. The preexisting fracture may be 
either an open channel or, alternatively, it may be filled with a 
high-permeability porous material. 

The hydraulically-driven fracture of Fig. 2 has a variable 
aperture which depends linearly on the local overpressure, 
P(X)-<T, as in the Perkins/Kern/Nordgren model where the 
maximum displacement at the center of the channel, the cross-
sectional area, and the effective aperture are, respectively, 
given by [10,11] 

wm (x) = ( 1 ~^)H[P(x) - a], A=jWmH, w = jw„, (1) 

in which G and v are the shear modulus and Poisson's ratio, a 
is the confining stress acting normal to the fracture plane, and 
H is the height of the fracture which is presumed to be known 
and constant. Thus the normalized aperture and area, w* and 
A*, are each proportional to the normalized overpressure P*, 
such that 

W*=A*=P* (2) 

where 

w A P—a 
w*= ,A*= ,P*= (3) 

w0 A0 P0-a 
in which the subscript zero refers to the inlet of the channel 
(x = 0) where the pressure is known, and hence the local chan­
nel dimensions, w0 and A0, can be readily calculated from the 
formulas given in (1). The normalized geometric relationships 
(2, 3) are generally applicable in any situation where a flow 
channel is created by displacements, either compressions or 
tensions, which are proportional to local overpressure. 

The one-dimensional transient flow within a permeable-
walled channel is governed by the conservation of mass and 
momentum [13] 

<t>c—(Ap) + —{Apu) =-Cpvw (4) 
dt dx 

-^(Apu) + ~^Apu2) =-A ( - ^ - + pF) (5) 

in which A and C are the cross-sectional area and cir­
cumference of the channel, P is pressure, p is density, u is 
longitudinal velocity, vw is transverse velocity into the 
permeable walls of the channel, and F embodies the frictional 
effects in the fluid. Note that A ~Hw may vary with x, while 
C~2His always constant. 

The frictional forces can be expressed by the following 
linear combination which has the correct asymptotic behavior 
both for small and for large values of the Reynolds number 
(Re = pud/n) 

P F ^ + C,^ (6) 

These equations (4-6) apply equally well in either of the 
following circumstances, provided that the channel porosity, 
<£c, the length scale, d, and the dimensionless coefficients, C, 
and C,, are appropriately defined. 

1 For flow in an open channel 

<$>c = 1 (7f l ) 

d = w = effective channel aperture {lb) 

C, = 12 for preexisting fracture (7 c) 

= 4 T for hydraulic fracture [7] 
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C, = a(e/w)* (Id) 

in which C,= 12 is based on the laminar Poiseuille flow, C, is 
based on experimental results for turbulent flow in geologic 
fractures ([14]; a-OA, £ -0 .5 ) , and e is roughness height of 
the channel wall. 

2 For flow in a channel which is packed with a permeable 
material (e.g., propped hydrofrac or high permeability 
stratigraphic layer) 

4>c = porosity of channel material (8a) 

d = characteristic microscale dimension 

(e.g., pore dimaeter or particle size) (8b) 

C, = d2/Kc^ 180(1 -</>c)
2/</>3 (8c) 

C, = \d/Kc^2(\-<j>c)/ct>l (8d) 

in which C, is based on Darcy's law, Kc is the permeability of 
the channel, and X is Ergun's constant which is a measurable 
macroscopic property of the pore structure. Roughly, Kc = d2 

03/180(1-0C)2 and X = 0.012 c? / ( l -0 c ) [15] as noted in (8c) 
and (8d). In many geological applications, the conventional 
friction models described above can only be viewed as crude 
approximations, particularly when the roughness height is 
comparable to the fracture aperture and the expected behavior 
lies somewhere between the extremes of channel flow and 
porous flow. 

The lateral loss-velocity, v„ in (4), accounts for the seepage 
losses from the channel. It can be determined by consideration 
of the two-dimensional transient flow field within the sur­
rounding porous medium, as governed by conservation of 
mass and by Darcy's law, respectively, 

dp_ 

dt 
+ V.(pv) = 0 (9) 

(10) 

in which <f>m and Km are porosity and permeability of the sur­
rounding medium. SinceKm << Kc, the superficial velocity, 
v, is presumed small enough to neglect the high-Re non-Darcy 
effects which were retained in the channel flow. Equation (10) 
implies that the seepage-loss velocity v„ in (4) is related to the 
lateral pressure gradient at the fracture wall, i.e., v„ = 
-{KJii)dP/dy on y = 0. 

The barotropic equation of state, p = p(P) is often ap­
propriate, both in gas flows and in liquid flows. Ideal gas 
flows (j> = P/RT) are often nearly isothermal because the am­
bient temperature of the matrix cannot be substantially per­
turbed by the through-flow of a gas which has a relatively 
small specific heat. Liquid flows are usually characterized as 
having a small (and constant) compressibility, a, even in 
nonisothermal circumstances. In either instance, liquid or gas, 
the time derivative of the density can be replaced as follows 

dp dp 
„ - = pa—— 
dt dt 

(11) 

in which the product pa is essentially a constant (for the gas, 
pa = p/P=l/RT). 

The flow is induced by an abrupt change in the pressure 
along the boundary at x = Q, as described by the initial/boun­
dary conditions. 

P(x,y,0) = Pa;P(0,y,t) = Po - (12) 

where P„ is the ambient pore pressure in the permeable 
medium. For a preexisting fracture, the internal pressure with­
in the fracture approaches P„ as x— °°, and the fluid velocity 
may be either positive (u > 0) or negative (u < 0) depending on 
whether P0>Pa> or P 0 <P 0 „ . For a hydraulic fracture, 
however, the internal pressure approaches a at the leading 
edge, and it is necessary that P0>a for the fracture to be 

open, in which case u > 0 . In general, P„ might be greater or 
less than a, but the former case (Px > a) is unstable in the 
sense that fracture propagation can occur spontaneously, 
without the imposition of the disturbance pressure, P0, at the 
boundary. So, here we restrict to the latter case (Px < a) which 
is far more common in the applications. 

At very early times the inertial terms on the left side of the 
momentum equation (5) are dominant, and the considered 
channel flow resembles the flow in a shock tube. As the time 
and length of run increase, the frictional, F, terms in (5) smear 
out the Shockwave and the inertial terms in equation (5) 
become negligible (since u du/dx << u2/d in (5) and (6)). 
After that, the friction dominated channel-flow gradually 
slows down as the pressure gradient diminishes, and eventual­
ly the lateral seepage losses become a dominant consideration, 
as described by the present analysis. 

Ill Similarity Transformations 

The transient solution of the stated problem can be de­
scribed by a set of four self-similar asymptotic solutions in 
each of which the independent variables are 

27V </w«xm\1/2 / 
LrAr) n VT\N+l K„ 

(13) 

where the pore-fluid compressibility parameter, am, is either 
the compressibility of a liquid or \/P0 for a gas. The depen­
dent variables are normalized as follows 

P-P, 
P'=- (14) 

Pr ur8(r) 

The time-functions / (T ) and g(r), which presently remain ar­
bitrary, will later be chosen such that P*, p* and u* depend 
only upon 6 and r\ within the four distinct, self-similar time 
regimes. 

The reference scales of length, velocity, time and density are 
chosen such that P*,p*, and u* are always positive, regardless 
of whether the flow is inward or outward ( ± below for u £ 1) 

L, = 

p(P0) + p(Pr) 

APdl 

u. = ± 
/* 

prd0 C, 

Lr 2N 

UrV-C, ur 7V+1 
4>cacAP (15) 

in which p(P0) and p(Pr) are the fluid densities at pressures P0 

and Pr, respectively, and the quantities d0 and C, are 
evaluated at the inlet of a hydro fracture. The reference 
pressure, Pr, is taken as the pressure at the leading edge of the 
channel flow, so that 

Pr = P^ for a preexisting fracture (16a) 

or 

Pr = a for a hydraulic fracture (166) 

In either case, the characteristic pressure difference along the 
fracture and the corresponding pressure ratio are defined as 

AP=\P„-Pr\ andN=P0/Pr (17) 

The compressibility parameter of the channel, ac, appearing 
in the timie scale, tr, is taken as either 

ac = a„, for a preexisting fracture (18a) 

or 

ac = 1/AP for a hydraulic fracture (186) 
The lateral seepage flow is driven by the difference between 
the fracture pressure and the ambient pore pressure, as 
measured by 

AP p -P 
* " ~ (19) AP =Pn-Pa or API=-

AP P -P 
1 o -* r 
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For a preexisting fracture AP*= 1, since Pr = Pa in that cir­
cumstance. However, for a hydraulic fracture AP* might be 
greater than unity if the pore pressure, P„, were less than the 
confining stress, a = Pr. 

Under the transformations stated just above, the space and 
time derivatives can be replaced by 

Iti'Tjlw' lt~l^\ f de~v2T di\) (20) 

whereupon the problem statement (4-6, 9-12) transforms into 
the following format in which ( ) represents differentiation 
with respect to T 

f N+l 

27V 

3A* /N-l\" 

\ N ) 
A" 

3 R1/2 

+ ̂ —(A*p*u*) = 
36 AP* 

f 
?V7 

3P* 

~~dT 

dP* 
* 

dP* u* 
-TT-=f&—z -+fg2 

M * ( l + 6 ) w \w 

(21) 

(22) 

/ dP* 1 dP* _ 3 / tdP*\ 

f2 de 
3 / dP* 

2N 

N+l 

36 V 36 J 

Hl-k)+7f] 

(23) 

(24) 

with boundary conditions 

P*(O,O,T) = 1;P*(C» ) ) ? ,T) = P * ( 0 , C » , T ) = 1 - A P S * (25) 

Equations (21) and (22) describe the flow along the fracture, 
while the nonlinear diffusion equation (23) describes the two-
dimensional seepage flow in the permeable surroundings. The 
main difference between preexisting and hydraulic fractures is 
that w* =A* = 1 in the former case, whereas w* =A* =P* in 
the latter. Also the exponent n in (21) is either 0 or 1 for the 
respective cases of preexisting and hydraulic fractures, 
because of the scaling chosen in equation (18). 

The lateral seepage-loss parameter which appears on the 
right side of equation (21) is defined as follows: 

R=KmC, 

in which(CA4)„~2/w, 

LV A Jo dn 

AP, 

AP 
(26) 

is the ratio of circumference to cross 
sectional area at the fracture inlet. Note that the inertial terms 
have been deleted from the momentum equation (22) as 
discussed earlier. Furthermore, the longitudinal 0-diffusion 
term in (23) is negligible for all times of practical interest, since 
M=Cl<$>cotcK„,/(4>m(xmd1

0) « 1 [12]. Finally, note that in the 
limit as N— 1 the ideal gas equation of state (24) also describes 
a slightly compressible liquid (for which p*~l), so that the 
liquid-flow results for all pressure ratios are recoverable as a 
degenerate case of the gas-flow results [16]. 

The self-similar regimes will now be identified by choosing 
/ (T) and g(r) such that the problem statement (21-25) becomes 
independent of T within specified ranges (early, intermediate, 
late) of T. The results for each self-similar regime will first be 
presented, thereafter giving consideration to the transition 
behavior. 

IV Lossless Regimes 

At sufficiently early times (T < < \/R), the lateral fluid loss 
from the fracture is insignificant, and the pressure wave 
penetrates into the fracture almost as though its walls were im­
permeable. The appropriate transformations for these quasi-
lossless regimes are listed below for the separate cases of 
laminar and turbulent flow. 

0.0 0.5 1.0 15 2 0 2 5 3D 
Similarity Variable, # ~ x / t l / 2 

Fig. 3 Pressure distribution along preexisting and hydraulically-driven 
fractures for lossless flow with laminar friction 

1 For laminar flow, l e t / = g/2 and fg = 1 such that 

2N </>cacAiCA l/1 

— (-
,1/2 \j 

^N+l d0
2 ) 

and the momentum equation (22) becomes 

dP* _ u* / p*u*w*(l-V\_ u 

~~ae~~ w*2 v 1 + ^ / ~^*-
2 For turbulent flow, l e t /= 2g/3 and fg2 = 1 such that 

for T > > 1 

x r / 27V \ 
t2n LV/v+i/ 

f=r2/\ 
2N \ 2 <j>2a.2APClPr-

-T 

2™ 2 / 

(27) 

(28) 

(29) 

(30) 

(31) 

and the momentum equation (22) becomes 

dP* 

~d~6~ 

p*u* \u* I 
1+-

* w * ( ' - 6 ) , p'W'Vf 

p*u*\u*\ 
for T « \ (32) 

w *( l+6 ) 

Thus, the momentum equation becomes independent of r, 
both for T > > 1 and for T < < 1. In either case, the continuity 
equation (21) takes the following form in which /3 = 1/2 or 2/3 
for laminar and turbulent cases, respectively. 

-m 
N+l 3A* 

2N 36 V N ) 36 J 
+ —{A*p*u*) 

do 

=(RTy 
3P* 

AP? dr, 
- O f o r RT<<1 (33) 

It is seen that the lateral loss term is negligible and the con­
tinuity equation becomes independent of T so long as T < < 
l/R, and for those early times the channel flow is essentially 
uncoupled from the flow in the surrounding medium. 

To facilitate a numerical solution, the expressions for 
w*(P*) p*(P*), and u*(dP*/d6, w*) from equations (2, 24) 
and (29) or (32) are all substituted into the continuity equation 
(33) to obtain a second-order ordinary differential equation 
for P*(d) subject to the boundary conditions P*(0)=1 and 
P*(oo) = 0. The derivative operators are then replaced by 
central-differences on a discrete grid, and the resulting equa­
tions for Pj*(6i) are linearlized to obtain a tridiagonal 
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Fig. 4 Pressure distribution along preexisting and hydraulicaliy-driven 
fractures for lossless flow with turbulent friction 

algebraic system which is solved by the algorithm of Thomas. 
Iterations are continued until the P* used in the linearization 
are in close agreement with the P* which satisfy the linearized 
equations. 

Laminar solutions with negligible seepage losses are il­
lustrated in Fig. 3 for various values of the pressure ratio, N, 
which is the only parameter appearing in the problem state­
ment. The lossless flow along a preexisting fracture with 
w*=A* = l is mathematically equivalent to one-dimensional 
flow in a permeable medium [16, 17, 18]; these solutions are 
reproduced here as a check on the present finite-difference 
method and for comparison with the hydro fracture results. 
The pressure profiles for preexisting fractures (N=P0/Pm) 
generally exhibit a gradual exponential approach to the far 
field pressure as 0 tends to infinity, whereas the profiles for 
hydraulic fractures (N=P0/a) drive abruptly to P* = 0 (JP= a) 
at a finite 0 near unity. The curves in Fig. 3 also describe the 
shape of a hydrofracture, since w* =P* when local displace­
ment is proportional to local over-pressure. Hydrofracture 
solutions exist only for N> 1, since P0 must be greater than a 
for the fracture to be open, whereas rarefaction or 
"drawdown" solutions with N< 1 are obtainable for a pre­
existing fracture with fixed aperture. 

The leading edge of the hydrofracture occurs at a finite 
location, 0*, where P* goes to zero. Behind that point P* >0 , 
or equivalently P>a, and the channel is open. Further ahead, 
the channel is closed. Right at the leading edge, the fluid 
velocity must be the same as the propagation velocity of the 
hydrofracture, requiring that 

dx 

~dT 
or u* =/ ' ( • 

N+V 

\ 2N 
at 0 = 0* (34) 

Otherwise there would be fluid passing through the front of 
the fracture. Recalling that the fluid speed depends upon the 
aperature and the pressure gradient, the local pressure gra­
dient is theoretically infinite at the leading edge. For a laminar 
flow, dp» /N+l\ „ 

i-w)**' (35) 
d6 2w* 

where w* ( = P*) goes to zero. This equation implies that the 
pressure has a cube root singularity at the leading edge of a 
laminar flow. Care was therefore taken to accommodate the 
appropriate singular behavior in the numerical algorithm. 

Turbulent flow solutions with negligible seepage losses are 
illustrated in Fig. 4. As in laminar flow, the disturbance ex-

0.0 1.0 2.0 3.0 

Similarity Variable, d~x/t2/3 

Fig. 5 Isobars for lossless flow along a preexisting fracture with tur­
bulent friction. Pressure ratio is near unity (N-1). 

tends to infinity along a preexisting fracture, whereas a 
hydrofracture disturbance is limited to a finite domain. As 
before, there is a theoretically-infinite pressure gradient at the 
leading edge of a hydrofracture, but the singularity is now 
somewhat weaker, particularly when N is large. 

The lossless solutions for preexisting versus hydraulic frac­
tures are very nearly the same, provided that the fluid is a gas 
and the pressure ratio is large. When TV is large, the similarity 
variables for the two types of fractures are virtually identical, 
because in that limit the compressibility parameter, 
ac = 1/AP, used in scaling hydrofractures is equivalent to the 
ctc = \/P0 used in scaling preexisting fractures. Of course, the 
penetration depth is always somewhat shorter for a hydraulic 
fracture, compared to a preexisting fracture having the same 
inlet aperture. But the difference in penetration depth and 
fluid speed is only a factor of two, or so, when N is large. The 
two families of solutions are very different, however, when 
the pressure ratio is small or the fluid is a liquid, because their 
scaling is then quite different. The penetration depth along 
preexisting fractures is proportional to {l/ac)

m~P„ where 
w = l / 3 or 2/3 for laminar or turbulent flows; whereas for 
hydraulic fractures the penetration is only proportional to 
(\/ac)

m ~APm. So, when AP/P0 << 1 (i.e., N~ 1), the fluid 
penetrates into a hydraulic fracture much more slowly than a 
preexisting fracture, both having the same aperture at the 
inlet. 

This qualitative difference is a consequence of the very dif­
ferent capacitance mechanisms which are operative in the two 
types of fractures. For a hydrofracture, there are two 
capacitance mechanisms, fluid compression (~w* Ap*) and 
solid deformation (~p* Aw*); the latter mechanism always re­
mains of order one, even in the limit as TV—1 and Ap*-»0. 
Conversely, for a preexisting fracture the only capacitive 
mechanism is fluid compression (~w* Ap*) which is of the 
order Ap* = (TV- 1)//V, and hence very small for N near unity 
or for an "incompressible" liquid. That is the primary dif­
ference in the physical processes and the reasoning behind the 
difference in scaling. At large N, this distinction is of no im­
portance because Ap* is then comparable to AP*, and hence 
fluid compressibility effects are of order unity for both types 
of fractures. 

Although seepage losses do not significantly influence the 
early-time flow along the channel, the pressure disturbance 
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does penetrate into the surrounding porous medium, in the 
manner described by the following partial differential equa­
tion (from (23) with /3= 1/2 or 2/3 for laminar and turbulent 
flow, respectively) 

dP* 

'J" 
dp* 
drj 

d 

drj 
( JP*\ (36) 

For laminar flow in a preexisting fracture, the isobars are 
simply straight lines which intersect the 0-axis at a TT/4 angle. 
This can be verified by introducing the independent variable 
£ = 0 + rj which reduces all of the equations (29, 33, 36) to a 
single ordinary differential equation, £P*' +2(p*P*')' =0; 
hence, P* is a function of £ alone. Under more general cir­
cumstances the isobars are determined by numerically solving 
the field equation (36), as outlined in the next section, using 
the channel flow solutions as boundary data on the fracture 
(i.e., on TJ = 0) . In the typical results of Fig. 5 the lateral i/-
penetration and the longitudinal ^-penetration are both of 
order one. 

IV Loss-Dominated Regimes 

As the penetration depth increases, the lateral seepage losses 
become progressively more important. At sufficiently late 
times (T > > l/R), the longitudinal through-flow in the chan­
nel is almost entirely consumed by the seepage losses, and the 
fluid capacitance within the channel becomes negligible. The 
appropriate transformations for these loss-dominated regimes 
are listed below for the separate cases of laminar (r > > 1) and 
turbulent (r < < 1) flow along the fracture. 

1 For laminar flow, let f=g(r/R)1/2 and fg= 1 such that 

f=(r/R)w\g=(T/R)-m, (37) 

2N <t>mtXmpKmC? ( APS\ * / C y I "< 

~H? \ZP) \A~)O\ ( 3 8 ) =—[-
and the momentum equation (22) becomes 

dP* u* 
-—— ~ — - r for T>>\ (39) 

2 For turbulent flow, let f=g(T/R)m and/g2 = 1 such that 

f=(r/Ry\ g = (r/RY 
2N 

,1/3 N + l - <«-».— d o l l KM>) 

and the momentum equation (22) becomes 

dP* 

w \u*\w*-v + b) for T < < 1 

(40) 
3 

(41) 

(42) 

In either case, the continuity equation (21) takes the following 
form 

—(A*p*u*)-
dd 

dP* 

AP: dr, 

/N-l\" 

'\~N~J 

--pe(RTy 
N+l dA* 

-p* 
2N de 

dp* 

de 
- O f o r RT>>1 (43) 

It is seen that the capacitance term on the right becomes 
negligible when T > > l/R, and in that limit the equation 
becomes independent of T. But, in contrast to the early lossless 
regime, dP*/drj now appears in the channel-flow equations, so 
they must now be solved in conjunction with the porous-flow 
equation, (36), in which /3 = 1/4 or 1/3 for the laminar and tur­
bulent cases, respectively. 

Finite-difference solutions are obtained by successive itera­
tions of a two step procedure. First, the pressure variation 
along the fracture is calculated by solving the continuity equa­
tion (43) together with the friction equation, (39) or (42), and 
the usual expressions for p*(P*), w*{P*), and A*(P*). The 
numerical approach is basically the same as in the lossless case 
described previously, except that the lateral seepage term, 
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Fig. 6 Pressure distribution along preexisting and hydraulically-driven 
fractures for loss-dominated flow with laminar friction 

Similarity Variable, Qr 

Fig. 7 Pressure distribution along preexisting and hydraulically-driven 
fractures for loss-dominated flow with turbulent friction 

3P*/dr\ in (43), is evaluated using most recent estimates of the 
pore-pressure distribution in the fracture wall. In the second 
step, the pore-pressure field in the permeable surroundings is 
calculated from the parabolic partial differential equation, 
(36). The integration algorithm marches inward toward the 
origin in the time-like negative-^ direction. Using backward 
differences for dP*/86 and central differences for the it-
derivatives, we obtain a tri-diagonal algebraic system for the 
pressures on each successive line of constant 6. The sweep is 
initiated by letting P* = 1—AP* along a remote line, 9 = 6m!ix. 
The most recent calculation of the fracture flow provides 
boundary data on ij = 0, and it is also required that 
P* = l— AP* along a remote line, ij = i7max. As 0—0, the partial 
differential equation degenerates into an ordinary differential 
equation in the ^-variable. As explained in [12], the present 
solutions are "outer solutions" which do not satisfy the boun­
dary conditions along 8 = 0, except at the point (0,0). There is 
a thin boundary-layer along 6 = 0, wherein d2P*/dd2 must be 
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Fig. 8 Pressure distribution along hydraulically-driven fractures for 
loss-dominated flow with laminar friction. Pore pressure P „ is equal to 
or less than confining stress, a. Pressure ratio is near unity (N-1) . 

retained and the equation becomes elliptic. However, the pre­
sent outer solutions remain valid until the very late times 
noted in the summary of this paper. 

Laminar and turbulent solutions are illustrated in Figs. 6 
and 7, respectively. Each figure shows the pressure variation 
along the channel for various values of the longitudinal 
pressure ratio, A'=P o /P 0 o or N=P0/o, for preexisting or 
hydraulic fractures, respectively. Recall, from equations (16) 
and (19), that the pore pressure parameter AP* is always unity 
for preexisting fractures. Thus, in the comparative hydrofrac-
ture solutions of Figs. 6 and 7, the pore pressure P„ is chosen 
to be the same as the confining stress a, such that AP*= 1. The 
disturbance extends to infinity along a preexisting fracture; 
whereas the length of a hydrofracture is finite, and the 
pressure gradient is very steep near the leading edge. It is no 
longer true that the fluid velocity must match the propagation 
velocity near the tip of the hydrofracture, but rather that the 
longitudinal flow be in balance with the seepage losses, which 
still requires that the pressure gradient become infinite as the 
width of the channel goes to zero. The turbulent hydrofracture 
solutions in Fig. 7 have a curious appearance near the leading 
edge, so particular care was taken to ensure adequate resolu­
tion of the detailed structure at the toe of the profile. 

In the loss-dominated regimes, the fluid penetration depth 
along preexisting versus hydraulic fractures is quite com­
parable, regardless of the pressure ratio N, since the only 
capacitance mechanism is the fluid storage in the surrounding 
porous medium. Thus, the similarity variable now depends on 
the pore-fluid compressibility, a,„, which is the same for 
preexisting and hydrofractures, rather than ac, which differs 
between the two. 

The ambient pore pressure might, in general, be less than 
the confining stress and this would increase the seepage losses 
from the fracture. However, this consideration has been ac­
counted for, in a first order fashion, by the scaling of the 
equations. Thus, as seen in Fig. 8, the pressure profile and the 
normalized length of the fracture are almost insensitive to the 
pore-pressure parameter AP*=(P0-Pa,)/(Po-a). The il­
lustrative results are for laminar flow and a worst-case condi­
tion in which N~\. In reality, the pressure ratio N must 
always be greater than unity, and the maximum possible value 
of the pore-pressure is AP*=P0/(P0-a) = N/{N- 1), cor­
responding to a pore pressure of zero. 

Similarity Variable, # ~ x / ? l / 4 

Fig. 9 Isobars for loss-dominated flow along a hydraulically-driven 
fracture with laminar friction. Pore pressure is the same as confining 
stress (APj = 1), and pressure ratio is near unity (N—1). 

The pressure field within the porous medium is illustrated in 
Figs. 9 and 10 for AP*=l and AP*=10, respectively. Both 
plots apply to the incompressible case with N~ 1. In Fig. 9, the 
longitudinal pressure difference AP is the same as the lateral 
pressure difference APS, and the isobars are inclined at about 
45 deg, as in the comparable pressure plot of Fig. 5. In Fig. 10, 
however, the pressure variation AP along the channel is almost 
negligible compared to the lateral pressure difference. So, in 
essence, the channel appears to be a high pressure isobar, and 
all of the other isobars are nearly parallel to it, except at the 
leading edge of the channel where all of the isobars converge 
to a square-root singularity, as in the related heat-transfer 
problem of a hot isothermal plate moving through a cold, con­
ducting medium. 

The infinite gradients near the tip of a hydrofracture are 
more of a computational annoyance than a physical reality. 
There will always be some longitudinal diffusion near the tip 
of the fracture, and this will weaken the gradients predicted by 
our parabolized equations. Also, the driving fluid will 
probably stand back a slight distance behind the tip of the 
fracture, because of the difficulties of moving into the nar­
rowest part of the channel. In reality, the fluid need not 
penetrate all the way to the tip in order to drive the fracture 
ahead, because shear forces within the solid transmit pressure 
loads into the region ahead of the fluid front [9]. Despite these 
local departures from reality, the overall character of the solu­
tion seems quite reasonable, and there is every expectation 
that the adjustments required to remove the singularities 
should have only a moderate influence on the quantities of 
engineering interest, such as fracture length and flow rate at 
the inlet. 

V Summary 

Transient isothermal fluid flow along an isolated fracture in 
a porous medium has been analyzed. Two different cases were 
considered, a preexisting fracture with uniform aperture (Fig. 
1) as well as a hydraulically-induced fracture with local aper­
ture proportional to local overpressure (Fig. 2). The pre­
existing fracture could be either open or, alternatively, filled 
with a high-permeability material. A one-dimensional 
laminar/turbulent model of the flow within the fracture was 
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Fig. 10 Isobars for loss-dominated flow along a hydraulically-driven 
fracture with laminar friction. Pore pressure is much less than confining 
stress (APJ = 10), and pressure ratio is near unity (N—1). 

coupled with a two-dimensional Darcian model of the seepage 
into the surrounding permeable medium. The problem was 
formulated such that the pressure ratio N was the only impor­
tant parameter: N> 1 for ideal gas injection; N< 1 for ideal 
gas withdrawal; and N— 1 describes the flow of a constant-
compressibility liquid. Reported results span the full range 
from N— 0 through N—co, • 

Four different similarity solutions were derived, each hav­
ing asymptotic validity within a particular range of time. The 
flow along the fracture becomes either fully turbulent or fully 
laminar in the limits as r < < 1 and T > > 1, respectively. Tur­
bulent/laminar transition occurs at roughly r = 1. Lateral 
seepage into the permeable fracture walls becomes either a 
negligible or a dominant consideration in the limits as RT « 
1 and Rr >> 1, respectively. The transition occurs at roughly 
RT=\. 

The propagation of a pressure disturbance along a fracture 
can be viewed as a sequence of asymptotic flow regimes. 

1 At very early times a shock wave propagates down the 
fracture; frictional effects rapidly smear the wave front. 

2 At early times ( T < 1 and RT< 1) the flow along the frac­
ture is turbulent and the lateral losses are negligible. The 
results of Fig. 4 are then applicable. 

3 At intermediate times there are three possible scenarios, 
depending upon the magnitude of the seepage-interaction 
parameter, JR. 

a If R < 1, the turbulent/laminar transition occurs 
first. The results of Fig. 3 are then applicable in the in­
termediate time period 1 < T < \/R. 
b If R > 1, the negligible-seepage/dominant-seepage 
transition occurs first. The results of Fig. 7 are then ap­
plicable in the intermediate time period \/R<T< 1. 
c If R — 1, the transitions occur simultaneously and 
there is no intermediate asymptotic flow. Transition 
passes directly from stage (2) to stage (4). 

4 At late times ( T > 1 and RT>1) the channel flow is 
laminar and losses are dominant. The results of Fig. 6 are then 
applicable. 

5 At very late times (t>><i>mpacw
6/K*„) longitudinal dif­

fusion within the porous medium eventually becomes impor­
tant, as described in [12] for the case A/"—.1. 

Transitions from one asymptotic regime to another can be 
computed by two-dimensional time-dependent numerical pro­
cedures, as already demonstrated for some special cases [5, 12, 
16]. 

The reported similarity solutions are useful in several 
respects. First, they allow a convenient and comprehensive 
presentation of the results, for all values of the parameters. 
Secondly, computation is simpler and more reliable with two 
instead of three independent variables, so the similarity solu­
tions may be viewed as benchmark solutions for verification 
of generalized computer codes. This computational advantage 
becomes more important in the multiphase (evaporating or 
condensing) extensions of the considered problem. Finally, a 
knowledge of the self-similar asymptotes is usually a sufficient 
basis for engineering calculations, particularly in the geologic 
applications where property data is only known within order-
of-magnitude estimates. A number of example calculations 
are reported in reference [19] which concerns the containment 
analysis of underground nuclear tests. 
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A P P E N D I X 

Comparison With Nordgren's Hydrofracture Solutions 

The present results for laminar liquid flow along a hydraulic 
fracture driven by a constant inlet pressure can be compared 
with Nordgren's results [11] for the same configuration driven 
by a constant flow rate, Q. In the early-time lossless regime, 
Nordgren's solution is [7] 

Ut) = 

w„,(Q,t) = e [ (i-')QV 
GH 

tl 

G^QtxL 

(1-x) 3 

a VG'Q 
AP(t) = _ K H L ( l - j 

which can be algebraically combined to obtain 

cf's A \ r APw 2 i 1/2 _{d"* 4 \ rAPw 0
2 l 

r 

04) 

(-42) 

(,43) 

(-44) 

in which d = 0.68, e = 2.50, a = 2.75, and 4/7r is the ratio be­
tween midheight aperture, wm, and effective aperture, w0 at 
the fracture inlet (see equation (1)). The corresponding expres­
sion from equation (28) of the present paper is (with TV— 1, 
4>c = 1, ac = l/AP, C, = 4TT, d„ = w0) 

&[^\ (AS) 

in which 6* -0 .87 at the leading edge of the fracture (see Fig. 
3). Thus, the dependence on physical parameters is identical. 
The only difference is that the premultiplier constant in curved 
brackets has the values 0.22 versus 0.25, respectively, for 
Nordgren versus the present. 

In the late-time loss-dominated regime, Nordgren's solution 
is [7] 

L = 

AP = 4 

/ 2 \ 

- ) 

W-'X? 

r H&Q2 

t' 

(A7) 

(AS) 

in which the fluid seepage velocity into the fracture walls is 
assumed to obey the Carter equation 

v = C/(t-T)l/2 (A9) 

in which t— r is the elapsed time since the exposure of the sur­
face. From the one-dimensional error-function solution for 
transient liquid flow driven by constant pressure 

APs(.Km4>, , / ^ 7 r ( / - T ) ) ' so t h a t C = AP, 
(KnMm/a, 
yields 

,7r)1/2. Combination of the above relationships 

L 
/ l \ M r w0

6 / AP \ 2 1 1 / 4
 1/4 

~ w / \.Km4>m*mp VAP7; J {Al) 

which is comparable to the present equation (38) for N-
C, = 4TT, d0 = w0, (C/A)0 = 2/w0 

, / i y* r wj / AP y 
\ 8 i r / L i f „ > m a m / i \ A P s / 

(-4H) 

in which 9*— 1.06 from Fig. 6. Again, the dependence on 
physical parameters is identical, but the premultipliers are now 
0.15 versus 0.21, respectively, for Nordgren versus present. 

It is somewhat surprising but reassuring to find reasonably 
good agreement (withing 10 percent and 40 percent, respec­
tively, for the lossless and loss-dominated cases) between the 
solutions for constant driving pressure versus constant flow 
rate. At any given instant they compare fairly well, despite the 
difference in their prior histories of flow rate and pressure. 
The fracture driven by constant pressure is understandably 
longer since it has been previously subjected to greater flow 
rates and higher early-time pressures than its constant-flow 
counterpart. To this same level of approximation, the present 
constant-pressure solutions could presumably be applied to 
gas flows and/or turbulent flows along preexisting or 
hydraulically-driven fractures subjected to injection at a cons­
tant or variable flow rate. 
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Stability of a Clamped-Free Rotor 
Partially Filled With Liquid 
When a flexible rotor is partially filled with liquid, the motion is unstable over some 
operating range. The extent of this operating range depends on various system 
parameters such as rotor damping, fluid viscosity, the amount of fluid present, etc. 
If the rotor is arranged so that it must tilt as it vibrates (as in the clamped-free con­
figuration) then the tilt of the rotor greatly complicates the stability analysis. The 
source of the complication is that the fluid motion becomes three-dimensional. A 
three-dimensional stability theory is developed here and applied to a simple 
clamped-free rotor. The results show that the stability boundaries are influenced by 
both rotor and fluid "gyroscopic stiffening" effects. Brief experimental results are 
also reported. 

Introduction 

When a flexible rotor is partially filled with liquid, the mo­
tion is unstable over a certain range of operating speeds. This 
unstable resonance occurs when the empty rotor vibration fre­
quency approaches the frequency of surface waves in the 
liquid. 

This instability was noted experimentally by Kollmann 
(1962) and explained analytically by Kuipers (1964) and Wolfe 
(1968) who analyzed an undamped rotor partially filled with 
an in viscid liquid. Kuipers (1964) added an external damper to 
the rotor and was surprised by analytical results that predicted 
the instability of the rotor-liquid system over all spin speeds 
(contrary to experimental evidence [Kollman 1962 and later 
Wolfe 1968]). He attributed this anomaly to the linearization 
process and hoped that a full nonlinear analysis would 
alleviate the discrepancy. Hendricks (1981) proved that a 
damped rotor-inviscid liquid system was indeed unstable over 
all operating regions, however by including the viscosity of the 
entrapped fluid in the analysis, physically realistic results are 
predicted by the linear theory (Hendricks and Morton 1979). 
Hendricks and Morton (1979) showed how the unstable region 
around the system resonance was affected by the rotor damp­
ing, fluid viscosity, mass ratio, fill ratio, and rotor spin speed. 
A more recent paper (Hendricks and Klauber 1984) shows how 
an optimal control algorithm can be used to calculate a control 
force which will stabilize a two-mass rotor containing liquid. 

All analyses mentioned so far have analyzed a rigid hollow 
circular cylinder which is forced to rotate around its axis of 
symmetry at a constant spin rate. The cylinder is mounted in 
the middle of an elastic shaft so that the spin axis can be 
displaced parallel to itself without tilting. Such a system ex-
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hibits no gyroscopic effects and does not couple with any axial 
motion in the fluid. 

This paper will analyze a rigid hollow circular cylinder (cup) 
mounted on the free end of a massless clamped-free elastic 
shaft. The cup is partially filled with a viscous incompressible 
fluid and the resulting system is investigated for stability. The 
aim of this research is to understand how rotor gyroscopics 
and axial waves in the fluid affect the stability boundaries. 

Rotor Dynamics 

Consider a hollow circular cup (mass m, radius a, height L) 
mounted on the free end of a massless clamped shaft (length 
0- A linear damper (damping coefficient C) is attached to the 
bottom of the cup. The center of gravity (G) of the empty cup 
is located a distance d above the bottom of the cup (Fig. 1). 

The equations of motion for the rotor are developed using 
Lagranges Equations. Define three coordinate systems: (I,^J, 
K) inertially fixed; (i, j , k) spinning with angular speed Q; (d], 
d2, d3) fixed in the cup. The following relationships exist. 

cosQt sinfi/ 0 

- sinQ/ cosfl/ 0 

" d ^ 

d2 

. d 3 J 

0 

0 0 

cos0, sinc/>, 

-sin</>, cos</>, 

1 

C0S</>2 0 

0 1 

sin<£2 0 

I 

J 

K_ 

- sin</>2 

0 

COS02 

(1) 

(2) 

The Euler Angles,4>l and 4>2 are used to orient the cup-fixed 
coordinate system. The motion of the shaft is described using 
the two coordinates x(t,z), y(t,z) where z is measured from 
the point B (bottom of the cup, see Fig. 1). The deflection of a 
point on the shaft is thus given by 

R(z)=x(t,z)i + y(t,z)j (3) 
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V//////////SV//V///////////, 

1/ 1 
Fig. 1 Clamped-free single critical rotor and coordinate systems 

The temporal and spatial variables can be separated 

x(t,z)=x(t)t(z) (4a) 

y(t,z)=y(tH(z) (46) 

where \p(z) is the mode shape of the shaft (to be determined 
from a simple beam theory) which will be normalized so that 
\p(z = 0) = 1 and thus the position vector that locates point B 
is 

RB=R(i=0) = x(t)i + y(tfi (5) 

The cup can be oriented by examining the unit vector d3 which 
can be found from equation (3) by differentiating. 

d[R(z)] I 
dz u = o 

The parameter e = d\p(z)/dz \i=0 is a slope constant that 
measures how much the cup tilts as it runs out. Since this 
paper specifically examines the effect of tilt on the dynamics 
of the system, e is a key parameter. From equation (2) 

d3 = = exi + eyj + k (6) 

d3 = sin</>2cos<£1i-sinc/>1j + cos</>1cos</>2k 

For small angles 

d3 = </>2i-</>,j + k 

and the Euler angles are identified as 

<A, =ix 

(7) 

(8) 

(9a) 

(96) <p2 = <y 

The angular velocity of the cup is 

w = fik + </>2j + 0,d1 (10) 

Keeping terms to second order the angular velocity can be 
written in the cup fixed coordinate system as 

<a= —eiy + dx)^! + e(x—Qy)&2 

[a(i- -[x2+y2] ) + e2xy i (11) 

The position and velocity of the center of mass (point G, Fig. 
1) are 

R G = i i + y] + d&i-xil + ed)\+y(\ + ed)] + dii (12a) 

RG = [(x-Qy)i+ (y + m m + ed) (12b) 

For future reference the velocity and acceleration of point B 
are now listed. 

S.B=(x-Qy)i+(y+Qx)] (13a) 

RB= {x-2Qy-Q2x)\+ (y + 2Qx~Q2y)j (13b) 

The kinetic energy, dissipation function, and potential energy 

r= 

D = 

V=-

m R f i»R f i+-
1 

Ol'l'Ol 

CR„.R B 

A:RH.R B 

(14a) 

(146) 

(14c) 

where I_ is the inertia dyadic of the cup about the center of 
gravity~and k is the spring constant which results from the 
bending of the shaft. The unit vectors (dj, d2, d3) are oriented 
along the principal axis of the cup, and the cup is symmetrical 
about d3. The inertial dyadic can be written in matrix notation 

7 0 0 

1= 0 / 0 

0 0 / 

The rotor equations of motion are 

d / dT\ _ dT 

dt\Qx/ dx 

d / dT\ dT 

dt\ dy ' 

3D 

dx 

3D 

dV 

dx 

3V 

= QX 

(15) 

(16a) 

(166) 
dy by 

where Qx and Qy are the forces on the rotor due to the fluid. 
These forces will be developed shortly, after the empty rotor 
equations (i.e., Qx = Qy = 0) are examined. In order to 
highlight the important terms, the following nondimensional 
quantities are introduced. 

n=0/wo 

C=C/2M,co0 

J=Je2/M, 

M,=M(l + ed)2 + ie2 

co0=(k/M,)"2 

(17a) 

(176) 

(17c) 

(18a) 

(186) 

where 

the nondimensional equivalents of equations (16a, 16b) for the 
empty rotor are 

1 0 

0 1 

2C 

(2 - / )Q 

i + ( / - i ) n 2 

2CQ 

(J-2)0, 

2C 

-2CQ 

l + ( / - l ) f i 2 
= 0 (19) 

where x = x/a and y = y/a are the nondimensional rotor 
variables. 

The fact that the cup tilts as it vibrates is incorporated in the 
nondimensional term / which measures the polar moment of 
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inertia of the cup weighted by the slope parameter . To see 
how /affects the undamped empty rotor, the eigenvalue pro­
blem associated with equation (19) (setting C = 0) is for­
mulated. This leads to the following characteristic equation 
for the vibration frequency S. 

S2 + (2-J)QS-[l + (J-l)Q2]=0 (20) 

Equation (20) can be solved for the two vibration frequencies 
(given in the rotating reference frame) 

' Jti\ 2 I , / 2 

-0 + — ± 
2 MfYl (21) 

or if the gyroscopic term (J) is small (the usual case) 

M 1 /JQ\2 

5 — Q ± l + _ + _ ( _ ) (22) 

The first term in equation (22) arises because we are work­
ing in a rotating reference frame, the next term represents the 
natural frequency of the system without the gyroscopic term 
(i.e., J = 0), and the last two terms represents the gyroscopic 
"stiffening". These last terms are present because the spinn­
ing cup acts as a gyroscope in that the spinning system resists 
any change in its angular momentum. This resistance to tilt 
manifests itself by stiffening the effective spring constant and 
thereby raising the natural frequency of the system. As we 
shall see later this gyroscopic stiffening has a predictable in­
fluence on the liquid-rotor stability problem. 

When the rotor contains a fluid, Qx and Qy are not zero 
since the fluid pushes on the rotor wall. Here we examine the 
effect that an entrapped inviscid fluid has on the motion of the 
cup. Later we will need to add the viscosity of the fluid in 
order to complete the stability analysis. For a thin fluid layer, 
the forces on the top and bottom of the cup may be neglected 
and only those on the side wall will be considered. Thus Qx, 
Qy are given by 

Qx=\ — R w - P ( r = a,6,z,t)rad0dz (23a) 
Jo Jo JO dx 

Qy = !

L p 27t 

0 JO by 
Rw.p(r = a,B,z,t)fad6dz (23b) 

where P(r, 6, z, t) is the pressure in the fluid, 

Rw = x(t)i + y(t)i + zd3 + ar (24) 

is a vector which locates a point on the wall, and 

f = cos0d\ + sin(9d2 (25) 

is a unit vector pointing in the radial direction. 
Equations (23a), (23b) represent the net force on the rotor 

due to the pressure (a normal distributed force) integrated 
over the surface of the rotor. The formulation of the govern­
ing equations is now completed by developing the fluid 
equations. 

Fluid Equations 

The governing equations for the fluid are the equations 
which conserve mass (the continuity equation) and momentum 
(the Navier-Stokes equations). Written in a reference frame at­
tached to and moving with the cup (d,, d2, d3), these equa­
tions are: 

W = 0 (26a) 

V + (V» V)V + RB + a x r + co x(u x r) 

+ 2COATV + VP = 0 (266) 
P 

where 

V is the fluid velocity vector 
P is the fluid pressure 
p is the fluid density 

and to first order 

w= -e(y + Qx)di + e(x-Qy)d2 (27a) 

a~-e(y + M)&i+t(x-Qy)&2 (21b) 

r = rf (21c) 

Equation (26b) is just the usual momentum equations with 
four extra acceleration terms due to the motion of the coor­
dinate system (attached to the cup). To linearize these equa­
tions let 

1 
P = — pQ2(r2-b2) + P(M,co2

0/a) (28) 

where b is the radius of the nominal free surface. The first 
term on the right hand side of equation (28) represents the 
pressure due to the solid-body rotation of the fluid and the se­
cond is a small perturbation due to any waves that develop. P 
is the nondimensional pressure perturbation. The fluid veloci­
ty can be written as 

V= (ur + v0+wi)ao>o (29) 

where (u, v, w) is the nondimensional velocity in the (radial, 
azimuthal, axial) direction, 

0= - sinfld, + cos0d2 (30) 

is a unit vector in the azimuthal direction, and 

£ = d3 (31) 

is a unit vector in the axial direction. 
The following additional nondimensional terms and 

variables are now introduced: 

f=b/a, a fill ratio that measures how much fluid is 
present 

\x = -wpa2L/Mt, a mass ratio 
z0 =L/a, an aspect ratio 

e = ea, nondimensional tilt variable 
r=r/a, nondimensional radial distance 
z = z/a, nondimensional axial distance 

Equations (26a), (26b) written in nondimensional, linearized, 
scalar form are: 

u bu 1 

r or r 

dv bw 
+ ^ — = 0 

ii-2Q,v + 

v + 2Uu + 

•KZn 

bd 

dP 

dz 

TTZ„ 

dr 

dP 

- + A - f = 0 

lir 36 
- + A.0 = O 

irz0 dP „ 
w + — - — — + A-z = 0 

(32a) 

(32b) 

(32c) 

(32d) 
ix dz 

where the rotor motion is incorporated through the term 

A = ( 1 + ez) [(x - 2Qy - Q2x) cos0 + (y + 2Qx - Q2y) sin0] f 

+ (1 +ez)[(y + 2Qx-n2y)smd- (x-2Qy-Q2x)cosd]6 (33) 

-tr[(y + Q,2y)smd+ (x + Q2x)cosd]i 

It is now easy to see why tilt in the rotor greatly complicates 
the analysis. If we do not allow the rotor to tilt (i.e., set e = 0) 
then the last term in equation (32d) is zero and one solution is 
that the axial velocity (w) is identically zero and the pressure 
does not depend on the axial coordinate z. The flow then 
becomes two dimensional (all fluid variables depend only on r 
and 6 but not z). If the rotor tilts (e # 0) then the acceleration 
of the rotor drives the axial velocity through the last term in 
equation (32d). The rotor acceleration terms in the radial and 
azimuthal momentum equations (32 b,c) also introduce varia­
tions in the axial direction (z) for the case e ^ 0. The flow is 
no longer two-dimensional but must be analyzed as a three-
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dimensional flow (i.e., all fluid variables depend on r, 6, and 
z). 

To complete the fluid analysis the boundary conditions 
must be specified. These are: 

1. The fluid velocity must be zero normal to all solid 
surfaces. 

2. The total pressure at the free surface must be zero and 
the surface radial velocity must match the fluid radial velocity. 

The first condition requires that 

u(r=l,6,z,t)=0 (34a) 

w(r,6z = 0,t)=0 (34b) 

w(r,6,z = zo,t)=0 (34c) 
The second boundary condition needs to be massaged into a 
useful form. The nondimensional pressure is (compare equa­
tion (28)) 

pressure = -
1 /ifl2 

.{ri-f)+P (35) 
2 TTZ0 

The free surface of the fluid wave is located at 

r=f+M6,Z,t) (36) 

where X represents the perturbation from the nominal free sur­
face. Using equation (36) in equation (35), dropping the 
nonlinear term, and setting u = A, the second boundary con­
dition becomes 

u(r=f,8,z,t)=- irz0 

^2f 
P(r=f,B,z,t) (37) 

The system is now completely described mathematically; on 
to the solution. 

Solution 

The dynamics of the liquid-rotor system are incorporated in 
the rotor equations (16a, 166) augmented with the fluid forces 
(23a, 23b) together with the fluid equations (32a-32d) and 
boundary conditions (34a-34c, 37). The rotor coordinates 
(x,y) depend only on time while the fluid variables (u,v,w,P) 
depend on the three spatial variables (r,d,z) as well as time. To 
solve this set of mixed equations a solution of the following 
form is assumed. 

x(t)=xe~is*'oi 

y{t)=ye-is"o< 

/ mirz\ 
u(r,6,Z,t)= X) um(r)cos( je'<«-&»0'> 

M 
V-i / mirz\ 

v(r,6,z,t)= 2-i vm(r)zos\ ), ,i/e-su>nt) 

M 

w(r,6,z,t) = E wm(r)sm(-^^)e^e~Sao» 

P(r,6,z,t) •• f j Pm(r)cos(—)eW-s»o» 
v zn -J1 

(38a) 

(386) 

(38c) 

(38d) 

(38c) 

(38/) 

All variables are given the same time dependence (parameter 
S). It is the object of the solution process to determine S. By 
expanding the axial dependence of the axial velocity (w) in sine 
terms we have implicitly satisfied the boundary conditions at 
the top and bottom of the cup. The only azimuthal (6) mode 
that is considered is the mode that has exactly one node. All 
other azimuthal modes produce no net force on the rotor and 
can be left out of the analysis without any loss. The axial ex­
pansion will necessarily be truncated at some finite number of 
terms introducing an approximation into the solution process; 

however, if enough terms are included in the series, the solu­
tion will retain sufficient accuracy. With expansions 
(38a-38/), the governing equations can be written in the 
following nondimensional form. 

l+(J-l)Q2-S2-2iCS - 2 C f i - / S f i ( / - 2 ) 

202 + iSSl ( / - 2) 1 + ( / - 1 )Q2 - S2 - 2iCS 

=«,E^(r=i)e, 

r dr zn 
w„, = 0 

(39a) 

(39b) 

-iSum~2Qv„ + ^ -rPm+ (S+Q)2(x-iy)Dm = 0 (39c) 
ix ar 

ITTZ 

-iSvm+2Uum + °- Pm + i(S + Q)2(x-iy)D,„=0 

- i S w m Pm + r(S2 - Q2)(x-iy)Em=0 

where 

Qn 

D„,= 1 

l+ez0/2 n = 0 

-2ez0/(nx)2 n odd 

0 n even ^ 0 

- — ( l + « „ / 2 ) m = 0 

2ez0/(rmr)2 m odd 

(39rf) 

(39e) 

(40a) 

(40b) 

m even ^ 0 

F — 
-2e/mir m odd 

0 
(40c) 

m even 

u«(r=f)=-=hrPm{r=f) 

(41a) 

(416) 

The boundary conditions are 

« m ( r = l ) = 0 

iirz0S 

Equations (39a-416) must now be manipulated to yield an 
eigenvalue problem for the parameter S (which determines the 
frequency and stability of the motion). To accomplish this 
task x,y,u„,,vm, and wm are eliminated from equations 
(39a-e). After much algebra the result is a set of M + 1 second 
order ordinary differential equations for Pm. 

d2Pm t 1 dPm | 

dr2 

where 

r dr 

/ 1 \ M 

UK2
 T)Pm = m2K2r J ] Pm„P„ (r= 1) 

v r ' «=o 
(42) 

K = ^ - ( 4 f l 2 - S 2 ) 1 / 2 

ZgS 
(43) 

and /3„„, represents an array containing rotor and kinematic in­
formation. This array is defined in the appendix. 

Equation (42) is just a set of Bessel's equations which are 
coupled by the driving term that depends on the pressure at the 
rotor wall. The solution to equation (42) is 
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Anr+Bn m = 0 

Pm (r) = AmH\» (mxr) + BmH\2> (ma-) 
(44) 

+ ' 1 X ^ ( 1 ) m*0 

where / / \" and Hf> represent Hankel functions of the first and 
second kind of order 1. Hankel functions must be used for the 
calculation instead of the more common Bessel functions since 
the latter are not numerically independent in the range of in­
terest. Applying the boundary conditions leads to an equation 
of the form 

IF\IY)=0 (45) 

where { Y) is a 2M + 2 vector that contains the coefficients At 

and B, and [F\ is a matrix (defined in the appendix) that con­
tains all of the system dynamics. Embedded in the matrix [F] is 
the parameter S. In order to have a nontrivial solution of 
equation (45) we must have 

det[F| = 0 (46) 

Equation (46) is the characteristic equation which deter­
mines S. Using a root solving technique one can now search 
for a value of S which makes the determinant zero. This will 
be one of the 2M + 2 system eigenvalues. The real part of S 
represents one of the "natural" frequencies of the rotor-liquid 
system. If all of the system eigenvalues have negative im­
aginary parts, the system will be stable. If any of the eigen­
values has a positive imaginary part, the system will be 
unstable. Once an eigenvalue has been found, the corre­
sponding eigenvector of [F\ can be used to determine the mode 
shape of the system. 

Stability Analysis 

The inviscid analysis developed in the preceding sections can 
be used to predict frequencies and mode shapes of the system. 
Unfortunately the analysis presented so far is not complete 
enough to yield stability information. The inviscid theory 
predicts the rotor to be unstable at any spin speed. In order to 
complete the stability analysis it is necessary to include the 
viscosity of the entrapped fluid. The viscous theory has been 
completed (Hendricks 1979) but the analysis is only briefly 
sketched here due to the complexity of the equations. 

If the fluid is viscous then in addition to a normal force 
(pressure) on the rotor wall there will be shear forces (drag). 
Thus the first update to the preceeding analysis will be the ad­
dition of axial and azimuthal drag terms in equations (23a, 
23b). In the fluid equations it will be necessary to add the 
usual viscous diffusion term to the Navier-Stokes equation 
(26b). This has the effect of raising the order of the differen­
tial equations and significantly complicating the solution. The 
fluid boundary conditions must now include the no-slip condi­
tion at the solid surfaces. 

The viscous problem may be solved by using a technique 
common when working with rotating fluids (Greenspan 1965). 
The procedure involves an asymptotic expansion in terms of a 
suitable Reynolds' number. In this problem the natural 
Reynold's number is 

Re = o2co0/j> 

where v is the kinematic viscosity of the fluid. The problem 
then separates into three parts: an inviscid core; a boundary 
layer; and a viscous correction. The inviscid core is just the 
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analysis presented in the earlier part of this paper. The solu­
tion to the inviscid problem provides input for the boundary 
layer analysis. The solution to the boundary layer is used to 
calculate a "viscous correction". The complete solution is 
then accurate to 0(Re~1/2) which is sufficient to determine 
stability. The analysis ignores viscous dissipation at the top 
and bottom of the cup (Ekman layers) and thereby is valid 
only for thin liquid layers. 

Results and Experiment 

The system depends on the following eight nondimensional 
parameters 

fi = rotor spin speed 
/ = fill ratio (f - 0 corresponds to a full rotor, / = 1 cor­

responds to an empty rotor) 
H = mass ratio that measures the fluid mass density 
C= rotor damping constant (C = 1 corresponds to critical 

damping) 
Re = Reynolds number that measures fluid viscosity 
z0 = aspect ratio that measure the length of the cup 
e = tilt parameter that measures how much the rotor tilts as 

it vibrates 
7= polar moment of inertia of the cup weighted by the tilt 

parameter 

A typical stability calculation consists of defining these 
eight parameters for the particular system of interest, choos­
ing a starting guess for S, then iterating until equation (46) is 
satisfied. The viscous correction is then calculated and the 
complete eigenvalue is checked to see if the eigenvalue has a 
negative imaginary part. This process is repeated until all 
eigenvalues have been found. If all of the eigenvalues have 
negative imaginary parts, the system is stable; otherwise the 
system is unstable. The results of a stability calculation are 
conveniently shown on a stabilty map (stability boundaries 
plotted on the Q, /p lane) . Figure 2 shows a typical stability 
map. For a given amount of fluid if), the system is stable at 

Tow spin speeds. As the spin speed (Q) increases, the system en­
counters an unstable region. At higher spin speeds the system 
is again stable. As more liquid is added, the region of instabili­
ty expands. Since the analysis is based on a boundary layer 
theory, it cannot be used to predict stability boundaries if the 
fluid layer is thinner than the boundary thickness. A correct 
analysis for a very thin layer would require different boundary 
conditions than those used here. For this reason the stability 

170/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



. 7 4 -

.78 -

. 8 2 -

<: .86 
Q: 

.90 

1 1 

w 
1 1 

1 1 1 ' / ' / 

A J=0 T / 

° J='' / J 
r D j = ,2 / 9 
| O J = .3 / / 

1 1 1 1 1 

£ ^ ^ ^ 2 ^ ^ ^ 

.94-

.98-

.2 .6 1.0 14 1.8 2.2 2.6 
NONDIMENSIONAL SPIN FREQUENCY ft 

Fig. 3 Sensitivity to rotor gyroscopic constant J (two-dimensional 
theory, ̂  = 0.63, C = 0.01, Re = 2.0 x 105) 

I 

x Experiment 
0 2-dimensional 

Theory 
• 3-dimensional 

Theory 

T 

_L J_ J_ 
.6 I.0 1.4 I.8 2.2 2.6 

NONDIMENSIONAL SPIN FREQUENCY ft 

Fig. 4 Stability map (p = 1.1, C = 0.013, Re = 1.6 x 105, J = 0.15) 

boundaries of Fig. 2 cannot be extended directly to the l imit / 
= 1. 

The effect of the first five parameters on the stability map is 
reported in Hendricks and Morton (1979). The purpose of this 
paper is to discover the effect that rotor tilt has on the stability 
boundaries. The tilt of the rotor is manifested in two ways: 
first the polar moment of inertia (/) becomes important in the 
rotor equations (we have already seen how this parameter 
gyroscopically stiffens the rotor); second the fluid now is 
driven axially by the motion of the rotor. To separate these 
two effects, stability maps were generated using only the first 
term in each of the axial fluid expansions. This has the ar­
tificial effect of restricting the fluid motion to two dimensions 
allowing us to separately examine the effect of the rotor 
gyroscopic term. Figure 3 shows the effect that changing Jhas 
on the stability map. As /increases, the lower stability boun­
dary is slightly raised while the upper stability boundary shows 
a much greater increase. This is a reasonable result since the 
gryroscopic "stiffening" effect is more pronounced at higher 
spin speeds. 

Figure 4 shows stability maps using first the two-
dimensional theory and then the three-dimensional theory 
(with ten terms in each axial fluid expansion). The three-
dimensional theory allows the fluid to move axially. The axial 
motion of the fluid has an effect similar to the rotor 

Fig. 5 Fluid pressure distribution 

gyroscopic stiffening. The lower stability boundary is slightly 
raised while the upper stability boundary shows a much 
greater increase. Figure 5 is a plot of the fluid mode shape 
which corresponds to the unstable eigenvalue in the three-
dimensional calculation. Note that the fluid has aligned itself 
to create a restoring torque that resists rotor runout. The fluid 
thus adds a gyroscopic stiffening effect in addition to the ef­
fect produced by the polar moment of inertia of the cup. 

Also shown in Fig. 4 are some experimental points obtained 
by Dr. M. A. Shaddy, Jr. in an experiment described in Hen­
dricks (1979). The lower stability boundaries show good agree­
ment with the experiment. The three-dimensional upper 
stability boundary agrees with experiment for thin fluid layers, 
however, the slope of the upper stability boundaries are dif­
ferent. There are two possible explanations for the discrepan­
cy in the slope. First the simple damper used in the experiment 
may be providing more damping at higher spin speeds. A more 
plausible explanation is that the Ekman boundary layers at the 
top and bottom of the cup may significantly add damping to 
the system as more fluid is added to this relatively short ex­
perimental rotor. 

Conclusions 

When a viscous liquid is introduced into a flexible rotor 
there are regions of unstable motion. If the rotor motion is 
such that the rotor must tilt as it vibrates then there are two 
gyroscopic stiffening effects that raise both the lower and up­
per stability boundaries. The first effect is just the usual stif­
fening due to the polar moment of inertia of the rotor. The se­
cond effect arises because the fluid moves so as to create a tor­
que opposing the tilt bf the rotor. Both of these effects act to 
stiffen the rotor and raise the effective natural frequency of 
the system. The three dimensional theory presented here is 
necessary in order to accurately predict stability boundaries 
for a clampled-free rotor (or any rotor where tilt is important). 
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A P P E N D I X 

The characteristics equation which determines S for the 
three-dimensional analysis is equation (46). Written out in 
more detail, this equation is 
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where Q„, Dm, and Em are given in equations (40a-c). The 
following (M X M) matrix is also needed 

where 8mn is the usual Kronecker delta. 
The elements of the [F] matrix are now constructed ac­

cording to the following definitions: 
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Pipe Bend Analysis by Thin Shell 
Theory 
Thin shell theory is applied to pipe bends terminated by flanges or flange-ended 
tangent pipes and subjected to any end loading, either in-plane or out-of-plane. 
Graphs of flexibility factor versus pipe bend characteristic are presented for in-
plane bending of a wide range of pipe elbows terminated by flanges or short flange-
ended tangents. Experimental results verify the thin shell solutions for in-plane and 
out-of-plane bending of a flanged pipe elbow. The capabilities of a computer pro­
gram BENDPA C are also described. 

Introduction 

The general linear shell equations for analyzing straight 
pipes or circular cylindrical shells are well known (Sanders, 
1983) and an attempt is now made to present equivalent equa­
tions for analyzing pipe bends or discontinuous toroidal 
shells—because of this discontinuity a pipe bend is more akin 
to part of a spiral than part of a torus. The pipe bend loading 
is by force or moment in any direction on the ends, the pipe 
bend being terminated by rigid flanges or tangent pipes. 

The equations of Novozhilov (1970) are used because they 
represent a consistent linear theory and the reciprocal theorem 
holds; that is, the flange-ended pipe bend flexibility matrix is 
symmetrical and hence a useful check on calculations 
(Whatham, 1982). The review of pipe bend analysis of 
Axelrad and Emmerling (1984) indicates that the application 
of thin shell theory usually involves some simplifying assump­
tions; no approximations are made here other than those in­
herent in the theory, so the solutions are exact. 

Governing Equations 

A segment of curved pipe is represented in Fig. 1 by its mid­
dle surface, acted upon by stress resultants to produce 
displacements u, v, w and a rotation \p about axis u; there are 
rotations about the other axes but these do not enter the 
analysis. 

From the Novozhilov equations we obtain: 

(/) Equilibrium Equations 

S sin 6 dP* 
— (bTt + bMZ)+ {T;+M;)+—--
do p at] 

= 0 

^T;+M;)-
sin 6 
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dd 

(1) 

STa*~- <5Me*) + -
cos 6 

dd2 p 

where P* = T*„+M*„ 

-(T;-M;)-
sin 6 dM* dQ* 

dd dr\ 
= 0 
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Stress-Strain Equations 
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Fig. 1 Pipe bend middle surface 
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Fig. 2 Spiral pipe configuration 
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(Hi) Strain-Displacement Equations 
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where , = _(_„___). 

5r 
Strains X and fi require some explanation; they represent the 

twist and out-of-plane curvature given to the pipe wall by 
warping of the pipe cross-section—\j/ should be sin \j/ in (3 but ^ 
is small. The four strains ee, K9, X, (3 completely describe the 
distortion of the pipe cross-section and therefore must be con­
tinuous along a stressed pipe; it is more convenient to equate 
them than the displacements across the junction of two pipes. 

It is interesting that, allowing for the different notation, the 
Novozhilov equations are identical to earlier equations of 
Love (1944) except in expressions for T and T*e. Thus, if shear 
is zero, as in the pure in-plane bending of a curved pipe ne­
glecting end effects, the Love equations give the same solution 
as those of Novozhilov. Furthermore, in his classic paper, 
Love (1888) had given the r equation of Novozhilov, so, 
overall, the only difference is in the expressions for T*e; Love 
had 

Jve — 
1 

2(1 + , ) " ^ 
which causes the flanged pipe bend flexibility matrix to lose 
symmetry. 

Combining equations (1), (2) and (3), we obtain eight gov­
erning equations 
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Kalnins (1969) used equations similar to (5) with the same 
eight variables to calculate the stresses in a particular pipe 
elbow terminated by tangent pipes and subjected to in-plane 
and out-of-plane bending. The stress-strain relations were 
more elaborate than equations (2) and the govering equations 
were solved by step-by-step integration along the pipe with 
finite difference equations in 0. Nevertheless, the solutions ob­
tained compare well with the closed form solutions of the pre­
sent work. 

Spiral Analogy 

Analyzing a pipe bend under the minimum number of 
loadings, to cover every loading case by superposition of solu­
tions and neglecting end effects, is equivalent to analyzing a 
spiral tube under the four loadings, Fa, Ma, F, M shown in 
Fig. 2. The spiral is conceived as having zero pitch, the turns 
being coincident but not interfering with each other. 

Each of the four load/displacement combinations is 
decoupled—for example, force Fa only produces displace­
ment 8a—so that the four cases are solved independently; a 
pipe bend taken from a quarter of a turn of the spiral would be 
loaded as shown in Fig. 3. 

Consider the solution to equation (5) as the sum of four 
vectors: 

l = S,, + h + lc + lid (6) 

where ^ = ( 0 , 0 , 0 , ^ , 0 , 0 , ^ , 0 ) 

tb = (ub/r, wb/r, M*b, T*nb, vb/r, +b, P*b, Q*b) 

£c = (uc/r, wc/r, 0, 0, vc/r, i/v, 0 , 0) 

id = (ud/r, wd/r, M*d, T;d, vd/r, +d, P*d, Qd*) 

Vector £„ consists of the known elements of the pro­
blem—two stress resultants T*a, P*—which are in equilibrium 
with one of the spiral loadings Fa, Ma, F or M, The stress 
resultant distributions required are the simplest to give the 
loading. 

Vector ^ is a complete set of stress resultants and 
displacements; the stress resultants are self-equilibrating, pro­
ducing no net forces or moments on the pipe cross-section, 
while the displacements are repeated each turn of the spiral as 
in a torus. The vector components are in two groups for their 
<i> dependence; ub/r, wb/r, M*b, T*b vary as T*a, and vb/r, i//fc, 
Pg.QSvaiyasP;. 

Vector £c consists of displacement components which in­
crease with each turn of the spiral. They are compatible with 
the relevant spiral end displacement 8a, ya, 8 or y but the 
strains they generate must be repeated in each turn of the 

spiral. It happens that these displacements do not distort the 
pipe cross-section nor do they affect the spiral diameter; the 
deflected shape for 8a is a series of loops. 

Vector £rf represents end effects and, like vector £6, consists 
of self-equilibrating stress resultants and displacements. All 
components decay with distance from the pipe end, satisfying 
the equation 

07) 

Solving Without End Effects 

Subtracting the end effects from equation (5) 

9 

(7) 

dt] 
tt,, + h + Zc)=Atta + Zb + £e). 

Rearranging 

("-£M*-0-"(',-£){- (8) 

where / = unit diagonal matrix. 
To derive the £„ components, we refer to Fig. 1 and note 

that the net forces and moments acting on the pipe cross-
section, from the spiral end loading, equal the stress resultants 
integrated around the circumference: 

F a R s i n a ^ 

In-plane 

Fig. 3 Spiral loads on a pipe bend 

Out-of-plane 
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where B = 6 x 4 matrix operator 

x = ( M ; , r ; , p * , Q * ) 

F = (i^r, Fyr, Fzr, Mx, My, Mz). 

The dimensionless stress resultants are divided into two 
parts: 

where 

The components of £„ are then 

T*a = Fa*sin(a + </>)( Vi - p cos 8), 

~M*cos(a + <j)) sind or M*cos8 

Pa*=F* cos(a + 4>)s\n6, 
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[ * B-xa d8=F/r2Et 
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(U) where F*, F* = (F a , F)/wEt and Ma*, M* = (Af„, 
M)/irr2Et. 

To derive the £c components we again refer to Fig. 1, where 
the displacements and rotations 8X, &y, &z,yx,yy, yz represent 
rigid body movements of the pipe cross-section; their relation­
ships to the spiral end displacements resemble equations (9) 

The self-equilibrating condition for xb is easily satisfied in a 
round pipe if xb components are expressed as Fourier series. 
As an aside, if the governing equations had been in terms of 
variables ee, ne, Mn,Tn, X, /3, P, Q (Whatham 1981 b) then the 
displacement u, v, w, ip would have been continuous around 
the pipe if 

[ T B>y d6 = 0 (12) 
Jo 
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where b*, 8* = («„, 6)/2vrn, 7*. 7* = (ya, y)/2rn, n = 
As with vector xb, this condition is easily satisfied m a number of spiral turns, 

round pipe. From the geometry of Fig. 1 
From equations (9) the simplest x„ components are . 
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Fig. 4 Flexibility of pipe bends without end effects 
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Table 1 Flexibility factors 
(Refer Fig. 4) 
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Table 2 Straight pipe solutions 
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(17) 

The components of £c are then 

uc/r = 5*cj>cos(a + <t>) sin 0, 7*(/> sin(a + <£) (1 +p cos 9) 

or - §*(j) cos 0 

wc/r= — 8*0cos(a-t-</>) cos 0, 7,*$ sin(a + <£) psinfl 

or - <5*<£ sin 6 

vc/r = 8*(j)sin{a + 4>), -y*<j)COs{a + <j)) sin 6 

or 7*0 (p + cos 8) 

\f/c= -Ja<t> cos(a + </>) sin0 or 7*0 cos 0. 

Note that by equations (3), the distortion strains ete, K9C, XC, 
y3c are zero and all strains from £c are repeated each turn of the 
spiral. 

We are now in a position to solve equation (8). The result of 
{A— /(d/dij))£c is the vector — ijc/p<£ whose components are 
repeated each turn of the spiral; it has only one unknown, 
namely the spiral end displacement for the particular loading. 
The 4> terms cancel out leaving equation (8) in 6 only; there are 
eight equations for Fa or Ma loading and four equations for F 
or M loading, with F only involving submatrix A 2 and M only 
involving A {. Expressing the variables as truncated Fourier 
series with appropriate parity, and equating the coefficients of 
like terms (Fourier analysis) gives a series of simultaneous 
equations which then provide the solution. 

Pipe Bend Flexibility Without End Effects 

Pipe bend flexibility is a major factor in determining the 
forces transmitted by pipe networks and the ASME (1980) 
code recommends a formula for in-plane bending which 
neglects end effects. The formula has, however, proved effec­
tive on pipe bends contiguous with tangent pipes. 

« 8N+3 In-plane eigenvalues v = 0-3 R / r = 5 
p 8N-1 Out-of-plane eigenvalues N= 4 t / r = 0 1 

M 0 

1 1. 1 1 1 1 1 1 1 1 1 1 J 1 

\ / 

p—tf-*-p-^\ £p-»V—p 

\ 

P- Prp-P-*/ ^ P-P-P-* -P 

/ \ 
\ y \ i i - 6 

- 8 0 8 

Re 

Fig. 5 Typical pipe bend eigenvalues 

Consider the spiral loaded by M, equivalent to pure in-plane 
bending of a curved pipe neglecting end effects; the end rota­
tion is 

7 = / 2-7TH-
MR 

ET 
(18) 

where flexibility factor /accounts for increased rotation, com­
pared to that from elastic line theory, because the pipe cross-
section flattens. Flexibility factor versus pipe bend 
characteristic (h = Rt/r2) is plotted in Fig. 4 with some 
numerical values given in Table 1; Poisson's ratio was 
assumed to be 0.3. 

When a < 8 and t/r < 0.05, the exact thin shell calculations 
verify the second approximation formula of von Karman 
(1911): 

14400 + 4136fl2 + 35o4 

/ i = . , „ _ , . _* (19) 14400+ 536«2 + o4 

except that 

(20) 

a = V3(l-e 2) / /* (Clark and Reissner, 1951) 

instead of 

a = vT/A (von Karman). 

For a > 8, the formula of Beskin (1945) applies 

fi = a-
The ASME code effectively recommends equation (20) if we 

assume that v = 0.3. 
Most pipe bend research concerns in-plane bending because 

flattening of the pipe cross-section has such a significant effect 
on bend flexibility and stress distribution. Now consider the 
out-of-plane loading of the spiral by force F; the resulting 
displacement, by both thin shell theory and elastic line theory 
neglecting the direct shear component, is 

FR3 

& = 2im-^r- (21) 
G/„ 

where 2/ G = E/2(l + p)andIp 

there being no flattening of the pipe cross-section. For small 
radius bends (R < 5r), the thin shell deflection would be ex­
pected to exceed that given by equation (21) because of the in­
creased importance of the direct shear component, but, in 
fact, the thin shell deflection was less (Whatham, 1981a). 

Straight Pipes 

The solutions for straight pipes with various end loads are 
given in Table 2; the pipe cross-section remains circular for all 
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Fig. 6 Flexibility versus tangent length 

loadings, despite the fact that Fs and M produce a cos 8 
distribution of hoop strain, so that beam theory applies. The 
moment of inertia of a round tube is exactly 

/= i r r 3 r ( l + 7 / 4 ) (22) 

but solving the problems by thin shell theory gave the slightly 
different expressions in the bottom row for apparent moments 
of inertia. 

In the case of Fs loading, the deflection has a shear compo­
nent which thin shell theory gave as 

Sshear = ( 2 + C ) ^ ^ . (23) 

This compares with a finding by Cowper (1966) from a 
strength of materials analysis, if / = irr3t 

r3F 
5sl,ear = (4 + 3 l > h ^ (24) 

Incorporation of End Effects 

We now turn our attention to the pipe bend terminations. 
Having obtained particular solutions to equation (8) which 
neglect end effects, we add sufficient complementary solutions 
from the homogeneous equation (7) to satisfy pipe end condi­
tions. Vector £rf is a function of 0, r\ but, in seeking a separable 
solution, let 

£d = £(0)eQ" (25) 

Substituting in equation (7) 

A HO) =oHO)-
This is an eigenvalue problem; the variables were expressed 

by Fourier series truncated to N terms and, by Fourier 
analysis, 8N+ 3 equations were obtained for in-plane Fa or M 
loading or 8N- 1 equations for out-of-plane Ma or ^loading; 
the resulting equations have been published (Whatham, 1983). 
Eigenvalues and eigenvectors of equation (26) are all complex 
and can be obtained by a standard subroutine such as 
EB06AD (Hopper, 1973); a typical eigenvalue spectrum is 
shown in Fig. 5 where only those eigenvalues with negative 
real parts are required since end effects decay with distance 
from the end. 

The three eigenvalues with zero real parts arise from the 

components of u, v, w, \p, which displace the pipe cross-
section as a rigid body. Had these components been neglected, 
or the governing equations written in terms of variables ee, KB, 
Mv, Tv, X, /3, P, Q, the three eigenvalues would not have been 
generated but then the rigid body displacements would have 
had to be calculated separately for the pipe bend deflection. 

Combining eigenvectors for the total end effect 

$</ = Re£c,Mfl)e°/' (27) 
y=i 

where 

J= 
27V (in-plane loading) 

2N- 1 (out-of-plane loading) 
Cj: = coefficient for jth eigenvector, determined from the 

end conditions 

Since CJt £,-(0) and 0, are all complex, the end effect is 
described along the pipe by Fourier series with exponentially 
decaying coefficients. 

Two curved pipe terminations are considered—a rigid 
flange and a tangent pipe. To represent a rigid flange, the 
distortion strains ee, tce, X, /3 are made zero at the pipe end 
whereas, for the tangent pipe, the stress resultants and distor­
tion strains are equated across the junction and thus values of 
Cj are obtained; these end conditions are discussed further by 
Whatham and Thompson (1979) and Whatham (1982). 

(26) Pipe Bend Flexibility With End Effects 

Flexibility factors, derived for a typical pipe elbow and U 
bend with equal length flange-ended tangents, are plotted ver­
sus tangent length in Fig. 6. Obviously the shorter the 
tangents, the greater is the restriction to pipe cross-section 
flattening and the less is the flexibility. For the pipe dimension 
ratios shown, long tangents reduced the flexibility of the 
elbow and the U bend by 11.5 and 5.5 percent, respectively, 
compared to their flexibilities if end effects were neglected. 

Flexibility factors are plotted versus bend characteristic h in 
Figs. 7 and 8 for pipe elbows with flanged ends or with short 
(L/r = 1) tangents with flanged ends under in-plane bending; 
additional graphs for other tangent lengths on U bends as well 
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as pipe elbows have been presented (Whatham and Thomp­
son, 1979) and values tabulated (Whatham, 1982-1985). 

Verification by Experiment 

In-plane and out-of-plane bending moments were applied to 
a cast steel pipe elbow of 125 mm bore, 375 mm radius of cur­
vature and 12.5 mm wall thickness, which had flanges of 400 
mm diameter and 90 mm thickness to provide sufficient stiff­
ness at the ends. 

Deflections matched those calculated by thin shell theory 
but stress distribution is a more sensitive indicator. Hoop 
stresses derived from strain gauge measurements taken on the 
outer surface midway between the elbow ends, and thin shell 
solutions with and without flanges, are plotted in Figs. 9 and 
10; they verify the analysis and show the significant stress 
reduction effected by the flanges. 

The BENDPAC Computer Program 

A computer program package, BENDPAC, written in the 
FORTRAN IV and ASSEMBLER languages for an IBM3033 
computer, is available from either the Australian Atomic 
Energy Commission or the National Energy Software Center, 
Argonne National Laboratory. Pipe bends with any loading or 

end condition shown in Fig. 11 may be analyzed for overall 
flexibility, stresses and cross-section distortion. Wall thickness 
should be between one and ten percent of the pipe radius, or 
may be as high as thirty percent for pure in-plane bending 
(Whatham, 1981a), but there is no restriction on the bend 
radius, bend angle, or tangent length; the interactions of ef­
fects from opposite ends of the curved pipe and tangents are 
taken into account. As far as computation is concerned, a 
bend angle may be several hundred degrees; this would be 
used, for example, if examining the end effect on a curved 
pipe without interference from the opposite end. 

Tables have been published (Whatham, 1982-1985) giving 
the complete stress state, the cross-section distortion and the 
flexibility of a range of pipe elbows (R/r = 2, 3, 5 and t/r = 
0.01-0.1) with flanged ends under in-plane or out-of-plane 
forces or bending moments, also with tangent pipe ends under 
in-plane or out-of-plane bending moments only. 

Conclusions 

Equations and solving procedure have been presented for 
obtaining thin shell solutions in closed form for pipe bends 
subjected to four particular end loadings, but, by superposi­
tion, solutions can then be obtained for any force or moment 
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Fig. 11 Loading options of BENDPAC 

loading on the ends, either in-plane or out-of-plane. The 
method of including pipe bend terminations, consisting of 
rigid flanges or tangent pipes, was then described and the 
stresses, calculated in a flange ended pipe elbow from in-plane 
and out-of-plane bending, were checked by experiment. 

The work has resulted in a computer program BENDPAC 
and published tables of stresses, cross-section distortions and 
flexibilities for a range of pipe elbows. As the analysis is exact, 
within the limitations of thin shell theory, it provides bench­
mark solutions for assessing numerical methods of pipe bend 
analysis as well as providing design data. 
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Flow-Induced Vibrations Caused 
by Roughness in Pipes Conveying 
Fluid 
This paper presents a theoretical investigation of self-excited vibrations of pipes 
conveying fluid due to roughness. A model of a laminar friction, considered as the 
excitation mechanism, is based on Prandtl's universal velocity distribution for the 
turbulent boundary layer and on Nikuradse's experiments. The analysis has shown 
that the friction characteristic has a negative slope in a certain range of fluid 
velocities. This range is a function of pipe roughness and is shifted to lower flow 
velocities due to roughness growth during pipe operation. It was found that the 
differential operator of a piping loop motion based on the nonlinear restoring 
characteristic coincides with the differential operator of Duffing's equation for the 
hardening system. The energy method was used to obtain the approximate closed-
form solution for the amplitude of steady self-excited vibrations. The unstable 
response with jump phenomena can appear due to interaction of small turbulent 
disturbances in conveying fluid with a given nonlinear system. 

Introduction 
Flow-induced vibrations of pipes conveying fluid have been 

studied by many investigators. In the extensive review papers 
of Chen [1, 2] there are numerous references pertaining to this 
problem. 

The particular interest of the present study is aimed at the 
self-excited vibrations of piping loops conveying fluid, since 
the mechanism of such vibrations is still not well understood. 
Sustained axial vibrations with perceptible amplitudes (Fig. 1) 
can be observed when a certain flow velocity threshold is 
exceeded. A given problem may be classified as parallel-flow-
induced vibration of cylindrical, elastically supported 
structures subjected to internal flow [2]. 

Three excitation mechanisms are usually adopted for the 
analysis of flow-induced vibrations, namely: self-excited 
vibration, parametric and combination resonances, and 
forced vibrations. The self-excited vibration mechanism for 
axial flow was considered by Burgreen et al. [3], Benjamin [4], 
Quinn [5, 6] and by other researchers [i, 2], 

The parametric and combination resonances and forced 
vibrations with periodically disturbed flow were considered by 
Hopkins [7], Y. N. Chen [8], S. S. Chen [9], Ginsberg [10], 
Paidoussis et al. [11, 12, 13, etc.], and by many other in­
vestigators for pipes with different boundary conditions and 
different fluid flows: steady flow, pulsating flow and two-
phase flow. 

The limited interest in the self-excited vibration for pipes 
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subjected to axial flow may apparently be accounted for by 
the relatively small amplitudes caused by this type of flow-
induced vibration. M. P. Paidoussis [14, 15] examined a 
"tentative" analytical model of Quinn and found that a flow-
induced damping was not taken into account and concluded 
that the forced vibration mechanism is the most appropriate 
model for the transverse vibration of pipes immersed in axial 
flow. 

However, the self-excited mechanism combined with other 
excitation can apparently play a substantial role in the ap­
pearance of considerable axial vibrations for piping loops 
conveying fluid (Fig. 1). 

The sustained flow-induced vibrations of piping loops and 
elements of the attached equipment are often accompanied by 
hysteresis effects (jump phenomenon). The jump 
phenomenon was observed, for instance, for the upper parts 
of actuators of regulating valves on feedwater lines (NSP 
Prairie Island Nuclear Power Plant) and for a main steam line 

'• fc'r ^ x 

I Flo 

Fig. 1 Model of the piping loop 
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(Nebraska Cooper Nuclear Station) with average axial am­
plitudes in the range 4-7 mm. 

The jump phenomenon is known for the forced vibrations 
of lightly damped nonlinear systems. If the amplitudes of 
excitation are small, the hysteresis effects, owing to intrinsic 
structural damping, do not appear. However, the hysteresis 
effects may appear if the self-excited mechanism, neutralizing 
structural damping, is involved in the excitation. 

This paper deals with a model of the self-excited vibration 
mechanism focused on the fluid-roughness interaction when 
Reynolds numbers are very large (e.g., for the main steam line 
of the Nebraska Cooper Nuclear Station, Re > 3 x 107). For 
a given model the aforementioned flow velocity threshold is 
apparently a function of the interaction between the pipe 
surface and turbulent flow with the laminar sublayer. 

The first mode of vibration (the long span of length /3 

moves like a rigid body) will dominate in the dynamic motion, 
and only this mode is considered to be important for 
engineering purposes. 

By analogy with a belt friction system, which exhibits self-
excited vibrations, it can be shown that the laminar friction 
characteristic has a negative slope in a certain range of fluid 
velocities. In view of this, it has to be noted that all existing 
empirical and semiempirical theories have generally been 
developed for determining the head loss value. By 
Boussinesq's introduction [16] the turbulent resistance is 
expressed in analogy with the coefficient of viscosity in 
Stokes law for laminar flow through the so-called "ap­
parent" or "virtual" (also "eddy") viscosity. The head loss 
consisting of laminar and turbulent frictions is usually 
calculated using a dimensionless resistance coefficient. The 
latter one is obtained from the experiments of Nikuradse [17], 
Bauer and Galavics [18], and other researchers. For instance, 
a model of self-excited vibrations proposed by Quinn [5] is 
based on the use of the total head loss. However, since 
laminar and turbulent resistances are different in physical 
nature, it is useful, for better understanding of self-excited 
vibrations caused by roughness, to consider them separately. 
Really, the laminar resistance is frictional and under certain 
conditions can act opposite to the dissipative forces of the 
piping loop. In turn, the turbulent resistance (uniform flow 
without fluctuations), as it will be shown below, interacts with 
the restoring elastic forces of the piping loop and, in case of 
steady vibrations, is proportional to the static displacement of 
the piping legs. 

Self-exciting vibration occurs in an unconservative 
mechanical system if the damping resistance is balanced or 
exceeded by forces from some uniform source of power. For 
the model under consideration, the laminar boundary 
sublayer created by fluid flow represents such a source and 
under certain conditions can convert the mechanical system 
into a conservative one. 

A diminution of the laminar friction can apparently be 
explained as the result of a decrease in the laminar sublayer's 
thickness with an increase of the flow velocity and subsequent 

interaction between the conveying fluid and the rough surface 
of the pipe. As was shown by Nikuradse's measurements, the 
velocity gradient near a rough wall is less steep than that near 
a smooth one. Actually, this effect originates in pipes con­
veying fluid when the thickness of a laminar sublayer becomes 
less than the height of protrusions. The viscous sublayer finds 
itself "in the shadow of protrusions" and practically ceases to 
exist. Thus a growth of the protrusion's height during 
operation or an increase of the flow velocity may eventually 
lead to the aforementioned phenomenon. This tentative 
model of the self-excited vibration mechanism based on the 
fluid-roughness interaction is believed to be new. 

After the onset of self-excited vibrations, the amplitude 
increases until some nonlinear effects limit any further in­
crease. The nonlinear stiffness of piping loops originated by 
geometric distortions of the elastic model is considered in the 
capacity of the nonlinear effect. Asymptotic methods were 
used for the analysis. Although for the pipes in operating the 
data about damping and roughness values are questionable, 
the theoretical results can be derived in a form which allows 
one to determine all parameters of self-excited vibrations 
caused by roughness with an accuracy sufficient for 
engineering practice. 

Laminar Friction in the Rough Pipe 

If Reynolds numbers are large, the flow in pipes conveying 
fluid may be treated as a turbulent flow with a laminar 
sublayer. The shearing stress consists of a laminar (viscous) 
contribution T„ and a turbulent contribution T, . 

T0 denotes the shearing stress at the wall. 
The viscous contribution in analogy with Stokes's law for 

laminar flow is introduced as 

r„ = (idu/dz 

Here /*, u, and z denote viscosity, fluid velocity and 
distance from the wall, respectively. 

For the explanation and analysis of the self-excited 
vibration mechanism, it is important to conjecture that 
feasible axial motions of the pipe with relatively small 
velocities do not have any influence on the velocity profile in 
the turbulent layer. All interactions occur within the laminar 
sublayer, and an analysis of the laminar stress behavior 
during transition from a hydraulically smooth regime to a 
completely rough regime [19] may ascertain the assumed 
analogy with the belt friction system. 

The velocity distribution in the laminar sublayer is linear to 
a good degree of approximation [19] and, therefore 

Tv(z = 0)£Tv(z = d)=nu(z = 5)/5 (1) 

Here 8 denotes a thickness of the laminar boundary sublayer. 
The universal logarithmic velocity distribution from 

Prandtl's theory for large Reynolds numbers agrees well with 
experimental data within the turbulent boundary layer and 

N o m e n c l a t u r e 

T, 

TO 

8 

P = 

laminar (viscous) con­
tribution 
turbulent contribution 
shearing stress at the wall 
viscosity 
thickness of the laminar 
boundary sublayer 
kinematic viscosity of the 
conveying fluid 
fluid density 

;/< = 2.5\nb/ks-B 
V = vtks/v 
vr = 3.14. . . 
4> = angle 
e = P/EI 
£ = s/l 
A = UvgEI/l3 

f = /V7.984(£7)3 

E = symbol of summation 
X = nzlm 

CO 

e 
frequency 
phase angle 

• 2 * 

a(A) = Jo*f(x,)x,dt 

cog Ks/m 

a 

7 = 

small, positive parameter 
frequency of the stationary 
random excitation in the 
neighborhood of 
phase of excitation 

182/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



10 

J f sm 

^ f 

>oth 

» J ^ 
? * t j ^ 

D ] m 

10BS-wsnn ran^ 

transition 

&&&ES3 

1.0 1.2 1.4 1.6 
L o g V ^ 

Fig. 2 Experimental spread for the roughness function B in terms of 
VtKs lv for Nikuradse's sand roughness (from Schlichting [19]) 

Fig. 3 Effect of wall roughness on 6 according to Nikuradse's ex­
periments: (a) From Rotta [20]; (b) curve rebuilt from Rotta's plot 
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Fig. 4 Diagram of the viscous shearing stress as a function of the 
roughness Reynolds number 

can be used to compute the velocity u(z = S) at the top of the 
laminar boundary sublayer. Schlichting [19] developed, 
depending on the nature of the particular roughness, the 
logarithmic velocity distribution which is represented in the 
following form 

u = y,(2.5 In z/ks+B) (2) 

where 

ks = sand roughness height (average height of 
protrusions) 

B = B (r;) = function of the roughness Reynolds number, 
r] = vtks/v 

v = kinematic viscosity of the conveying fluid 
vt = friction velocity at the wall, v^ = ( T 0 / P ) 1 / 2 , (p-

fluid density). 

Equation (1) combined with equation (2) gives 

(2.5\nb/ks+B) (3) 

Equation (3) can also be written in the following form 

k2
sTv/ixv = ksrii/S (4) 

where 

^ = 2.5 \nd/ks+B 

B and 5/ks are functions of the roughness Reynolds numbers. 
The function B was plotted by Schlichting [19] in accordance 
with Nikuradse's experiments (Fig. 2). 

Fig. 5 Model of the piping loop's leg 

The effect of wall roughness on the thickness of the 
boundary sublayer was also deduced and plotted by Rotta [20] 
from Nikuradse's experiments on flow through circular pipes 
(Fig. 3(a)). For convenient computation this curve was rebuilt 
as shown in Fig. 3(b). Equation (4) was plotted as a function 
of the Reynolds number -q in semilogarithmic scale (Fig. 4). As 
can be seen, the "crisis of the laminar friction" occurs when 
r/ = 29, i.e., in the transition region. The slope of the viscous 
shearing stress takes varying negative values in the range 
r) = 29 to 38, and the onset of the self-excited vibration may be 
expected in this range. The viscous shearing force Fs induced 
by the fluid flow may be defined as 

Fs = T„SP 

where 

Sp = active internal pipe surface, Sp =2irRli (Fig. 1) 
R = internal pipe radius 

For the laminar boundary sublayer, the friction velocity can 
be expressed in the form of [19] 

vf=2(pu/R)W2 (5) 

where u denotes a mean velocity of the flow. 
Using equation (5) and 17 = 29, the threshold flow velocity ii, 

corresponding to "crisis of laminar friction" can be found as 

u,=210Rv/k2
s (6) 

The conformable critical Reynolds number is Re =420R2/kj. 
All of the aforementioned equations and relationships are 

based on the roughness used by Nikuradse with sand of 
maximum density. There is a correlation between the real 
roughness of commercial pipes and the equivalent sand 
roughness, for instance, that was plotted by Moody [21] and 
other researchers. Apparently, these experimental results are 
related to pipes used for industrial processes without intensive 
corrosion and deposition of chemical components at the pipe 
walls. 

As can be seen from Fig. 4, within the region of the 
decaying laminar friction, equation (3) can be approximated 
for engineering applications by the following 

-Ncosw (7) 

where 

N=l, ,100/xe/k2, w = 0.1745(r/ -29) 

The approximation in form of equation (7) is in tolerable 
agreement with equation (3) in the range 7; = 29 to 38, and is 
convenient for further analysis. 

Equation (7) will be used as a characterization of self-
excited vibrations. In view of the fact that apparently neither 
the logarithmic velocity distribution nor any other simple 
relationship can adequately describe velocity in the immediate 
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neighborhood of the wall (6<fci, z>5) some deviations from 
equations (3) and (7) may be expected and further ex­
perimental and theoretical work for more accurate description 
of the laminar friction behavior is required. However, it 
seems questionable that reliable quantitative results can be 
achieved. The general obstacle is that due to irregularities of 
the wall the viscous flow in the hollows between protrusions is 
not predictable. Nevertheless, for the complete rough regime, 
" . . . the viscous sublayer practically ceases to exist, while 
the flow in immediate proximity to the wall consists entirely 
of eddies, generated by the flow around the individual 
protrusions" [22]. Thus, equation (7) reflects qualitatively the 
existence of decaying laminar friction and can be used for the 
explanation and understanding of the axial self-excited 
vibration mechanism due to roughness in pipes conveying 
fluid. 

Nonlinear Stiffness of the Piping Loop 

The piping loop contains two legs elastically deformed 
during axial motion of the long span (Fig. 1). The stiffness of 
the legs can be considered using the static model depicted in 
Fig. 5. A similar problem was solved in [23]. 

The general differential equation of the beam elastic curve 
is 

d2v 

~d~f 

r i -V1 

\\+(dv/dy)2\ =M/EI 

M and EI denote a bending moment and a flexural rigidity of 
the leg, respectively. 

It is seen from Fig. 5 that M/EI=d<f>/ds, dv/ds = sm(j>, and 
one can show that 

r iU1 

d2 v/ds2 = 1 - (dv/ds)2 Ml EI 

Taking into account the shift of the point B during 
deformation of the leg, the bending moment is given by 

M=-P(yB-y)+MB. 

MB = constant moment, providing zero angle at point B. 
The differential of the v a l u e r —y is 

dscos<j> = ds\ 1 - (dv/ds)2 

Integrating from s to / 

yB-y=\s[l-(dv/ds)2~j ds 

Finally, the differential equation of the elastic curve may be 
written as 

d2v r -1-1/2 

ds2 [l - (dv/ds)2] 

EI 
\ \I-(dv/ds)2] ds+MB/EI (8) 

The nonlinear equation (8) may be solved by a perturbation 
method. Representing the binomials of the equation (8) as 
expansion series 

v" Tl+0.5(i;' )2+0.375(i/)4 + - ] -
P 

EI 
f [ l - 0 . 5 ( y ' ) 2 - 0 . 1 2 5 ( y ' ) 4 - . . . ~\ds+MB/EI 

(9) 

Here, v'= dv/ds, v" =d2v/ds2. The solution of equation 
(9) may be found in a power series of the parameter e 

v = ev0 + e2v1 + e3u2 + . . . (10) 

The parameter e=P/EI corresponds to the dimensionless 
parameter PI2 /EI < 1. 

Introducing solution (10) into equation (9) and collecting 

all terms of not higher than the fourth order in t gives the 
equation 

ev^ + e2v"+e3v['+eAv^ + 0.5e3v^(Vo)2+0.5e4(v^)2v" + 

+ e 4 u > , X ' = - e [ \l-0.5e2(v^)2-e2v^v„}ds + eMB/EI 

The constant moment MB can be represented as 

MB=J^e2iM2i 

( = 0 

Equating the terms of equal order in e it can be found that 

vZ=s-l+M„/P 

v{ = 0 

y2" + 0 .5y o "(^) 2 =0.5J (v'0)
2ds+M2/P 

(11) 

>Z+v0viv0 = ^v0vi ds 

Since u, = 0, it is obvious that v3 =0 . The first equation of 
the system of equations (11) gives after integration 

vo=0.Ss1-ls + Mos/P+Cl (12) 

vo=s3/6-0.5ls2+0.5Mos
2/P+Cls+C2 

where CX,C2 = integration constants. 
For boundary conditions: s = 0, vo=0, v'0=Q\s=\, v'0=Q, 

the solution (12) may be written in the form of 

u o =/ 3 £(0 .25-£/6) , v'0 =0 .5 / 2 £(£ - 1) (13) 

S=s/I 

The third equation of the system (11) with regard to (13) is 
as follows: 

v2 = -0 .125(5- 1.5/) (s*-6ls3+9l2s2) 

+ 0.125 j (s4- 6lsi+9l2s2)ds+M2/P 

After analogous operations the second approximation gives 

v2 = -0.125£/5(0.85 -4 .5£ 2 + 5.25£3 - 1.8£4 +0.2£5) 

v2 = -0.0625|2/7(0.85 - 2.25J2 + 2.1£3 - 0.6£4 + 0.067£5) 

(14) 

Thus the total displacement at the point £ = 1 may be ob­
tained by combining the solutions (13) and (14) 

vB=PP/l2EI-P3l7m.5l(EI)i (15) 

The first part of the solution (15) represents a well-known 
linear solution of the given problem and the second one 
represents a small nonlinearity of the displacement. 

In order to analyze self-excited vibration, the solution (15) 
has to be expressed as P=P(vB). It can be done again by 
means of the perturbation method. 

The solution (15) may be presented as 

P - f P 3 = X (16) 
Here 

X= 12t>B£7//3;r=/4/7.984(£7)3 

The solution of equation (16) may be found in form of the 
series 

P=Po + tPi+fP2+ . . . d7) 
Substituting the solution (17) into equation (16) 

P 0 + f P , + f 2 P 2 + .. • • - fCP D + ?P, +fPi+ . . . ) = X 
and equating terms with equal power of f 

P„ = \ P 1 = P 3 = X 3 ,P 2 =3P 2 P 1 =3X 5 (18) 

Therefore 

P=X+fX 3 (19) 
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It has been noted that X may be represented as 

\=KvB 

where K = stiffness of the linear system. Hence solution (19) 
is 

P=KvB + t&v\ 

and represents the resistance of the single leg corresponding to 
the displacement vB at point B. For a given piping loop with 
two legs 

P=Kz+nzv\, (20) 

KL=Kl+K2,nL = ^xK] + ^Kl 

where Kx, K2 = stiffness of the first and second legs, 
respectively. The coefficient nz in equation (20) is a small 
quantity. 

Self-Excited Vibration of the Piping Loop 

The equation of the piping loop motion with respect to the 
solution (20) may be written in the following form 

mx + cx+K^x + n^x3 = F(ii,u) (21) 

Here: 

c = damping coefficient 
m = mass of the piping loop's longer run of length /3 

(Fig. 1) 
ii= relative sliding velocity, u = vt —x 

F(u,ii) = induced force 

and the dots above a letter indicate the derivatives with respect 
to time. 

At rest, the induced force F(ii, it) equals the head loss and 
the static displacement x0 may be derived from the equation 

KzX0+nLxl=F(u)=SpTu(vll)+Fl(u) (22) 

where 

F(ii) =head loss, calculated, for instance, with the use of 
the Darcy equation 

F, (u) = turbulent component of the head loss 

The induced force F{ ii,u) may be presented as 

F( u, u) =SPTV( u) +F,(u) (23) 

For small oscillations of the relative sliding velocity u the 
friction force SPT„(U), induced into the pipe, may be ex­
panded in Taylor's series as 

SPTAU)=S„[TAV,)-
drAvJ 
du x+ 

1 d2rv(vt) ... 

(!?=!>.) dw («=«.) 
1 . dlO.).# + 
6 dii1, (»=«.) • • • ] 

(24) 

Substituting the expression (24) into equality (23) 

La«(,7=„.i 2 du2,, '(« = «.) («=«.) 

6 du\,7=„> J 

Introducing a new variable xx=x-x0, taking into account 
equations (1) and (7) and assuming that 3nzx,x0 (x, +x0) is a 
negligible quantity (x0 < max xx) 

x\+<4xx +xx\=Gf(x1) (25) 

where 

<x>2
0=KL/m, x = nz/m, G = 0A145SpNks/mv, 

f(x\ ) = xx sinw - xx c/mG - 0.0875ii ^cosw/c 

-0.0051.tf ^ s inw/y 2 + . . . (26) 

Equation (25) may be solved by different methods: Ritz 

method, perturbation method, Kryloff and Bogoliuboff's 
method, etc. In seeking a steady-state solution, the energy 
method can be used with the same efficiency, but with a 
simpler procedure. The energy method is based on an 
assumption that friction forces have no influence on the shape 
of the mode of vibration and, therefore, the solution of 
equation (25) may be found in the form of the solution to the 
Duffing's equation for the hardening system. 

x\+wlxx+Xx]=Q (27) 

The solution to the Duffing's equation (27) may be derived 
by Struble's method [24] in the following form 

xl{f)=Acos{wt-QB) 

. XA1 

32co? 
(1 - 21xA2/32o}2

0)cosl(iot-Q0) -

(28) 

(29) 

- x2A5cos5(o)t-eo) /l,024u>2 +0(e3) 

a) = c o 0 ( l + 3 x ^ 2 / 8 ^ - 1 5 x M 4 / 2 5 6 ^ ) + 0(e3) 

9D = phase angle. 
For a whole period of vibration, the net work done by 

inertial and elastic forces equals zero and, hence, the net work 
done by the friction force also equals zero. Therefore 

i
2jr/o) 

f(xx)xxdt = 0 (30) 

Substitution of the function/(tf), i.e., equation (26), and 
xx(t)= Acos(wt—Q0) into equation (30) and subsequent 
integration give a first approximation for the amplitude of 
self-excited vibrations 

A 
_ 16.2j>n 16.2V r sinw -c/mG "| 

nw J 
(31) 

It is self-evident that equation (31) is valid only in the range 
sinw >c/mG. 

Since the parameter x is assumed to be small, the 
relationship (31) represents the amplitude of vibrations with 
accuracy sufficient for engineering applications. 

The highest feasible amplitude is (co = co0) 

A = \6.2v/ksu0 (32) 

The numerical example can be presented, for instance, for 
the main steam line (Nebraska Cooper Nuclear Station). 

steam: temperature 295°C (586K), pressure 0.816 
.106kg/m2, corresponding kinematic viscosity 
esO.485'10"6 m2 /s 

pipe: inside diameter 0.61m, £s = 0.001m, co0s0.3 Hz, 
Re,>3.9 '107 

Using (32), max^4 = 4.2mm. It can be shown that 

da(A)/dA<0 

and, hence, in accordance with Liapunov's theorem [25], the 
regime xx(t) =/lcosco? with amplitude of vibration given by 
(31) is stable. 

Hitherto the flow was considered to be uniform without 
disturbances whereas the real turbulent motion contains very 
irregular fluctuations. A concise survey of experimental data 
pertaining to the measurements of turbulent fluctuations is 
given in [19]. Although the fluctuations of the pressure and 
velocity do not exceed several percent, they may have a 
substantial influence on the behavior of the system. 

The irregular fluctuations presented in the form of random, 
wide-band input are to be superimposed on a given nonlinear 
self-oscillating system. 

Since a system under consideration with single degree of 
freedom acts as a narrow bandpass filter, the governing 
equation may be written in the form 

xx+u2
0xx=aq(xx) + Qcos(t3t + y) (33) 

where 
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a = small, positive parameter 
Q = random amplitude of a given harmonic excitation 
(3 = frequency of the stationary random excitation in the 

neighborhood of w0 

7 = phase of excitation 
q = function specifying the nonlinearity of the system and 

stipulating the existence of self-excited regimes. In the 
given case q = Gf(xx)- x\. 

The deterministic analysis of equation (33), using Kryloff 
and Bogoliuboff's procedure, has been made, for example, in 
[26]. The response curve of this system is typical for a lightly 
damped, nonlinear system with peculiar hysteresis effects 
Gump phenomena) which appear with deviations of the 
frequency of the excitation. 

The survey of applications to random excitation of this 
system is available, for instance, in [27]. 

The families of response curves may be calculated for 
different levels of the excitation. 

Discussion and Conclusion 

A tentative mathematical model of flow-roughness in­
teractions, based on Prandtl's universal velocity distribution 
and on Nikuradse's experimental data, has been employed for 
the explanation of self-excited vibrations of piping loops 
conveying fluid. The existence of the negative slope for the 
friction characteristic gives every reason to assume an analogy 
with a belt friction system. A mechanism of self-excited 
vibrations of the belt friction system is well understood, and a 
theoretical investigation has been carried out in a similar 
manner. 

Derived approximate closed-form solutions allow us to 
predict the onset of self-excited vibrations and the steady-state 
amplitude. 

This study shows that the height of protrusions and 
kinematic viscosity of the conveying fluid play the leading 
part in the proposed mechanism of self-excited vibrations for 
a piping loop. In general, the effect of increasing the con­
veying fluid temperature is to decrease kinematic viscosity 
and, hence, to decrease the threshold flow velocity u,. The 
effect of the roughness growth during pipe operation is also to 
decrease «,. 

Analytical results for steady-state regimes are in good 
agreement with the observed average amplitudes of 
oscillations. 

An analysis of the system geometric nonlinearity has been 
undertaken for the explanation of attendant hysteresis effects. 
An additional excitation caused by turbulent disturbances 
brings a given nonlinear system to the irregular transition 
motions Gump phenomena). Due to complexity of the in­
terpretation of experimental data, the nonlinear response of 
systems such as this is often treated as a linear one con­
taminated with noise. However, the importance of nonlinear 
components for the proper mathematical modeling of real 
systems is realized, and the method recently proposed [28] can 
apparently be useful for recognizing the structural 
nonlinearities. 

The important role of the self-exciting mechanism is, also, 
decreasing structural damping, to extend the resonant peak 
further up the free vibration backbone, equation (29). 

Thus the anticipated responses of the system under con­
sideration are: steady-state, self-excited vibrations with 
relatively small stable amplitudes for the flow without con­
siderable fluctuations, and unstable forced vibrations ac­
companied by jump phenomena due to interaction of the self-
oscillating system with random excitation for the flow with 

severe turbulent disturbances. The peak amplitudes of the 
latter ones can be much greater than amplitudes of self-
excited vibrations. 

In spite of relatively small amplitudes, the steady-state self-
excited vibrations can cause malfunctions and fatigue failure 
of piping systems and attached equipment. 

A given tentative model is not apparently the only one 
which describes the dynamic behavior of piping loops con­
veying fluid. Similar responses can also be simulated based on 
other suitable models. 
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The Stability of Oscillatory Hagen-
Poiseuille Flow 
The linear stability theory of the nonzero mean, sinusoidally oscillating flow in a 
tube of circular cross section is examined. It is found that the relevant axisymmetric 
disturbances in the oscillatory flow are more stable (i.e., have larger decay rates) 
than the axisymmetric disturbances of the mean flow alone. This result holds for 
values of the cross-sectional average oscillation velocity amplitude at least as large 
as seven-tenths the average mean-flow velocity amplitude. Although the in­
stantaneous velocity profile contains generalized inflection rings for a substantial 
portion of the oscillation period, the disturbances do not become instantaneously 
unstable at any time, even for very low frequency oscillations. 

1 Introduction 
The flow in a tube of circular cross section which is driven 

by the combination of a steady and a sinusoidally time-
varying axial pressure gradient is called oscillatory Hagen-
Poiseuille flow. Such a flow has many important applications. 
Hence it seems important to examine its stability charac­
teristics. 

It is well known that steady Hagen-Poiseuille flow is stable 
to infinitesimal disturbances for all values of the Reynolds 
number (Salwen and Grosch [1]). It would be interesting to 
know what the effects of temporal oscillations are on these 
stability characteristics. The simpler case of plane Poiseuille 
flow has a critical value of Reynolds number above which the 
flow is unstable. It was shown by von Kerczek [2] that the 
sinusoidal oscillation of this flow stabilizes it for a range of 
values of dimensionless frequency Q. This range of values of Q 
is less than four times and greater than one-tenth the value of 
the frequency wx of the unstable disturbance mode of the 
underlying mean flow. However, for very low-frequency 
oscillations {Q, < c^/10), plane Poiseuille flow is slightly 
destabilized. In contrast to plane Poiseuille flow, it was shown 
in reference [3] that at low values of Reynolds number plane 
Couette flow is rendered less stable, although not 
destabilized, by superimposed small-amplitude flow 
oscillations driven by the channel walls. Plane Couette flow is 
similar to Hagen-Poiseuille flow in the sense that it is also 
stable to infinitesimal disturbances at all values of the 
Reynolds number (Davey [4]). 

The superimposed temporal variations of the pressure 
gradient in oscillatory Hagen-Poiseuille flow causes the in­
stantaneous velocity profile to develop inflection rings at 
some radial location within the tube during most of the 
oscillation cycle. In axisymmetric flows, generalized in-
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flection rings (for satisfying the Rayleigh criterion) occur 
when 

d_H/ _ dU 
dr 

= 0 (1) 

where U is the basic flow velocity and r is the radial coor­
dinate. Intuitions developed from the linear stability theory of 
steady flows suggests that the oscillatory flow is highly un­
stable at least during the time interval in which the inflection 
rings are present. In particular, this is expected for the cases 
of low frequency imposed oscillations. 

Four experimental investigations (Gilbrech and Combs [5], 
Ramaprian and Tu [6], Sarpkaya [7], and Yellin [8]) to 
measure the effects of low frequency flow oscillations on the 
transition characteristics of Hagen-Poiseuille flow have 
shown that these oscillations tend to suppress the development 
and growth of turbulent spots. The linear stability theory has 
no known relationship to the mechanics of transition to 
turbulence because it predicts that steady Hagen-Poiseuille 
flow is completely stable. However, the experiments do 
suggest that the oscillations enhance Hagen-Poiseuille flow's 
stabilty. A measure of this enhancement of stability is defined 
here as the relative change a in the decay rates of disturbances 
due to the imposed flow oscillation. 

It is worthwhile to note that von Kerczek and Davis [9] 
show that the Stokes layer by itself is not unstable. Similarly, 
the linear stability theory shows purely oscillatory pipe flow 
to be completely stable (Yang and Yih [10]), although such 
flows do exhibit in experiments a kind of intermittent tran­
sition between laminar and turbulent flow (Hino et al. [11]). 

The research described in this paper deals with the stability 
of low-frequency, sinusoidally modulated Hagen-Poiseuille 
flow. Only axisymmetric disturbances are analyzed. The full 
time-dependent linear stability theory is analyzed by a 
combination of numerical and high order perturbation 
methods. The quasi-steady approximation to the full stability 
theory is also examined numerically. Sections 2-5 contain, 
respectively, the formulation of this stability problem; the 
methods of solution of this problem; a discussion of the 
computational results with a view toward interpreting the 
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U ( r , t ) 

Fig. 1 Basic flow velocity profiles. HPF denotes the steady-flow 
profile. For the unsteady profiles, 0 = 5.8, A = 0.5 

experimental results of references [5-8] and some concluding 
remarks. 

2 Formulation 

The flow of a homogeneous incompressible fluid through 
an infinitely long tube of circular cross section is considered. 
This flow is forced by the combined steady and unsteady axial 
pressure gradient 

dP0 
-^=-p(P0 + QoGOSut) (2) 
oz 

where p is the fluid density, z is the axial coordinate, t is time, 
and co is the angular frequency. The flow is described in 
cylindrical coordinates with r and 6 denoting radial and 
azimuthal coordinates respectively. The radius of the tube is 
denoted by a and v is the kinematic viscosity of the fluid. The 
problem is made dimensionless by the length scale a, the 
velocity scale U0 = P0 a2 /4 c, and the time scale a/U0. 
Henceforth, all variables are assumed to be appropriately 
scaled. 

The exact solution of the Navier-Stokes equation describing 
oscillatory Hagen-Poiseuille flow is 

V = (0,0,£/(r ,0) 

P=-z(l+AcosUt) 

where 

U(r,t)=UAr)+MJp(r,t) 

(3a) 

Ob) 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

(4/) 

A = Q0/P0 

fi = coo/ U0 

/3 = a(co/e)1/2 

where 

A = 4A//32 (4g) 

The function J0 (x) is the Bessel function of the zeroth order 
(Abramowitz and Stegun [12]). The parameter j3 appearing in 

the velocity Up is of primary importance. It can be interpreted 
as either a dimensionless frequency which is independent of 
the mean-flow time scale or as the geometric parameter that 
measures the ratio of tube radius to the Stokes layer thickness, 
&s = (v/o))W2. The parameter A is the most convenient 
measure of oscillation amplitude. It is approximately equal to 
the ratio of the centerline oscillatory velocity amplitude to 
mean centerline velocity and is almost always numerically 
small. The relationship between A and the ratio, S, (used by 
Sarpkaya [7]) of the cross-sectional average oscillation 
velocity amplitude to the average mean-flow velocity is given 
by 

\( 2 C \ 2 / 2 D \ 2 1 

C= 
ber(|3)bei' (g) - bei(/3)ber' Q3) 

ber2(/3) + bei2(|3) 

and 

D--
bei(g)bei' (0) + ber(0)ber' (/3) 

(5a) 

(5b) 

(5c) 
ber2(/3) + bei2(/3) 

where ber(jS) and bei(/3) are Kelvin functions [12]. 
Figure 1 shows the distribution of the velocity U(r,t) at 

various instants of time in one oscillation cycle. In this figure, 
A is 0.5 and /? has the value of 5.8 (fairly low frequency). For 
this value of /?, inflection rings occur somewhere within the 
tube for the time intervals 

0<Qf<0.55 

1.296<Qf<3.691 

4.438<QJ<6.283 

(A) 

(B) 

( Q 

(6) 

during one cycle (0 < Qt < 27r) of the oscillation. One ob­
jective of this investigation is to determine the relevance to the 
stability characteristics of the existence of inflection rings 
over such a substantial portion of the oscillation cycle. 

The basic oscillatory flow (3) is disturbed by infinitesimal 
axisymmetric disturbances of axial wave number a. The 
resulting flow is assumed to be governed by the linearized 
Navier-Stokes and continuity equations. Such disturbances 
may be described by the Stokes stream function 4>(r,t) 
exp(/cK?) in such a way that the radial and axial components of 
the disturbance velocity are obtained by the formulas 

w = Rej - — 0e''«j 

f 1 d<f> . •) 
v = Re) -elaz[ 

C. r dr ) 

(la) 

(lb) 

Accordingly, the linearized Navaier-Stokes equations can be 
reduced to the single governing disturbance equation (see 
Tozzi [13]) 

• j i 1 

£-~ = •=£2^-iotU£4> + ia[<j>£U+(x2U^} (8a) 
at R 

with the boundary conditions 

d<(> 
* (0 ,0= - ~ (0,0=0 or 

where 

0 (1 ,0 : 

£--

d<f> 

17 (1,0=0 

1 d 

r dr 

(8ft) 

(8c) 

(9) 

and where R = U0a/v\s the mean-flow Reynolds number. 
Since the basic flow U(r,t) is 2TT/Q periodic in time, the 
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Floquet Theorem (Coddington and Levinson [14]) is invoked 
to calculate solutions of the form 

<t> (r,t)= r, (r,t)ex< (10) 

where, -q(r,t + 2TT/Q) = t\(r,t). The stability or instability of 
the basic flow is governed by the sign of the real part of the 
Floquet exponent X. It is worthwhile to observe that for 
steady basic flows the solution (10) is also valid. In such a 
case, rj(r,t) is constant in time (hence trivially satisfying the 
periodicity condition) and X is the usual stability exponent. 
The next section deals with the procedure for obtaining the 
solution (10) of the equations (8). 

3 Methods of Solution 

The stability problem (8) is solved in two ways. The first 
way obtains the time-dependent solution (10) by a Chebyshev 
spectral expansion in terms of the independent variable r and 
a high order series expansion in terms of the parameter A. The 
second way of solving equations (8) makes use of the quasi-
steady approximation to the equations and can be obtained as 
a byproduct of the full time-dependent problem. 

In the full time-dependent problem, the function <Mr,/) is 
expanded in a Chebyshev polynomial series as follows: 

<Hr,t)= Ean(t)Tn-i(r) 

where 

and 

f = 2r-l 

(11) 

(12A) 

T„(r)=cos(ncos~lf) (12b) 

The r-method, as described by Gottlieb and Orszag [15], is 
used to convert equations (8) into the system of ordinary 
differential equations 

da 1 
Q = - P - a + ('aV-a-H'aAW(0-a 

dt R 
(13) 

where 

a(f ) = ( f l i .« 2 « /v ' ) + (14) 

is the vector of Chebyshev coefficients and Q,P,V, and W are 
N' x N' matrices, respectively representing the operators £, 
£ 2 , -Us£ + £US + a2Us and -U„£ + £Up + a2Up 

together with boundary conditions (8ft and c), on the 
Chebyshev basis T„, n = 0, . . . , N ' - l , N' =N~4. The 
matrix W ( 0 is 2ir/Q time-periodic. 

By invoking the Floquet Theorem, the vector a(t) has the 
form 

a ( ? ) = b ( 0 e N (15) 

where b( / + 2-?r/fi) = b{t) is the spectral expansion coef­
ficient vector of the function ij {r,t). 

For the value of A = 0, equation (15) is the solution of the 
steady Hagen - Poiseuille flow stability problem in which 
b(/) = b 0 , a constant vector, and X = X0 is the usual steady-
flow stability exponent. It is important to note that the steady 
Hagen-Poiseuille flow stability problem has for each value of 
a an infinite number of disturbance modes each of which is 
described by a mode vector b0 and characteristic value X0. 
The eigenvalues X0 of the steady problem can be ordered 
according to the value of their real parts. This ordering results 
in a descending sequence that accumulates on - °°. Only the 
first few values of the X0's are of interest. These values are 
called the principal modes and have real parts clustered near 
zero. The finite Chebyshev series expansion (11) produces N' 
approximations to these characteristic modes, but only a 
number N* < <N' are accurate approximations of the 
principal modes. The unsteady flow stability problem has the 
same features. 

A solution of problem (13) for A^O is obtained by a 
perturbation expansion about one of the steady-flow prin­
cipal modes as follows: 

(16a) 

(16*) 

b(t) = b 0 + Ab, (0 + A2b2 (t) + 

X = X0 + AX1 +A 2X 2 + . . . 

The method described by von Kerczek [2] (see also Tozzi [13] 
for a very detailed treatment), is used to calculate as many as 
30 to 40 terms of the series (16). The solution a(t) is the limit 
of the sequence of partial sums of the series (16). This limit is 
determined with the aid of the Shanks transformation 
(Shanks [16]). 

The quasi-steady approximation of the solution (15) is valid 
in those cases in which the frequency r a t i o / = u0 /O, co0 = 
Im(X0), has a very large value. In such cases, the slow time 
(parametric time) t0 corresponds to fixed instants in the 
oscillation time period [/0, t0 +27r/fl]. The fast time T ranges 
over the characteristic time period 27r/o>0 of the disturbance. 
Hence the quasi-steady solution 4>(r, T, t0) holds in the time 
interval [/0 —2eir/oi0, t0 — 2eir/co0] for some positive value of 
e. 

The quasi-steady approximate solution can be obtained 
from the governing equation (13) by holding time in the 
matrix W fixed at the value /0

 a n c l solving the resulting 
equation as a steady stability problem. This procedure yields 

a ( r , f 0 ) = b0(/o)ex°('o ,r (17) 

The eigenvector b0(/0) and eigenvalue X0(r0) are obtained 
numerically by solving the algebraic eigenvalue problem 

- M ' o ) Q + 5 P + '«V + i«AW(f0) 
K 

•a = 0 (18) 

for each instant t0e[0, 27r/Q], (EISPACK routines were used. 
Smith etal. [17].) 

4 Computational Results 

There is no clear relationship between the disturbance wave 
number a and the observed laminar to turbulent transition 
because steady Hagen-Poiseuille flow is stable to infinitesimal 
disturbances. Furthermore, the decay rates of disturbances 
decrease monotonically with decreasing values of a for fixed 
values of the Reynolds number R (Davey and Drazin [18]). 
Thus, it is not clear which values of a to choose for examining 
the effects of the flow oscillation on the stability of Hagen-
Poiseuille flow. In plane Poiseuille flow, the critical value ac 

of a (made dimensionless by the half-channel width) is about 
1.0 (reference [2]) and in the Blasius boundary layer ac is 
about 0.35 (made dimensionless by the displacement 
thickness) (Schlichting [19]). Hence, the range of values 
0 . 3 5 < a < 1.0 is probably the most relevant to examine the 
effects of flow oscillation on stability. In this study, attention 
is focused on the value a = 0.5; but other values of a were 
examined also. 

For a fixed value of a the infinite sequence of decaying 
disturbance modes of steady Hagen-Poiseuille flow was 
ordered in a descending sequence according to increasing 
values of the decay rate. The mode with the smallest decay 
rate is mode one. The first few modes can be classified as wall 
and center modes. A center mode has a value of phase velocity 
near 1.0 (the dimensionless centerline velocity of the mean 
flow). A wall mode has a value of the phase velocity in the 
range between 0.0 and about 0.5. This classification is based 
mainly on the ideas of plane Poiseuille flow which does have a 
critical disturbance mode whose phase velocity is associated 
with the mean flow velocity at the critial layer (Lin [20]). The 
mechanism that transfers mean-flow energy into disturbance 
energy is active at the critical layer where mean-flow and 
phase velocities are equal. 

The wall modes have lower frequency than the center modes 
although the wall modes are more heavily damped than the 
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Table 1 The perturbation coefficients Re(Ay) of series (166). 
Here R = 3000, (3 = 5.8, a = 0.5, N = 40, and the number of 
terms in series (16) = 40. 

crxKT 

0 
2 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

Re(Xy) 
-0.68519E-1 
-0.28563E-1 
-0.27953E-1 
-0.14584E-1 
+ 0.86816E-1 
+ 0.50027E00 
+ 0.19262E + 1 
+ 0.21448E+1 
-0.24835E + 2 
-0.12196E + 3 
-0.30939E + 3 
+ 0.63828E + 2 
-0.45441E + 5 
+ 0.47130E + 7 
-0.39114E + 9 
-0.23008E + 11 
-0.30155E+13 
+ 0.56562E+15 
-0.36862E + 17 
-0.79170E + 18 
+ 0.10745E + 21 

a =0.5 

Ax icr 
Fig. 2 Relative change a of least stable center mode versus A for R = 
3000, /3 = 5.8 

center modes. However, it is expected that the wall modes are 
more affected by the flow oscillation because their low 
frequency places them closer to the oscillatory vorticity field 
which is confined effectively within the Stokes layer. Hence 
particular attention was focused on the effects of flow 
oscillation on the stability characteristics of the wall modes. 

It is not possible to examine the stability characteristics over 
the entire range of values of R and 0. The experimental results 
of Sarpkaya [7] indicate that the most interesting effects of 
flow oscillation occur for 2000 < R < 6000 and for values of 0 
in the range 4 < 0 < 8 . The case of R = 3000 and |3 = 5.8 is 
typical of the behavior in these ranges and, thus, was chosen 
for detailed investigation. 

The primary results of the solution of the full time-
dependent equations (8) are the values of the perturbation 
coefficients X;, j = 0,2,4 of series (166) for the 
complex growth rate X of the disturbance. All the odd 
coefficients of this series are zero because the basic coefficient 
X0 is a simple eigenvalue of the underlying steady flow 
stability problem about which the perturbation series (16) is 
calculated and the flow modulation is sinusoidal. A sample 
computational result for series (166) is given in Table 1 for 
the values R = 3000, 0 = 5.8, and a = 0.5. This case was 
computed by taking N = 40 terms of the Chebyshev expansion 
(11) (see Tozzi [13] for details). 

Series (166) is summed using the Shanks transformation 
(Shanks [16]) on the partial sums. This procedure yields 
converged values of X for values of A over three times as large 
as the radius of convergence of series (16). For example the 
radius of convergence of the series (16) for the case given in 
Table 1 was experimentally determined to be about A = 0.12. 
However, accurate values of X for this case were obtained for 
values of A up to 0.44 by use of the Shanks trans-

Fig. 3 Relative change a of least stable wall mode versus A for R 
3000,0 = 5.8 

formation. All calculations for the time-dependent stability 
problem were made in this fashion. 

The complex growth (decay) rate was computed for the 
least stable center and wall modes for the cases R = 3000, 
0 = 5.8, and a number of values of a. These results are shown 
plotted as a function of A in Figs. 2 and 3. In these figures, Xr 

= Re(X) and Xar = Re(X0) are the decay rates; and a is the 
relative change of the decay rate, defined by 

\r - K 
(19) 

Figures 2 and 3 show that the relative changes in the decay 
rates are all extremely small so that the mean effect of 
oscillation is small. The oscillation tends to make the wall 
modes more stable and the center modes slighlty less stable. 
However, the overall effect is surprisingly small. Some large-
wave-number results (for a = 5 and 11) were included only 
because these have some relevance to the nonlinear stability 
studies of Davey and Nguyen [21]. Their nonlinear theory for 
the steady base flow predicts that disturbances with wave 
number a about equal to 10 will be nonlinearly unstable. Yet, 
the linear theory shows that these disturbances are almost 
completely unaffected by base flow oscillations. 

It is very significant that the imposed oscillation frequency 
fl is very small compared to the disturbance frequency co0 for 
all the disturbances examined in Figs. 2 and 3. For the cases 
0.4 < a < 1.0 the frequency r a t io /= w0/Q is in the range 20 to 
90. For the case a = 11, the value o f / i s over 150. Thus, the 
quasi-steady theory should be valid; and one would think 
that, for the extensive time in which the inflection ring 
criterion is satisfied, inequalities (6), this flow might become 
unstable. In this regard the instantaneous growth rate G, 
defined by 

G = 
1 tfllali 

dt 
(20) 

where Hall is the Euclidean norm of the Chebyshev expansion 
coefficients (14), was examined. Figures 4 and 5 show the 
variations of G over one oscillation cycle for the case 
R = 3000, 0 = 5.8, a = 0.5, and various values of A. These 
figures show that neither the first wall nor the first center 
mode ever becomes instantaneously unstable, even though in 
both cases the frequency r a t i o / i s large. For the wall mode 
/ = 23 and for the center mode /= 41. 

The graphs in Figs. 4 and 5 were computed both by the full 
time-dependent stability theory solution with equation (20) 
and by the quasi-steady approximation ( / - oo) in which 
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Gx10 3 

Fig. 4 Instantaneous growth rate versus time for least stable wall 
mode. R = 3000, /3 = 5.8 

G = Re[X0(70)) (21) 

where X0(/0) is computed by equation (18). As expected, the 
results of the two methods of calculation of G do not differ 
significantly (Tozzi [13]). 

Two features of the results of the calculation of the in­
stantaneous growth rate G are significant. The first and most 
important feature concerns the wall mode in Fig. 4. The wall 
mode is significantly affected by the instantaneous velocity 
profile shape. However, in spite of the inflection ring criterion 
(1), which is a necessary condition for the instability of steady 
inviscid flows, the instantaneous profiles are even more stable 
than the inflectionless steady-flow profile. Furthermore, the 
stability increases with increasing values of A. This behavior 
of the flow is in accord with experimental results of Gilbrech 
and Combs [5] and Sarpkaya [7] up to certain values of A. 

The second significant feature is displayed in Fig. 5 con­
cerning the center mode. The instantaneous growth rate G of 
the center mode simply varies proportionately to the in­
stantaneous Reynolds number because the central part of the 
instantaneous velocity profile retains its parabolic shape. 

At this point it has been shown that, based on the wall 
modes which are deemed most relevant, the enhancement of 
the stability of the oscillatory flow is in accord with the ex­
perimental result that oscillations do delay transition. In order 
to discern some quantitative relationship between this stability 
theory and experimental transition studies, the following 
interpretation is proposed. The threshold growth (or decay) 
rate y is defined by 

7 = Re[X-X0C) (22) 

where \oc is the steady flow complex growth rate for the given 
value of a and the value of Reynolds number Rc = 2200. 
Natural transition in normal steady pipe flow experiments 
usually occurs at this value of Reynolds number. 

Then, for fixed values of Reynolds number and oscillation 
amplitude, if y > 0, the oscillations are said to destabilize the 
flow. If 7 < 0, the oscillations are said to stabilize the flow. 
The value y = 0 is defined as the threshold of stabilization. 
For fixed values of a the graph of the locus of points for 
which 

7 ( * ,A )=0 (23) 

is determined. These critical values of R, denoted by R, are 
plotted versus A in Fig. 6. The value of the critical Reynolds 

-30 

-35-

" 

-40-

-

\ \ A = 

i i 

0.40 

\ /A=0.10 A 

\\-A=0.2pJ 

\\A = 0T7 
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' A=0 

i i i 

QL 

Fig. 5 Instantaneous growth rate versus time for least stable center 
mode. R = 3000,0 = 5.8 

R x 1 0 ' 3 

Ax10 
Fig. 6 Comparison of experimental results with locus of points for 
which Y(R, A) = 0. 0 = 5.8, a = 0.5. fiq is the always unstable quasi-
steady bound. 

number R is a measure of the stabilization of disturbances 
with respect to a level which prevails in the steady flow on the 
verge of transition to turbulence. These values of R are 
compared to Sarpkaya's critical values of Reynolds number 
for transition to turbulence in Fig. 6. The curve labeled Rg 

denotes the quai-steady always unstable definition of critical 
Reynolds number proposed by Davis [22]. Davis' definition 
of RQ is 

» . - - ( ^ ) (24) 

The value of R„ defines the value of A at which the smallest 
value of the instantaneous Reynolds number is equal to Rc = 
2200. The value of Rq is an upper bound of the values of the 
critical Reynolds number of transition for low frequency 
oscillations. 

Figure 6 compares the critical Reynolds numbers R?, R, 
and Sarpkaya's experimental results. It is evident that, 
although linear stability theory does correctly predict 
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qualitatively an initial enhancement of stability of the 
oscillatory base flow with increasing oscillation amplitude, it 
does not seem to contain anything of quantitative significance 
concerning the mechanics of transition. In particular, the 
sudden break and diminishing stabilization as oscillation 
amplitude is increased which is exhibited by the experiments is 
not at all reflected by linear stability theory. Sarpkaya [7] 
speculates that this break in transition behavior is associated 
with occurrences of momentary reverse flow in the Stokes 
layer and the duration of the inflectional period of the 
velocity profiles. But this is definitely not the case, at least for 
axisymmetric disturbances, as shown by Figs. 4 and 5. 
However, Sarpkaya's surmise may in fact be true on the basis 
of nonaxisymmetric disturbances which may be much more 
unstable. It is important to note that disturbances introduced 
into experimental flows are three-dimensional. 

5 Concluding Remarks 

This study has shown that low frequency oscillatory Hagen-
Poiseuille flow is slightly more stable to axisymmetric 
disturbances than the steady flow. More importantly, the 
highly inflectional instantaneous velocity profiles do not lead 
to instantaneous instability. Thus reasoning developed for 
steady flows must be applied with great caution to oscillatory 
flows. This lesson was learned earlier by von Kerczek and 
Davis [9] but on the basis of zero-mean oscillatory flows. 
Davis [22] argued that careful scale analysis must be per­
formed before attempting to apply the stability results for 
steady flows to unsteady flows. However, in this case, even a 
scaling argument would lead to erroneous conjectures con­
cerning the possible momentary instabilty of the flow. It is 
emphasized though that an instantaneous instability 
mechanism has not been completely precluded by the 
axisymmetric calculations presented here. There is evidence 
(Salwen and Grosch [1]) that nonaxisymmetric disturbances 
may play a much more important instability role in 
axisymmetric base flows. This problem ought to be in­
vestigated in the future. 
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A One-Dimensional Numerical 
Model of a Drop-On-Demand 
Ink Jet 
MacCormack's predictor-corrector algorithm is used to solve one-dimensional 
model equations of drop development from a drop-on-demand ink jet. The 
calculation is done in Lagrangian coordinates, and the results are compared with 
calculations reported in which an axisymmetric marker-and-cell algorithm is used. 
The comparison indicates that, although drop velocities differ in the two cases, 
good qualitative results can be obtained with the less complex one-dimensional 
approach. 

Introduction 

The drop-on-demand ink jet printer is emerging as an 
inexpensive device for the production of high-resolution 
computer-graphics hard copy. The controlled production of 
single ink drops is achieved through the action of a sudden 
pressure pulse produced by a piezoelectric device. In order to 
enhance our fundamental understanding of the drop-
development phenomenon, numerical solutions of the ap­
propriate conservation equations together with stroboscopic 
flow-visualization studies have been pursued. 

This paper proposes a one-dimensional model of the drop 
development based on a finite difference solution of the 
governing equations in Lagrangian coordinates. Although 
many studies of drop formation in continuous jets have been 
published (see the review of Bogy, 1979), the investigation of 
drop-on-demand jets has been limited to the semiempirical 
modeling of Kyser et al. (1981) and the axisymmetric Navier-
Stokes analysis of Fromm (1982). The one-dimensional model 
proposed here offers an alternative approach of lesser 
complexity than Fromm's and of higher accuracy than 
Kyser's. Since the fluid domain is surrounded by a free 
surface, the Lagrangian approach also offers a direct 
simultaneous way to solve the governing equations and to 
define the fluid geometry. It is expected that an approach 
based upon the Eulerian frame would be more cumbersome 
because of the necessity to update the coordinate grid after 
each time step. Such calculations are done either with marked 
particles (marker-and-cell) that define the free surface in an 
Eulerian frame or with moving grids (see Hirt, 1971). Fromm 
(1982, 1984) uses a vorticity-stream function formulation of 
the Navier-Stokes equations in axisymmetric form together 
with the marker-and-cell approach in his calculations. The 
accuracy of the one-dimensional approach will be established 
by comparing the results with Fromm's calculations'. 
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Fig. 1 Geometry of the liquid column emerging from an orifice 

Analysis 

Figure 1 shows a liquid column emerging without wetting 
from a nozzle to form a single drop. Following Lee's in­
vestigation of continuous jets (1974), one can develop a one-
dimensional model of the motion and geometry of the liquid 
jet from conservation of mass and Newton's second law of 
motion. Bogy (1979) and Bogy et al. (1980), however, obtain 
different results by incorporating radial-inertia effects 
through a one-dimensional Cosserat theory. According to the 
simpler model by Lee (1974), the radius R and velocity Fof an 
element of fluid in the column are governed by 

1 

R~2 

dR2 dV n 
— + — =0 
dt dz 

(1) 

dV 1 d 

dt p dz z (2) 

where azz is the total normal stress acting on the liquid 
element. Note that the time derivatives are expressed in 
Lagrangian form while the Eulerian form of the spatial 
derivatives is retained. 

The normal stress includes viscous as well as hydrostatic 
contributions and is influenced by surface tension. The 
pressure of the liquid is related to the surrounding air pressure 
through 

P=Pah + T (i+i) + 2/i 
dUr 

~dr 
(3) 
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Fig. 2 Principal radii of curvature of the liquid column 

•where RN and RT are the principal radii of curvature of the 
column as shown in Fig. 2 and are given by 

(4) R » = 4 + © 2 

-JNE)T 
Rr — 

d2R 

dz2 

According to equation (1) 

dR 
u'=Tt 

thus 

dUr 

IT ~ 

R dV 

~~ 2 Tz 

1 dV 

~ ~i Tz 
producing the total normal stress 

dV / i i \ dV / 1 1 \ 
dz \RN RTS 

dV 

Tz 

(5) 

(6) 

(7) 

(8) 
KN I \ T ' 

When fluid properties and air pressure are constant along the 
column, equation (2) can be written as 

*-7[-^(^ + ̂ ) + 3 " ^ J = 0 (9) 

Following Fromm (1982), one can cast (1) and (9) in non-
dimensional form using the characteristic velocity 

a 

pa 

where a is the radius of the orifice, to produce 

1 dR + 1 9K+ 
R- dt" dz' 

= 0 

dV+ 

~dF dz' \Ri, + Rf) 

We d2 V 

Re dz" 
= 0 

(10) 

(11) 

(12) 

In equation (12), the Weber to Reynolds number ratio, 
We/Re is ix/pV0a. 

The Eulerian form of equations (11) and (12) is a system of 
hyperbolic differential equations with the dynamic wavespeed 
dependent upon V0 and the radii of curvature of the drop. 
Thus it seems appropriate to use a numerical algorithm of the 
Lax-Wendroff type in order to obtain a numerical solution, 
and MacCormack's method (see e.g., Roache, 1982) was 
selected because of its superior performance and wide use in 
gas dynamic calculations. Also, the method is second-order 
accurate in both space and time. 

P/PVS 

100-

tV0/a 

- 1 0 0 -

Fig. 3 Drive pressure for Fromm's calculations and with Re/We = 5 

For the numerical analysis, (11) and (12) are expressed as 
the vector equation 

where 

and 

U 

dU + 

dt + 

"{ 
V+ 

1 1 

d¥+ 

1 dz+ 

\nR+2 

V+ 

T' 

- = 0 

} 

We 

Re 

"A 

dV+ 

dz+ 

(13) 

(14) 

(15) 

Then the solution of (13) is accomplished using Mac­
Cormack's algorithm (Roache, 1982) in the form 

F " - F " , 
U? = Uf-Ar-* 

zt -zt 

U" + 1 = (v" +ufM 
•AC 

Zi+ I ~ Z, ' 

(16) 

(17) 

where the superscript denotes the time step number, the 
subscript is associated with the ith element of the liquid 
column and F* is to be evaluated in terms of U*. The position 
coordinates of the elements zf > are held fixed until the 
calculation is completed for a given time step, then updated 
once new velocities are obtained using the trapezoidal ap­
proximation 

(V?-" + Vt"+,)At + 

Z] +n+l—v+n zf + • (18) 

The time step At+ for the integration of equations (15-17) is 
based upon the capillary wavespeed of the smallest resolvable 
wavelength, as proposed by Foote (1973). For the present 
case, this wavelength is twice the minimum distance between 
nodes, and the resulting velocity is 

cT = 17-+ — 7 + I 

so that the time step is determined from 

At' 1 

\zf -z?-i> 

(19) 

(20) 
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From equation (20), A/+ <0.0266 for lz,+ -zt-i I min =0-1-
Numerical experiments indicate that A/ + <0.01 is necessary 
for stability. 

As the calculation proceeds, elements of the column may 
spread or contract along the direction of motion and lead to 
nonuniform spacing. Spreading results in a loss of resolution 
of the radius and velocity, while contraction necessitates a 
diminishing time step to maintain stability. To avoid these 

problems, elements are added or deleted so that element 
spacing remains nearly uniform. When nodes are to be added, 
numerical inaccuracies in the radius calculation are avoided 
by using a cubic spline fit following Daly (1969). This 
procedure results in a tridiagonal system for the second 
derivative of the radius in the form 

( Z / - Z , - - , ) — + ( Z ; + i - Z ; _ i ) -

5.00 10.00 

Fromm's Calculation One-dimensional Model 
Fig. 4 Drop formation sequence for the drive pressure of Fig. 3 

<=o 1.00 5.00 10.00 15.00 0.00 5.00 10.00 15.00 

Fromm's Calculation One-dimensional Model 

Fig. 5 Continuation of Fig. 4 

^ 0=0 

c=C 
1.00 5.00 10.00 15.00 0.00 5.00 10.00 15.00 

Fromm's Calculation One-dimensional Model 

Fig. 6 Continuation of Fig. 4 

+ (z,+ i -z, ) 
r-r 
Zj — Zi-i 

(21) 
Zi+\ Z; 

where r" =d2R/dz2 and the following boundary conditions 
are used 

r" =0 at the orifice 
and r" = const at the head or tail of the drop. 

Once /•/'is obtained from equation (21), the radius of added 
nodes is calculated from 

r(z)=r,-_1 T^£)l+ r r . (z-Zi-t) 

+ 

6(z,-z ,_1) ' ' '6(z ;-£,-_,) 

(jpb-'^X'--) 
(^-*.^H(*-') (22) 
<-Zj-Zi-\ 6 

The regularity with which nodes are added to or subtracted 
from the fluid column varies during the course of drop 
formation and is dependent on the drive pressure shape. 
Typically, nodes are added once every ten time steps. 

Comparison With Axisymmetric Calculations 

Fromm (1982) uses an axisymmetric marker-and-cell 
algorithm to simulate drop formation from a nozzle with 
specified driving pressure. The calculation neglects the effect 
of orifice wetting, and the lack of drive-pressure data caused 
him to assume the distribution, with time, to be as shown in 
Fig. 3. The results of Fromm's calculation will be used to 
assess the accuracy of the one-dimensional approach. 

For the one-dimensional analysis, according to the ap­
proach just described, the necessary outflow boundary 
condition at the orifice exit is established from a linear 
analysis of the transient viscous flow within the nozzle. 
Taking the flow to be one dimensional, the local velocity is 
governed by 

du+ d ^ ^ 1 / 32wH 

dt" dz" 

with 
and 

Re V dr" + 
1 3wH 

dr"1 
(23) 

+ (r + ,0) = 0 (initial condition) 
M M + ) = 0 (no slip condition) 

(V+) 
Velocity 

Tip Velocity 

• Tip Velocity 
* Orifice Velocity 

Orifice Velocity 

» Drop Break-off at t+ = 2.77 

3 4 5 
Time(t+) 

Fig. 7 Tip velocity and orifice exit velocity for the drive pressure of 
Fig. 3 and Re/We = 5 
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Fig. 8 Drop profile for the drive pressure of Fig. 3 and Re/We = o° at 
i + = 1.03 
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Fig. 9 Drop profile for the drive pressure of Fig. 3 and Re/We = o° at 
t+ = 1.64 
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Fig. 10 Drop profile for the drive pressure of Fig. 3 and Re/We = <x> at 
t+ = 2.05 

f = 2.97 

I.00 10.00 12.00 14.00 16.00 18.00 20.00 

Z+ 

Fig. 11 Drop profile for the drive pressure of Fig. 3 and Re/We = oo at 
t+ = 2.97 

The solution of equation (23) for a step change in pressure 4 f'+ r ^ exp[-Xj (t+ - j + ) / R e ] " ) 
gradient is given in White (1974). This result can be =JT)0 4 P + ( * ) [ ! / ^ ^ 2 \ds+ 

generalized through the use of the superposition integral to ' " /25) 
obtain the centerline velocity and the spatially averaged 
velocity w h e r e 

u+(o,t+) 

and X„ represents the zeros of J0. Furthermore, the meniscus 
ds+ is assumed to be a frustrum of a sphere until its positive 

i -\Ji(An) J displacement becomes equal to the nozzle radius. Thus 

(24) 1 / 1 \ 
/ ? ^ = / ? f = y ( z + + ^ r j , f o r - K z + < l (26) 

A p + = P d
+

r i v e - ( ^ + ^ ) 

?£»MZ exp[-Xj ( / + - * + ) / R e ] ' 

"a+ve(^+ ) 

196/Vol. 53, MARCH 1986 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5.00 

= 4.52 

10.00 15.00 5.00 10.00 

Z+ 

Re/We = 5.0 Re/We = 2.5 
Fig. 12 Drop formation sequence for the drive pressure of Fig. 3 

Equations (24) and (26) are used to describe the positive and 
negative meniscus shape until the positive radius of the 
spherical cap meniscus becomes equal to the nozzle radius. At 
this point, the hemisphere is divided into ten elements and the 
integration of equations (16) and (18) commences with 
equation (25) providing the boundary conditions at the orifice 
exit. Additional elements are added at the nozzle exit when the 
node adjacent to the nozzle has displaced a distance equal to 
the initial node spacing (0.10 in this case). The leading and 
second nodes are assumed to move at the same velocity, and 
this proceudre is used for the trailing element of a drop once 
break-off occurs. Break-off is taken to be the first time step at 
which the local radius drops below 0.05a, as assumed by 
Fromm. 

The results of the one-dimensional calculation are shown in 
sequence along with Fromm's calculations for Re/We = 5 in 
Figs. 4-6. Shown is the geometry of the liquid column at 
several positions from the orifice. Comparison of the two 
results indicates that good agreement is obtained up to the 
point of break-off, although the one-dimensional model 
predicts break-off earlier than the full Navier-Stokes 
calculation. Beyond break-off, the one-dimensional results 
indicate higher velocities of the drop so that, by the end of the 
sequence, the head positions differ by about 40 percent. 
Events leading to satellite formation are also more rapid for 
the one-dimensional model. It seems that although the one-
dimensional model produces higher velocities than the full 
Navier-Stokes calculation, it does reveal the essential 
qualitative features of the main and satellite drops that are 
formed. The velocity at the tip of the liquid column and the 
average velocity at the orifice exit are plotted for this case in 
Fig. 7. 

Drop formation sequences for the inviscid case 
(Re/We = oo) and two viscous cases (Re/We = 2.5 and 5) are 
shown in Figs. 8-12. In the inviscid calculations (Figs. 8-11) 
and the two viscous cases (Fig. 12), only the coefficient of 
viscosity of the fluid was changed. Therefore, the comparison 
of these three cases illustrates the action of viscosity in 
retarding the liquid column. Also note that the numerical 

algorithm used in these calculations was developed for 
hyperbolic partial differential equations so that the procedure 
works well over the range of Re/We. 

Summary 

A one-dimensional model of the motion of a liquid jet has 
been used to simulate drop formation from a drop-on-
demand ink jet. The surface-tension effect results in a 
hyperbolic system of partial-differential equations, which has 
been solved numerically using MacCormack's predictor-
corrector algorithm. Results of calculations using the model 
compare qualitatively with calculations using the marker-and-
cell Navier-Stokes code by Fromm (1982). 
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The Effect of the Earth's Rotation 
on Channel Flow 
The influence that the rotation of the earth has on laminar channel flow is in­
vestigated theoretically. The full nonlinear Navier-Stokes equations relative to a 
reference frame rotating with the earth are solved numerically for laminar flow in a 
rectangular channel whose axis is aligned east-west: the orientation which yields the 
most drastic effect. It is demonstrated that for channels of moderate width (less 
than 1 ft for the flow of most liquids), the rotation of the earth can give rise to a roll 
instability which has a severe distortional effect on the classical parabolic velocity 
profile. Consequently, the usual assumption made of neglecting the effect of the 
earth's rotation in the calculation of channel flow can lead to serious errors unless 
the channel is substantially smaller than this size. It is briefly shown that similar ef­
fects would be expected for turbulent channel flow when the channel width is ap­
proximately an order of magnitude larger. 

1 Introduction 
Approximately thirty years ago, Benton [1956] conducted 

an interesting study which suggested that the rotation of the 
earth gives rise to a secondary motion in laminar pipe flow 
which could have a significant distortional effect on the usual 
parabolic velocity profile in pipes of moderate size (e.g., a 
pipe with a radius of 1 in.). This secondary flow, which causes 
a lateral transport of momentum, yields an asymmetric axial 
velocity profile in contrast to the classical parabolic velocity 
profile obtained for this viscous flow in an inertial framing. 
While it had been known by geophysicists that the rotation of 
the earth cannot be neglected in the study of fluid flow in 
estuaries, rivers, and oceans (cf, Pedlosky 1979), it was, never­
theless, quite surprising that it could have a non-negligible ef­
fect on a standard laboratory pipe flow of significantly smaller 
dimensions. Although it would appear that these results pro­
vided a strong motivation for examining the effect of the 
earth's rotation on other analogous laboratory flow con­
figurations, few studies, if any, along these lines have been 
subsequently reported. 

The purpose of the present paper is to examine the effect 
that the rotation of the earth has on the pressure-driven flow 
of a viscous fluid in a rectangular channel with a large aspect 
ratio-the experimental configuration used to simulate 
Poiseuille flow. Here, the axis of the channel will be aligned 
east-west with the side walls of the channel aligned parallel to 
the axis of rotation of the earth (the orientation that yields the 
most drastic effect from the earth's rotation). The full 
nonlinear Navier-Stokes equations relative to a reference 
frame rotating with the earth will be solved numerically by the 
same finite difference code that was developed by Speziale and 
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Fig. 1 Secondary flow in a laminar channel flow subjected to a span-
wise rotation 

Thangam [1983] for rotating channel flow (the present paper 
represents an application of that more general study). Pro­
vided that the channel is sufficiently small, the rotation of the 
earth merely gives rise to a weak double-vortex secondary flow 
(see Fig. 1), which has very little effect on the axial velocity 
profiles in the interior of the channel which are parabolic in a 
strong approximate sense. However, it will be shown that for 
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Fig. 2 Roll Instability In a laminar Poiseuille flow subjected to a span-
wise rotation 

channels of moderate size (i.e., for channel widths greater 
than a few inches), the rotation of the earth can give rise to a 
roll instability which has a severe distortional effect on the 
classical parabolic velocity profile by making it noticeably 
asymmetric. Consequently, for this case, the usual assumption 
made of neglecting the effect of the earth's rotation in the 
calculation of a laboratory channel flow can lead to serious er­
ror. This rather surprising result, which is analogous to that 
found by Benton [1956], will be validated by making com­
parisons with previously conducted stability analyses and ex­
perimental investigations on rotating channel flow (see Hart 
1971 and Lezius and Johnston 1976). Extensions of these 
results to the turbulent regime will also be discussed briefly 
along with the prospects for future research. 

2 Channel Flow in the Rotating Framework of the 
Earth 

The effect of the earth's rotation on the fully-developed 
laminar flow of an incompressible viscous fluid in a rec­
tangular channel with a large aspect ratio H/D (the ex­
perimental configuration used to simulate plane Poiseuille 
flow) will be considered as illustrated in Fig. 1. The flow is 
driven by a constant axial pressure gradient 

dP 
^ — = - G (1) 

dz 
and all flow properties are assumed to be independent of the 
axial coordinate z. For simplicity, the sides of the channel are 

' aligned parallel to the axis of rotation of the earth and the ax-
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Fig. 3 Stability boundaries for laminar channel flow subjected to a 
spanwise rotation 

ial flow is oriented east-west. This orientation gives rise to the 
most drastic effect since it constitutes a pure spanwise rota­
tion; axial rotations are of little consequence since, relative to 
an observer moving with the channel, they leave the flowfield 
unaffected. The velocity field V takes the form 

\ = u(x,y)i + v(x,y)j + w(x,y)k (2) 

(where w is the axial velocity and u and v are the secondary 
flow velocities) since for non-zero rotation rates 0 it no longer 
is possible to maintain a unidirectional flowfield (cf, Benton 
1956 and Hart 1971). Of course, in an inertial framework (i.e., 
for 0 = 0), the velocity field is of the unidirectional form 

V = w(x,.y)k. (3) 
The axial velocity profile w in (3) is, in a strong approximate 
sense, parabolic along the horizontal centerline y = H/2 of the 
channel, provided that H/D is large (it becomes exactly 
parabolic for plane Poiseuille flow which is approached as 
H/D— oo). The flow properties in the region of interest near 
the horizontal centerline of the channel depend weakly on 
H/D provided that this parameter is greater than 6 or 7. The 
equations of motion for rotating channel flow can be written 
in a modified vorticity-stream function formulation (see 
Speziale and Thangam 1983) which takes the dimensionless 
form 

dw dw 
u——+v-dx dy 

1 , 1 
= C+ V2w + u 

Re Ro 

u +v 
ax dy 

1 

"Re 
V 2 f+ 

1 dw 

Ro dy 

u = • 

v2^=r 

~dx~ 

(4) 

(5) 

(6) 

(7) 
dy 

where \p is the secondary flow stream function, 
£=dv/dx—du/dy is the axial vorticity, and the flow variables 
are nondimensionalized with respect to the integrated average 
axial velocity W0 and the channel width D. In equations (4) 
and (5), 

WJD _ W„ „ GD 
(o) Re = Ro = 

2QD' 
C = 

pWl 
are, respectively, the Reynolds number, Rossby number, and 
dimensionless pressure gradient where p is the density of the 
fluid and v is the kinematic viscosity. Equations (4)-(7) must 
be solved subject to the boundary conditions 

M = 0, v = 0, w = 0, i/- = 0 (9) 

on the walls of the channel. 
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Fig. 4 Fully-developed secondary flow streamlines in a laminar chan­
nel flow subjected to a spanwise rotation: Re = 485, Ro = 35.7 

The equations of motion (4)-(7) will be solved using the ex­
plicit finite difference code that was developed by Speziaie 
[1982] and Speziaie and Thangam [1983]. In this approach, 
the convective terms are formulated using Arakawa's scheme; 
the viscous diffusion terms are formulated using the DuFort-
Frankel scheme; and the Poisson equation for the stream 
function is solved using cyclic reduction. This explicit scheme, 
which is second-order accurate, has excellent numerical 
stability characteristics (see Speziaie 1982 for more details on 
this numerical method). Furthermore, unlike in the linear 
stability analyses presented by Hart [1971] and Lezius and 
Johnston [1976], it is possible to precisely determine the 
distortional effect that the secondary flow has on the axial 
velocity since the full nonlinear Navier-Stokes equations are 
solved. Numerical results will be presented in the next section 

8x1 Channel 

l u - ~ ^ _ ^ ^ fo r Ro=35.7 
^ ^ ^ . ^ ^ fo r 12=0 (Ro=co) 

" < T \ Re =485 

.=3_i—I—I I I—I I I I I I I 1 I I 1 I I I I I 

0 0-5 1.0 1-5 2 0 

W 
W0 

Fig. 5 Fully-developed axial velocity profile along the horizontal 
centerline of a channel subjected to a spanwise rotation: Re = 485, 
Ro = 35.7 

for several Reynolds numbers and Rossby numbers in the 
range 

100 < Re < 2000, 10<Ro<1000 (10) 

for which roll instabilities can occur. Calculations will be con­
ducted in a channel with an aspect ratio H/D = S, which is 
close in size to that used by Hart [1971] and Lezius and 
Johnston [1976] in their experimental studies.2 The channel 
will be discretized into a 16 x 128 finite difference mesh-the 
same mesh used by Speziaie and Thangam [1983]. 

3 Numerical Results 

Before presenting the specific numerical results obtained in 
this study, it would be advantageous to briefly review the 
nature of the results obtained in previous theoretical and ex­
perimental studies on rotating channel flow. The results of 
these previous studies (see Hart 1971, Lezius and Johnston 
1976, and Speziaie and Thangam 1983) indicated that there 
were three flow regimes in channel flow subjected to a span-
wise rotation: a weak double vortex secondary flow at slow 
rotation rates; a roll instability at intermediate rotation rates 
(see Fig. 2); and a restabilized Taylor-Proudman regime at 
rapid rotation rates. The critical disturbance mode for roll in­
stabilities occurs at a Reynolds number Re= 100 and a Rossby 
number Ro ~ 1 (no such instabilities will occur at significantly 
smaller Reynolds numbers). In Fig. 3, the stability boundaries 
for the onset of roll instabilities in rotating channel flow ob­
tained by Hart [1971], Lezius and Johnston [1976] and 
Speziaie and Thangam [1983] are shown in terms of the 
Reynolds number and rotation number (i.e., the dimensionless 
quantity 1/2 R„ ')• Since these results, which were obtained by 
completely different procedures, are in a close range of one 
another, there is strong reason to have confidence in them. It 
is clear from Fig. 3 that a roll instability can occur at relatively 
large Rossby numbers. For instance, at a Reynolds number 
Re = 400, a roll instability would occur for a Rossby number 
Ro = 50. Furthermore, it will be shown that for Re =1860, a 
roll instability can occur when Ro » 667 which is a rather large 
Rossby number (this result, whose validity would be expected 

The specific value of H/D~ 8 was chosen since it is a power of 2. In this 
fashion, a uniform mesh size in x and y could be used and the requirement of the 
cyclic reduction scheme that the number of subintervais be a power of 2 would 
be satisfied identically (see Speziaie [1982]). 
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8x1 Channel 

Re = 1860 
Ro= 667 

Fig. 6 Fully-developed secondary flow streamlines in a laminar chan­
nel flow subjected to a spanwise rotation: Re = 1860, Ro = 667 

by a simple extrapolation of the stability boundary given in 
Fig. 3, will be demonstrated numerically in the latter part of 
this section). It is thus quite clear that a roll instability can oc­
cur for Rossby numbers Ro> 100. For this range of Reynolds 
numbers, such a Rossby number can be induced by the rota­
tion of the earth for the flow of most common liquids (e.g., 
water) in a channel whose width D is less than 1 ft. 

Now, specific numerical calculations will be presented to 
clearly demonstrate that for Re > 100, there is sufficient inertia 
so that a roll instability which is induced by the rotation of the 
earth can have a significant distortional effect on the axial 
velocity profiles in the interior of the channel. The computed 
streamlines of the secondary flow for rotating channel flow 
are shown in Fig. 4 for Re = 485 and Ro = 35.7. It is clear that 
there is a roll instability at this particular Reynolds and Rossby 
number in agreement with previous studies (see Fig. 3). The 

for Ro=667 

for H = O ( R O = <=) 

Re= 1860 

Wo 
Fig. 7 Fully-developed axial velocity profile along the horizontal 
centerline of a channel subjected to a spanwise rotation: Re = 1860, 
Ro = 667 
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Fig. 8 Fully-developed mean axial velocity profile in a turbulent chan­
nel flow subjected to a spanwise rotation (after Lezius and Johnston 
1976) 

corresponding axial velocity profile along the horizontal 
centerline of the channel y = H/2 is shown in Fig. 5. It is ob­
vious from this graph that the secondary flow has a severe 
distortional effect on the axial velocity profile, making it 
asymmetric with the maximum velocity shifted toward the 
high-pressure side of the channel (i.e., the side of the channel 
which is farthest from the axis of rotation). From equation 
(8), it follows that 

£=(^~r <»> 
V2fiRo/ 

and hence, given that we are considering the earth's rotation 
for which 

Q = 7.292xl0^5rad/sec, (12) 

it is possible to explicitly calculate the width D of the channel 
corresponding to a particular choice of Re and Ro once the 
kinematic viscosity v of the fluid is specified. The following 
results are obtained (at room temperature) for this case of 
Re = 485 and Ro = 35.7: 

Z> = 46.3 in. (for air) 

£>=12.1 in. (for water) 

D= 3.84 in. (for mercury). 

It is thus clear that for most common liquids, the classical 
parabolic velocity profile obtained for laminar channel flow 
(if the effect of the earth's rotation is neglected) can be in 
serious error if the channel has a width greater than a few 
inches. 
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Now, the computed solution for a substantially higher 
Reynolds number will be presented for which the results are 
even more dramatic. In Fig. 6, the computer generated secon­
dary flow streamlines are shown for rotating channel flow at a 
Reynolds number Re =1860 and Rossby number Ro = 667. 
There is a roll instability present as would be expected on 
physical grounds from a simple extrapolation of the linear 
stability analyses presented in Fig. 3. This roll instability has a 
severe distortional effort on the axial velocity profile along the 
horizontal centerline of the channel which shows a dramatic 
departure from the classical parabolic profile as can be seen in 
Fig. 7. To be more specific, this axial velocity profile is highly 
asymmetric with the maximum velocity shifted toward the 
high pressure side of the channel. By utilizing equations 
(11)-(12), it is possible to calculate the width of the channel 
(for a given fluid) that corresponds to these flow parameters. 
For Re= 1860 and Ro = 667, we have the following results at 
room temperature: 

D = 20.99 in. (for air) 

D= 5.50 in. (for water) 

D= 1.74 in. (for mercury). 

These results are rather dramatic and surprising in that they 
indicate that the earth's rotation can induce a roll instability 
which has a severe distortional effect on the classical parabolic 
velocity profile in a laboratory channel flow with a 
characteristic width less than 2 in.3 

At this point, some comments should be made as to why the 
surprising and striking results presented above have not been 
observed in previously conducted laboratory experiments on 
channel flow. To begin with, a considerable number of such 
laboratory experiments have been conducted with air 
(Johnston 1984) in channels with a characteristic width D < 2 
in., so that the fluid velocity would not have to be extremely 
small to maintain laminar flow conditions. The results 
presented in this paper clearly demonstrate that this size chan­
nel is an order of magnitude smaller than that required for the 
earth's rotation to cause a roll instability and hence the effects 
shown in Fig. 5 and Fig. 7 would not have arisen. A roll in­
stability would not occur in a laminar channel flow with water 
if D< 5 in. (this value for D can be obtained by an extrapola­
tion of the stability results given in Fig. 3) which constitutes a 
channel width that is larger than those considered in previous­
ly published studies. Of course, in the absence of a roll in­
stability, the secondary flow that results from the earth's rota­
tion will be confined to a region which is far enough removed 
from the channel centerline (see Fig. 1) so that it will have a 
negligible effect on the axial velocity profile there. 

Finally, the extension of these results to the turbulent 
regime will be briefly discussed. The experiments on turbulent 
channel flow subjected to the spanwise rotation depicted in 
Fig. 1 indicate that a roll instability occurs at a Rossby number 
Ro = 22.7 for Reynolds numbers Re between 6000 and 35,000 
(see Johnston, Halleen, and Lezius 1972 and Lezius and 
Johnston 1976). These experiments indicated that this roll in­
stability can have a profound distortional effect on the usual 
symmetric and flat velocity profile observed in turbulent chan­
nel flow (see Fig. 8). By utilizing equations (11)—(12), it is a 
simple matter to show that the earth's rotation can cause 
distortions in the axial velocity profile similar to those shown 
in Fig. 8 for the following values of D: 

D> 17.03 ft. (for air) 

D> 4.46 ft. (for water) 

D>1.41 ft. (for mercury) 

This channel width D<2 in. corresponds to the flow of mercury and could 
have important ramifications in magnetohydrodynamic experiments (e.g., the 
Hartmann problem). 

at room temperature. These channel widths are approximately 
an order of magnitude larger than those for the corresponding 
laminar case. Hence, the earth's rotation would have a negligi­
ble effect on the overwhelming majority of turbulent channel 
flows which could be constructed in the laboratory. Never­
theless, it could play a role in certain special cases (e.g., a large 
and low speed wind tunnel or an unusually large cooling duct). 

4 Conclusion 

Results have been presented in this paper which clearly in­
dicate that the rotation of the earth can induce a roll instability 
in the laminar flow of fluids in channels of moderate width 
(i.e., for D substantially less than 1 ft for the flow of certain li­
quids). This roll instability was shown to have a severe distor­
tional effect on the axial velocity profiles at the horizontal 
centerline y = H/2 of the channel which are obtained when the 
effect of the earth's rotation is neglected. Hence, the usual 
assumption of neglecting the effect of the earth's rotation in 
the calculation of a laboratory channel flow in the laminar 
regime could lead to serious errors. This surprising result, 
which was documented by comparisons with previously con­
ducted stability analyses on rotating channel flow, is similar to 
that which was obtained by Benton [1956] several decades 
earlier. 

Future theoretical research is needed on the effect of the 
earth's rotation on turbulent channel flow. Such a study, 
which would be quite difficult because of the lack of reliable 
turbulence models for rotating flows, could be of considerable 
value. Since the results of this paper indicate that the rotation 
of the earth could play an important role in determining the 
structure of the turbulent flow of water in channels with a 
width D>5 ft, there could be some important applications in 
problems of interest to civil engineers. Future research which 
accounts for different orientations of the channel would also 
be of value. In this paper, the channel was aligned east-west 
(with the sides of the channel parallel to the axis of rotation of 
the earth) for simplicity since this is the orientation which 
yields the most drastic effect. A study along these lines, which 
would incorporate the effects of latitude and variable axial 
alignment of the channel, is highly detailed and beyond the 
scope of the present study. 

Considerable evidence has been presented which suggests 
that the rotation of the earth can play a non-negligible role in 
the calculation of certain standard laboratory flows. This 
rather surprising result, which seems to have gone unnoticed 
since the initial work of Benton [1956], warrants substantial 
future research from both a theoretical and experimental 
standpoint. 
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Introduction 

The Mechanisms of Determining 
Shock Locations in One and Two 
Dimensional Transonic Flows 
The mechanism that locates a shock wave in a transonic flow in one and two dimen­
sions is examined. It is found that in one dimension the shock is located by specify­
ing the downstream pressure whereas in two dimensions the shock is located by the 
application of an entropy condition at the sonic line. 

The discipline of computational fluid dynamics (CFD) has 
grown enormously over the last decade. Flows that are quite 
complex can now be computed routinely. One such type of 
flow is transonic flow with shock waves and it is one aspect of 
such a flow that is considered here. 

In spite of the progress of CFD some confusion regarding 
the nature of transonic flows is apparent, in particular the 
mechanism that fixes waves. The present note is concerned 
with the mechanisms that determine the shock wave location 
in computational solutions of the Euler equations in both one 
and two dimensions. It is found that shock locations are deter­
mined by entirely different means in each case so caution is ad­
vised in the use of one dimensional analysis in two dimen­
sional transonic flows. 

Analysis 

a One Dimensional Flow. For one dimensional nozzle 
flows the conservation of mass equation can be written as 

PUS = PaUaSa=A (1) 

where A is a constant and S is the area distribution. The densi­
ty is given in terms of the pressure by 

— -AS/Cn 

P=p"e P (2) 
where the reference values of p and p are assumed unity, AS is 
the entropy jump through a shock wave and Cp is the specific 
heat at constant pressure. 

From the usual density/velocity relation 

( 2 ~)l/2 

U=U°°\l rv^2-n -pT-^xpCAS/CJ] + 1 (3) 

Combining equations (1), (2), and (3) then gives 
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PUS = SU„p, r 2 r 
'l(y-l)Ml L 

7 - 1 

\-P 
•(y-l)Mi 

• e x p [ - A S ( 2 7 - l ) / c J + l ] p°> exp(- AS/Cp) = A (4) 

The only means of entropy production is the shock wave and 
hence AS is constant downstream of the shock. Thus if p is 
specified at the downstream boundary the conservation of 
mass equation gives the entropy and hence the shock strength. 
If the shock strength is known then the location can be found. 
If p and AS are known at the boundary then U, p can be found 
from equations (2) and (3). 

If equation (1) is differentiated with respect to x then 

dpU -A dS 
(5) dx S2 dx 

Ahead of the shock wave the flow is isentropic. For isentropic 
flow the density is given in terms of the Mach number M by 

- l 

P = pJl+2^V]~ (6) 

and 

U=aM- = «<,[ i+2zi^]" M 

where a subscript o denotes stagnation conditions. 
Combination of equations (1), (6), and (7) thus gives 

-(7+D 

aoPo{l+~-M2] 

Differentiation gives 

2(T-1) M=A/S 

aaPo [ l + 
7 - 1 

•M2, 

1-37 

2(7-1) l-M2 dM 

~dx" 

-A dS 

If2 dx~ 

(7) 

(8) 

(9) 

and hence equation (9) will give an infinite value of dM/dx at 
sonic conditions unless dS/dxis zero, that is, the sonic point is 
at the nozzle throat. Thus, the bounding of dM/dx in the flow 
outside the shock wave simply requires that the sonic point oc­
curs at the nozzle throat; it does not control the shock loca­
tion. In this paper the bounding of dM/dx is called the entropy 
condition for convenience since for an accelerating flow an in-
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finite value of dM/dx denotes an expansion shock which per­
mits a non-physical decrease in entropy. 

b Two Dimensional Flow. In potential theory a very effec­
tive way to examine the characteristics of the equation is to 
write it in integral form; a detailed discussion of this pro­
cedure is given in Nixon (1976). In the next section this pro­
cedure is performed for the Euler equations. Thin airfoil 
boundary conditions are assumed. The analysis given here is 
for nonlifting airfoils. 

Let a stream function ^ be defined as 

*y=pU,*x=-pV (10) 

Now let a perturbation stream function i/- be defined as 

•*=pa,U„y + \l, 

+y=pU-P„Um (11) 

+x=-pV 
The governing equation is 

U,-Vx = u (12) 

where oi is the vorticity; from Crocco's theorem it is a function 
of entropy. This equation can be rewritten as 

\ p / y V p ' x 

or 

V2+=pu+UPy-Vpx=f (14) 

The tangency boundary condition is 

tfx (x, ±0) = - Y's(x)p{x, ±0)Um (15) 

where y's{x, ±0) is the airfoil slope. On the wake 

^ ( x , ± 0 ) = 0 

This can be written in integral form using Green's identity 
to give 

+ = \CoiWR-KRMC„ 

+ J" (ATA*, -K„M,)dS + \s\KfdS 

(13) 

(16) 

where the kernel function K is the solution of the equation 

V2K = 5(R) 

and is given by 

K~ln[(x-H)2 + (y-V)2]l/2 

2-ir 

and A denotes a jump across the x axis; (£, ij) are coordinates 
in the x and y directions, respectively; the domain S is shown 
in Fig. 1. It is required that the first integral be bounded as R 
= oo which gives 

\1/R — 0 faster than — R R 

Note that the integral around the shock vanishes (Nixon, 
1976). 

For a symmetric airfoil the integral equation becomes 

Differentation of equation (17) with respect to y gives 

+y=pU-p„U„ = -^KvAM + lslKJdS 

or, integrating the first integral by parts to give 

PU-paUa=\l
oK^^ + \s\K/dS (18) 

The upper limit in the first integral is unity since Ai/'j = 0 
downstream of the airfoil. The first integral is known from the 
tangency boundary condition. The field integral can be in­
tegrated by parts to give 

y 

i i 

x,y 

A i r fo i l 

w^O 

Fig. 1 Domain of integration S 

l nx-i -F(%, + 0) 

- y2 + ( x - ^ 

H -3i 
Jx+i y2 + 

F(i, + 0)y 

y2 + (x-£)2 

r F(H,-0)y 

dZ 

L - y2-(x-Z)2 *}- ! . ! • KnFdS 

where 

If y ^ 0 the first part of equation (19) becomes 

_ l r ° ° [F(S,-0)-.F(S,+0)lv 
27TJ-CO yl+fr-tf * 

(19) 

(20) 

(21) 

which is zero for a symmetric F(£, ?/) 
If y — 0 the integral only has a value for £ close to x and 

hence 

1 

"27r" 
f \KJdS=-X\m lim lim 

x f -FQc + O^tan"1 (——) - t a n " 1 (-

+tan-,(A)_,an-1(J_)] 
y > 

+Hx,-o) tan (•f)]} 

LI KvyFdS (22) 

Taking the limits gives 

U\KyfdS=-\s[KvFdS (23) 

Hence for a symmetric airfoil 

pU-Pm Ua = \[K^^ - U\KvyFdS (24) 

This is the integral form of the two dimensional Euler equa­
tions. The right-hand side is continuous through a normal 
shock (Nixon, 1976). Although a much more detailed analysis 
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is given in the quoted reference it is easy to justify this state­
ment by noting that pU is continuous through a normal shock 
and hence the right-hand side of equation (24) must also be 
continuous. 

Consider now the case where x — oo in equation (24). Let 
the far field boundary condition be 

dF 
>0 as x-~oo 

dx 

Now 

and 

UKvFdS=-islKtxFdS 

\ \KixFdS =-\°°\KX\X ' +KX\°° F(x,v)}dV 

J 5 J J o L I -co \x+e. J 

(25) 

(26) 

(27) 
1 f " [ It "1 

-e2 + (y-?)): 

As e — 0 this integral only has a value when (y — r\) is small and 
hence 

•f [K(xFdS = 2F(x,y)\im lim - i - t a n " 1 -
Js J s-o £-o 2ir 

— v \y+b 

(28) 
= -F{x,y) 

Since the line integral in equation (24) approaches zero as x -» 
oo, equation (24) becomes, as x — oo, 

P J 7 - P . I / . =F(x,y) = y<j>u-PriU-pxV)d7, (29) 

when equation (14) is used. 
Now if the boundary condition as x — oo is that all x 

derivatives are zero, then equation (29) becomes 

pU-Po>U:x,=y(po> + priU)dr, (30) 

Where a> is specified by the entropy production at the shock 
and Crocco's theorem. 

Differentiation of equation (30) gives 

pUy=po (31) 

and co is a function of entropy. Equation (31) is valid for any 
shock strength. 

If the pressure is specified at the downstream boundary and 
the reference values of p, p are assumed to be unity then 

I 

P=p •* exp(-AS/Cp) (32) 
Using the above relation the energy equation can be written as 

-1—p •> exp(AS/Cp) + --U2=^T + -Ul (33) 
y—1 2 7 - 1 2 

Note that since the flow is nonlifting V is assumed to be zero 
as x -* 00, Differentiation with respect to y at constant 
pressure gives 

U>=-Tii 
y-\ 

exp(AS/C„)-
dAS 

where R is the gas constant. 
From Crocco's theorem the vorticity is given by 

1 pi~l dAS 
01= — exp(AS/C„) 

R U *K "' dy 

and hence if the pressure is specified downstream then equa­
tion (31) is consistent. If a similar analysis is performed with 
the density fixed downstream then 

(35) 

7 P 7 - 1 
uy=~j-JJ exp(AS/C„) 

dAS 

~dy~ 

which is not consistent with the result of equation (31). Conse­
quently if a zero gradient boundary condition is imposed the 
pressure must be specified. 

It can be seen from the above analysis that the boundary 
condition for a specified downstream pressure is satisfied by 
any shock strength or entropy and, hence, the shock strength 
is not fixed by the downstream conditions. An alternative pro­
cedure must therefore be found. 

The integral formulation of the two-dimensional Euler 
equations, given by equation (24) can be written as 

pU-pmUai=G (37) 

where G is the right-hand side of the integral equation and is 
continuous except across an oblique shock; G can be thought 
of as the change in area of the streamlines. It has been noted 
earlier, in connection with equation (24) that G is continuous 
through a normal shock since pU is continuous there. If, 
however, the shock is oblique, pU (and hence G) is discon­
tinuous. Ahead of the shock the flow is isentropic and hence, 
if freestream values of p and p are unity, 

7+1 

pU=yp 2 M (38) 

where Mis the local Mach number. This can be written using 
the isentropic density relation as 

- ( 7 + D 7+ 1 

pU=,Fj[(l+l--Ap) 2 ( l f-1 ) M]P~2 =G + POOU„ (39) 

Differentiation with respect to x gives 

dG 

dx 
(40) 

Hence, if M — 1, dM/dx is infinite unless 

limit — >0 (41) 
M~\ OX 

At an accelerating sonic point dM/dx — 00 implies that an 
expansion shock would exist unless the condition of equation 
(41) is satisfied. Such an expansion shock would give rise to a 
physically unacceptable entropy decrease. In addition, at the 
sonic line 

- ( 7 + D 

' 7 + l N 
G = «m 2 ( 7 - 0 

Po 

7+ 1 

2 
~PooUa 

(42) 

The physical implication of equations (41) and (42) is that ex­
pansion shocks must be eliminated from the solution, that is, 
no entropy decrease is allowed at the sonic line. There is only 
one choice to alter G and that is the shock location. Hence 
equations (41) and (42) give the shock location; the second 
unknown is the sonic line location. 

(34) Conclusions 

An analysis to determine the mechanism to locate shock 
waves in transonic flow has been performed. It is found that 
the mechanism for locating the shock wave in two dimensions 
is different from that in one dimension. In two dimensions the 
shock location is fixed by the behavior at the sonic line 
whereas in one dimension it is fixed by the downstream boun­
dary conditions. 
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The Response of Elastic and 
Visooelastic Surfaces to a 
Turbulent Boundary Layer 
The unstable response of elastic and viscoelastic surfaces to a turbulent boundary 
layer was experimentally investigated in an 18-m towing tank. The compliant 
surface deformation was measured using a remote optical technique. The "Laser 
Displacement Gauge" employs a Reticon camera equipped with a linear array of 
256 photodiodes spaced 25 microns apart. The device was used to measure the 
characteristics of two classes of hydroelastic instability waves that form on elastic 
or viscoelastic surfaces as a reuslt of the interaction with a turbulent boundary 
layer. The instability waves developing on an elastic surface are symmetric and have 
a relatively high phase speed and a small wavelength, as compared to the slow and 
highly nonlinear "static-divergence" waves observed on the viscoelastic surface. 
The experimentally determined wave characteristics are compared to existing 
theories on compliant surf ace instabilities. 

1 Introduction 
The motion of a fluid over a surface that complies to the 

flow offers the potential for a rich variety of fluid/surface 
interactions. Compliant surfaces are currently finding many 
engineering applications, such as sound absorption in aero­
engines, vibration reduction in Naval vessels, and noise 
shielding in sonar arrays. Moreover, intensive research is 
currently being conducted to find compliant surfaces that will 
reduce the skin-friction drag on moving vehicles. 

The design of a compliant coating to achieve a particular 
objective is a complex task requiring the determination of the 
surface response to a specific flow disturbance. This response 
is excited by the hydrodynamic forces and results in a surface 
motion that in turn acts on the flow field near the interface. 
Waves that form on the compliant surface can be stable, 
unstable, or neutral. 

There exists a need for the development of reliable 
techniques to measure the compliant surface response under a 
variety of flow conditions. Bushnell, Hefner and Ash (1977), 
in their excellent review article, state that "extensive wall 
motion measurements must be made before any theoretical 
approach to the problem can be reasonably validated." The 
device needed to measure the surface deformation should be 
accurate, have a fast response, and not interfere with the 
observed phenomenon. Very few such devices exist today. 
Grosskreutz (1971) used a schlieren apparatus to measure the 
motion of a homogeneous but nonisotropic compliant surface 
made of rubber and subjected to a turbulent boundary layer in. 
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a water tunnel. He computed the frequency and the 
wavenumber dependence of the flexibility of the compliant 
wall using the third-octave-spectra of the surface motion. Ash 
et al. (1975) used a similar schlieren method to provide flash 
photos of a compliant surface deformation in a wind tunnel. 
Dinkelacker et al. (1977) placed a 97-mm pressure transducer 
containing several hundred membranes under a turbulent 
boundary layer. The device served as the mirror' in a 
Michelson interferometer. High-speed photographs of the 
fringe patterns in the interferometer were used to compute the 
dimensions and the speed of converted turbulent pressure 
fluctuations. More recently, Rathsam et al. (1983) measured 
the "pre-instability," microscopic surface motion on a PVC 
plastisol in a turbulent boundary layer. Their laser/optics 
system sensed the instantaneous slope and the frequency of 
motion on the compliant surface where a focused laser beam 
was reflected. This device is incapable of directly measuring 
the amplitude of the surface motion. However, Rathsam et al. 
(1983) inferred the amplitude from the measured slope spectra 
by assuming a dispersion relation for the compliant surface 
response. 

Unstable, flow-induced deformations have been observed 
experimentally on viscoelastic surfaces (Hansen et al., 1980a; 
Gad-el-Hak et al., 1984). No corresponding experimental data 
are available for the hydroelastic instability that is 
theoretically predicted to exist on an elastic surface (Ben­
jamin, 1963). 

In the present investigation, a remote optical technique was 
used to measure the flow-induced motion of a compliant 
surface. The technique is particularly suited for studying the 
two classes of hydroelastic instability waves that are 
theoretically predicted to form on an elastic or a viscoelastic 
surface as a result of the interaction with a turbulent bound­
ary layer. The wave's amplitude, wavelength and phase speed 
are directly measured with this linear device. Our experiment 
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Fig. 1 Setup for the Reticon camera 

using viscoelastic coatings have been reported by Gad-el-Hak 
et al. (1984). Here, we present new results using elastic 
coatings. The two publications provide a data base against 
which existing theories on the stability of both kinds of 
surfaces can be validated. 

2 Experimental Equipment and Procedure 

2.1 The Laser Displacement Gauge. The laser displace­
ment gauge (LDG) is a remote optical device used in the 
present investigation to measure the vertical displacement of 
the compliant surface. The technique was originally 
developed by Liu et al. (1982) and Liu and Lin (1982) for 
measuring wind waves. Its first use in measuring compliant 
surface deformation was reported by Gad-el-Hak et al. (1982; 
1984). A schematic of the setup is shown in Fig. 1. The system 
employs a Reticon camera (Model LC 600V) driven by a 
controller (Reticon Corporation, Model RS605). An optical 
interface is created at the surface of the compliant material, 
which contains minute amounts of Rhodamine-6G 
fluorescent dye,1 by projecting a vertical beam of a 5-watt 
argon-ion laser (Spectra Physics, Model 164-05) having a 
diameter of 1 mm. The displacement of this optical interface 
is measured by electronically scanning the photodiode array 
housed in the Reticon camera. 

The axis of the photodiode array is aligned at a given angle 
with respect to the vertical laser beam above the 
fluid/compliant coating interface. The optical interface is 
imaged onto the photodiode array via a set of lenses and 
extension tubes. The linear photodiode array is composed of 
256 elements spaced 25 /tun apart. The aperture width of the 
array is also 25 /mi. The spatial resolution, which is the same 
in both the vertical and longitudinal directions, depends on 
the field of view. For example, the spatial resolution is 0.01 
cm for a field of view of 2.5 cm. In this case, the horizontal 
spatial resolution is only about one-tenth the diameter of the 
laser beam. The scanning rate of the array ranges from 0.4 to 
40 ms. The LDG is a digital device with practically no elec­
tronic drift. The digital output from the controller is a time 
series of integers from 1 to 256 updated at a frequency of the 
scanning rate. Each integer corresponds to the nth photodiode 
on which the optical interface is imaged during each scan. The 

About 0.05 percent by weight. 

digital output is recorded and analyzed on-line with a NOVA 
minicomputer system. 

Calibration of the LDG is made by displacing the Reticon 
camera, which is fixed on an accurate traverse mechanism, to 
several vertical positions with predetermined increments. A 
second-degree polynomial is best-fitted through the 
calibration points to account for nonlinearity resulting from 
the aberration of the optical lenses. The ratio of the coef­
ficients of the nonlinear and linear terms was typically 10~4. 
For practical purposes, the displacements may be considered 
to be linearly proportional to the LDG output. 

The Reticon camera is mounted so that it looks down onto 
the compliant surface at a nearly horizontal angle (about 15 
deg above horizontal). This arrangement minimizes blockage 
of the optical interface by the wave crests between the laser 
beam and the tank wall on the side where the camera is 
mounted. This blockage occurs most often near the troughs of 
the waves, where the wave profiles are relatively smooth. 
Whenever a blockage occurs, the photodiode array loses its 
object (i.e., the optical interface) and the maximum diode 
number of 256 is registered by the controller. Therefore, 
either a sharp jump or a sharp spike, depending on the 
duration of the blockage, appears on the measured wave 
profiles. To remove the sharp jumps or spikes, the computer 
was programmed to replace them with a straight line that 
connects the points before and after each jump or spike. 

In the present experiment, the laser displacement gauge was 
set to have a frequency response of 1 kHz and to resolve 
vertical displacements as low as 0.002 cm.2 The surface 
deformations were also recorded using a 16-mm movie 
camera moving with the plate. For the elastic surface, the 
camera was mounted to the side to capture a side view of the 
instability waves. For the viscoelastic surface, a top view was 
more suitable for observing the instabilities developing on 
such a surface. 

2.2 Flow Facility. The Flow Research 18-m towing tank 
was used in the present experiments. The 1.2-m-wide, 0.9-m-
deep water channel has been described by Gad-el-Hak et al. 
(1981). To generate a turbulent boundary layer, a flat plate is 
rigidly mounted under a carriage that rides on two tracks 
mounted on top of the towing tank. During towing, the 
carriage is supported by an oil film to ensure a vibrationless 
tow, having an equivalent freestream turbulence of about 0.1 
percent. The carriage is towed by two cables driven through a 
reduction gear by a 1.5 hp Boston Ratiotrol motor. The 
towing speed is regulated within an accuracy of 0.1 percent. 
For the present study, the system was able to achieve towing 
speeds between 20 and 140 cm/s. 

The flat plate used in the present experiment had an 
aluminum frame that provided a flat bed for the Plexiglas 
working surface. The gaps in the aluminum frame were filled 
with lightweight styrofoam, and the frame was painted with 
marine enamel to prevent corrosion. The whole structure was 
buoyant in water and was flat to within 0.2 mm. Care was 
taken to avoid leading-edge separation and premature 
transition ^y having an elliptic leading edge and an adjustable 
lifting flap at the trailing edge. The flap was adjusted so that 
the stagnation line near the leading edge was located on the 
working surface, which was smooth and was 210 cm long by 
106 cm wide. A 45 cm by 95 cm well was built into the 
working surface for placing compliant materials of up to 1 cm 
in thickness. 

Trips were used to generate a fully-developed turbulent 
boundary layer. The trips were brass cylinders with 0.32-cm 
diameters and 0.25-cm heights placed 20 cm behind the 
leading edge and having their axes perpendicular to the flat 
plate. During towing, the plate and the movie camera moved 

The field of view is then about 0.5 cm. 
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then the stress was suddenly released. The value of the sub­
sequent strain was observd using the LVDT and a Nicolet
digital oscilloscope (Model 4094). The observed time history
indicated that the plastisol could be modeled as a viscoelastic
solid of the generalized Kelvin type (Jaeger and Cook, 1976).
The time constant of the plastisol decreased as the percentage
of PVC in the mix increased. For the three-percent plastisol,
the relaxation time was about 1 second, indicating a relatively
strong damping. Since the mechanical properties of the
material change considerably during gelling, the compliant
surface and the sample were allowed to sit in air for 16 hours
before testing and using in the tank. Typically, a coating was
used for eight hours before a new one was formed for the next
series of tests.

FtOWIRELATIVE
rOPUTE)

The slowest traveling free wave speed on the surface of
either an elastic or a viscoelastic solid is given approximately
by the transverse wave speed Ct =.JGIPs where G is the shear
modulus of rigidity3 and Ps is the density of the solid, which
was very close to that of water for all the coatings used in the
present investigation. Whenever the freestream velocity, U00'
becomes sufficiently large compared to Co unstable waves
appear on the solid surface. The onset speed of the two classes
of hydroelastic instability was determined from the Reticon
camera records and from visual observation of the elastic and
viscoelastic surfaces. The results for different moduli of
rigidity and different thicknesses are shown in Fig. 3. For a
particular coating thickness, the onset of instabilities on the

Fig. 4 Instability waves on the elastic surface Uoo = 70 cmls,
UooJ Glps=1.8,d=1.05cm

3"Fc,r an elastic solid, the shear modulus is real, whereas for a viscoelastic
solid it is complex and frequency-dependent; the real part is the shear storage
modulus G and the imaginary part is the shear loss modulus G' .

••

Fig.2 Side view of the flat plate with the compliant coating insert

at a speed U00' while the Reticon camera and the vertical laser
beam were fixed in space.

2.3 Compliant Material. A nearly ideal elastic compliant
surface and an incompressible viscoelastic one were used in
the present investigation. The elastic coating was made of
commercially available Knox gelatin. The gelatin powder was
dispersed in boiling water, followed by the addition of an
equal amount of water at room-temperature. The con­
centration of the gelatin was varied in the range of 1 to 6 parts
of weight of gelatin per 100 parts of water. The mixture was
poured into the well in the flat plate and allowed to gel for 16
hours before using for a maximum of eight hours, then a new
coating was formed for the next series of runs. Care was taken
to ensure that the compliant surface was smooth and flush
with the rest of the Plexiglas working surface. Figure 2 is a
side view of the flat plate containing the compliant surface
submersed in the water tank.

Whenever a new coating was poured, a 0.6 cm x 10 cm x
10 cm sample was produced from the same mixture to
measure the modulus of rigidity, G. The shear modulus of
rigidity was measured with an automated strain gauge/LVDT
device that subjected the sample to a prescribed shear force
and then measured the displacement. The force-versus­
displacement curve was always linear in spite of the fact that
displacements as high as 50 percent of the thickness were
used. The modulus value was quite sensitive to small dif­
ferences in the mixing process and ranged in value from 400
dyne/cm2 at the lowest concentration used to 25,000
dyne/cm2 at the highest concentration.

The viscoelastic coating used in the present investigation
was a plastisol gel made by heating to 160°C a mixture of
polyvinyl chloride resin (PVC), dioctyl-phthalate (plasticizer),
and dibutyl tin maleate (stabilizer). The mixture was poured
in a heated aluminum pan and allowed to cool gradually to
complete the gelation process. The pan was then placed inside
the well in the working surface of the flat plate, and its height
was adjusted from the bottom to ensure a flush, smooth
surface. Unlike the gelatin, the PVC plastisol solidified rather
quickly, particularly when the percentage of PVC in the mix
was increased.

Several recent studies have used similar PVC plastisols to
study their interactions with laminar and turbulent flows
[Hansen and Hunston (1974a; 1974b; 1976; 1983), Hansen et
al. (1980a; 1980b); Hoyt (1981)]. In the present experiments, .
the modulus of rigidity of the PVC plastisol was varied in the
range of 50 to 125,000 dyne/cm 2 by changing the percentage
of PVC from 3 to 25 percent in the mixture. The stabilizer was
always 10 percent of the PVC by weight. To check the
viscoelasticity of the plastisol, a dynamic test was conducted
on a sample using the strain gauge/LVDT device. A shear
stress was applied until the system came into equilibrium, and
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Fig. 6(a) Dimensional plots 

viscoelastic coating is generally observed at higher ratios of 
the onset speed to the transverse wave speed than for the 
elastic coating. For both coatings, Uomet/c, decreases as the 
thickness, d, increases. In other words, thick surfaces are 
more susceptible to hydroelastic instability than thin ones. 

To visualize the instability waves on the elastic surface, a 
vertical sheet of laser light parallel to the towing direction was 
projected onto the flat plate. The laser excited the fluorescent 
dye mixed with the gelatin, and a bright, horizontal line 
formed at the undisturbed compliant/fluid interface. When a 
wave is propagated on the elastic surface, the bright line 
deformed correspondingly. A 16-mm movie camera, outside 
the tank but moving with the flat plate, recorded the motion 
of the bright line, as shown in the side view depicted in Fig. 4. 
A sketch of the undisturbed compliant slab is included in the 
figure for reference. In this run, the towing speed was Um = 70 
cm/s, the modulus of rigidity was G=1571 dyne/cm2, and 
the coating thickness was d= 1.05 cm. The highly asymmetric 
waves forming on the viscoelastic surface were more readily 
visualized from the top, using conventional flood lights for 
illumination (Fig. 5 of Gad-el-Hak et al., 1984). 

Typical examples of the instability waves on the elastic and 
the viscoelastic coatings, as recorded by the Reticon camera, 
are shown in Fig. 5. Both coatings have a thickness of d=0.32 
cm, and the freestream speed was U„ = 80 cm/s. The modulus 
of rigidity for the elastic coating was G = 740 dyne/cm2 and 
for the viscoelastic coating, G = 50 dyne/cm2. A well-defined 
average wavelength and amplitude are apparent. The elastic 
waves have smaller wavelength and amplitude as compared to 
the waves excited on the viscoelastic surface. The peaks of the 
waves on the viscoelastic coating are sharp and the valleys are 
shallow and broad, while the elastic waves are more or less 
symmetric. The waveform on the viscoelastic surface appears 
to be nonsinusoidal, with higher harmonics phase-locked with 
the fundamental wave. 

In the viscoelastic coating case, small-amplitude waves 
always grew very rapidly to large amplitude waves; con­
sequently, a wave train of small amplitude could never be 
recorded. With the elastic coating at low flow velocities, 
small-amplitude waves existed. The growth mechanism for 
the two kinds of instabilities appears to be different. 

The average wavelength was measured from the cine films. 
By averaging over several frames, the statistical scatter of this 
random phenomenon was reduced to a standard deviation of 
less than 20 percent. For both the elastic surface and the 
viscoelastic surface, the wavelength has a strong dependence 
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Fig. 6 Wavelength dependence on thickness and flow speed 

upon the depth of the coating and upon the flow speed. The 
results for the viscoelastic surface were reported by Gad-el-
Hak et al. (1982; 1984). Here, we primarily present the results 
for the elastic surface. Figure 6(a) is a dimensional plot of the 
wavelength for five gelatin coatings. The elastic waves have 
about half the wavelength of that of the viscoelastic waves for 
comparable moduli and thicknesses, indicative of the two 
different types of instability. The wavelength increases as the 
flow speed and the coating thickness increase for both 
coatings. However, a maximum wavelength is observed for 
each of the five viscoelastic coatings (see Fig. 13 of Gad-el-
Hak et al., 1984). The flow speed at which this maximum is 
observed coincided with the appearance of a three-
dimensional wave structure superimposed on the normally 
two-dimensional viscoelastic waves. As the velocity continued 
to increase, small irregularities along the wave crests seemed 
to spawn new crescent-shaped waves downstream. As these 
additional waves appeared over the viscoelastic surface, the 
average wavelength decreased. No similar phenomenon was 
observed for the elastic coating at the speeds achieved in the 
present experiments. 

The data of Fig. 6(a) are normalized with the thickness, d, 
and the transverse wave speed, c,, and are replotted in Fig. 
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Fig. 7 Wave-amplitude dependence on thickness and flow speed 

6(b). Scaling the wavelength with the thickness reduces the 
range of the elastic coating data but does not appear to 
collapse the data, suggesting that another length scale may be 
relevant to the problem. For the viscoelastic coatings, the data 
collapse reasonably well for the two-dimensional waves, while 
the three-dimensional wave data do not collapse (Fig. 12 of 
Gad-el-Haketal.,1984). 

The average peak-to-trough amplitude, 2A, was computed 
from the Reticon camera's output. The results are shown in 
Figs. 7(a) and 1(b) for the elastic coating's dimensional and 
normalized data, respectively. The peak-to-trough amplitude 
for the waves on both the elastic and viscoelastic surfaces 
increases monotonically with both the thickness and the flow 
speed. The elastic wave data do not collapse when the am­
plitude is normalized with the coating thickness, while the 
viscoelastic waves do scale with the thickness indicating, 
perhaps, that the maximum amplitude is limited by the 
thickness (Fig. 15 of Gad-el-Hak et al., 1984). However, 
confidence in the latter result should be tempered by the 
limited amount of data in the figure. 

As mentioned before, very few small-amplitude waves were 
ever observed on the viscoelastic coating. No measurable 
surface deformation was observed as long as the velocity was 
below the onset speed; immediately above the threshold 
velocity, waves with amplitudes of typically 2A/d=0.5 ap­
peared. With the elastic coating at velocities near onset, small-
amplitude waves existed. The growth rate for the two waves is 
evidently different. 

One of the greatest differences between waves on the elastic 
and the viscoelastic coatings is the phase speed. The phase 
speed, cp, was determined from the record of the Reticon and 
the movie cameras using the relation: 

X = / W , -cp), 

where X is the wavelength measured from the cine' films, P is 
the period measured from the Reticon camera's record, and 
{/„ is the flow speed. As shown in Fig. 8, the phase speed for 
the elastic waves is between 25 and 50 percent of U„. As 
noted by the error bars, there is some uncertainty in the data. 
Nevertheless, it appears that the phase speed for elastic waves 
is a constant percentage of [/„, independent of U^/c,. On the 
other hand, the viscoelastic waves have an extremely low 
phase speed compared to other characteristic velocities in the 
fluid. The maximum value of c„ for these waves was five 
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percent of <7„ (Fig. 14 of Gad-el-Hak et al., 1984). For the 
waves on the viscoelastic surface, the phase speed increases as 
the flow speed or the thickness increases. The dependence on 
flow speed for . these coatings appears to be given ap­
proximately by a power law: 

c ~U2-6 

4 Discussion 

A solid in a vacuum can sustain free surface waves that may 
be modeled as a linear combination of waves having 
displacements perpendicular to or parallel to the propagation 
direction. These are called transverse and longitudinal 
displacement waves, respectively. For a linear-elastic solid, 
the propagation velocity of the transverse waves is c, = 
^lG/ps, and that of the longitudinal waves is ct = V(A + 2G)/ps, 
where G and X are elastic constants and ps is the density of the 
solid. For a nearly-incompressible solid, X> > G and C/-»e». 
The free surface wave dispersion relationship for a finite 
thickness solid has been reported by Gad-el-Hak et al. (1984). 

To determine the effects of the fluid motion on the com­
pliant surface, the analysis should be extended to include the 
surface stresses induced by the fluid moving over the com­
pliant coating. Some general aspects of this case have been 
addressed by, among others, Benjamin (1960; 1963), Landahl 
(1962), and Kaplan (1964). Benjamin and Landahl have 
conducted stability analyses and have established that three 
types of instability waves may exist. The first type, labeled 
Class A, is a wave that is destabilized by the addition of 
dissipation or damping in the system. Duncan et al. (1982) 
have suggested that pressure phase lags transfer energy from 
the flow to the interfacial wave system, thus stabilizing these 
waves. Static-divergence waves, commonly observed on 
viscoelastic surfaces excited with a turbulent boundary layer 
of sufficient strength, appear to be members of this class. The 
second type, Class B waves, is stabilized by damping and 
destabilized by pressure effects, as for example in the case of 
wind waves. The third type, Class C, corresponds to a Kelvin-
Helmholtz type of instability, where the waves grow or decay 
primarily through reversible processes. Kaplan (1964) has 
computed solutions for specific cases. 

Experimentally, conditions have been identified in which 
flow-induced deformations occur on a viscoelastic surface. 
Boggs and Hahn (1962) were probably the first to point to the 
existence of a large-amplitude, spanwise wave structure on a 
compliant surface/fluid interface due to the fluid motion. 
These "static-divergence" waves (Class A instability) ap­
peared after the freestream speed exceeded an onset velocity 
threshold. The term "static divergence" is derived from the 
analogous static instabilities that precede flutter on a flat plate 
exposed to a high-speed flow (Weaver and Unny, 1970; 1973). 
In a series of experiments, Hansen & Hunston (1974a; 1974b; 
1976; 1983) and Hansen et al. (1980a; 1980b) established 
several quantitative characteristics of the static-divergence 
waves, such as the conditions for their initiation, their 
propagation speed and their influence on hydrodynamic drag. 
Gad-el-Hak et al. (1982; 1984) presented definitive data on the 
instabilities of a viscoelastic coating. 

No corresponding experimental data are available for Class 
B instabilities. It is anticipated from the theoretical work of 
Benjamin (1963) and others that these instabilities may appear 
on compliant surfaces having little or no damping. Hence, the 
use of elastic coatings in the present investigation was in­
tended to provide a data base for existing theories on the 
stability of elastic coatings. 

The complexity of the problem of fluid/solid interaction 
necessitates several restrictive assumptions in formulating a 
theory. Assuming that the surface stress of primary im­
portance due to the fluid is pressure, the effect of the fluid 

motion on the compliant surface can be simply modeled by 
considering the basic flow over the coating as inviscid and 
unsheared, and, hence, using potential flow theory to 
determine the surface pressure in terms of the surface 
displacement. Duncan et al. (1985) have recently explored the 
dispersion relation for a one-layer, viscoelastic solid. Duncan 
and Hsu (1984) extended the one-layer analysis to determine 
the response of a two-layer coating to pressure disturbances 
from a turbulent boundary layer. The model of Duncan et al. 
(1985) couples a homogeneous, isotropic Voigt material of 
uniform thickness and infinite horizontal extent with a 
modified potential flow. The actual mean pressure 
distribution in a turbulent or laminar boundary layer flow is 
represented by modulating a potential flow pressure equation 
to allow for a reduced magnitude and phase change. Although 
this may be a reasonable assumption in view of the ex­
perimental data of Kendall (1970) and the theoretical work of 
Benjamin (1959), the results obtained numerically by Duncan 
et al. (1985) are only in qualitative agreement with the present 
experimental data and those obtained by Gad-el-Hak et al. 
(1984). 

By selecting "appropriate" values for the model's 
parameters, Duncan et al. (1985) give detailed comparison 
between their calculations and existing experimental data. In 
the case of a viscoelastic coating with high damping, they find 
that the first instability occurring with increasing flow speed is 
a damping instability (Class A), which has phase speeds of a 
few percent of U„. When the damping is reduced sufficiently 
to approximate an elastic coating, the first instability found 
with increasing flow speed is a phase-lag instability (Class B), 
which has a much larger phase speed. Their model gives 
reasonable predictions in both magnitude and trend for the 
onset flow velocity and phase speed of the waves under 
turbulent conditions; however, predictions of wavelength 
were not as satisfactory. Duncan et al. attributed the dif­
ferences between theory and experiment to the extremely 
complex viscoleastic properites of the compliant materials 
used in the experiments and to the difference between pressure 
fluctuations in an actual boundary layer flow and those 
represented by their modified potential flow. They concluded 
that more accurate predictions may be obtained by increasing 
the complexity of the flow and solid models without changing 
the basic physics of the coupling between the two. 

5 Conclusions 

The flow-induced motion of a compliant surface was 
measured using a remote optical technique. Two different 
classes of hydroelastic instabilities were observed on the 
elastic surface and on the viscoelastic surface. The onset speed 
for these instabilities depends upon the coating's geometrical 
and mechanical properties. The elastic surface instability has 
a relatively high phase speed and a small wavelength, and its 
wave profile is symmetric as compared to the slow and highly 
nonlinear "static-divergence" waves observed on the 
viscoelastic surface. Thus, it appears that the addition of 
viscous damping to a compliant material can produce a 
dramatic difference in the characteristics of the waves on the 
solid/fluid interface when subjected to the perturbation of a 
turbulent boundary layer. The experimentally determined 
wave characteristics compare qualitatively to existing theories 
on fluid/compliant surface interactions. 

The experimental results presented in Section 3 agree 
qualitatively with the theory by Duncan et al. (1985). The 
onset speed and the slow phase speed observed for the waves 
on the viscoelastic surface are the same as that predicted for 
Class A instability (static-divergence waves). On the other 
hand, the theory predicts a much higher phase speed for Class 
B instability occuring on surfaces with little or no damping. 
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The phase speed of the elastic waves is an order of magnitude 
larger than that for the viscoelastic waves as seen in Fig. 8 of 
the present paper and Fig. 14 of Gad-el-Hak et al. (1984). 
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The paper deals with stresses and displacements in circular 
rings of rectangular cross-section, loaded in the plane and 
perpendicular to the boundary. Values are given for all points 
at the inside and outside boundaries, are presented 
parametrically for rings for which the ratio of diameters 
ID/OD varies from 0 to very close to 1, and have been ob­
tained from several sources, mainly Nelson's equations. 
References to some previous contributions are included. The 
information presented in the paper was not available in a 
complete manner and will be useful in numerous structural 
applications. The analysis corresponding to loads applied 
tangentially to the boundary could be approached in a similar 

Introduction 

The circular ring of rectangular cross-section with a con­
centric hole is probably the most commonly treated geometry 
in the stress analysis literature, and the most commonly 
considered loading condition of that geometry is the pair of 
loads diametrically applied to the outside boundary. Ap­
plications are numerous because this type of ring is the 
transverse cross-section of tubes widely used in many kinds of 
construction. Many contibutions to the solution of this 
problem can be found in the literature. Several of these are 
referred to in treatises like the ones by Timoshenko [1], Roark 
[2], and Peterson [3], and they include some basic theoretical 
work like Filon's [4] as well as experimental results [5]. 
Among other important contributions the work of Billevicz 
[6], Horger [7], Bell [8], and Ripperger and David [9] may be 
mentioned. Probably the most thorough treatment of the 
subject has been conducted by Nelson [10] in his thesis. Some 
of the other contributions, by one of the authors, to this 
subject can be found in [11]. 

For many applications, in particular the use of rings as 
dynamometers, the necessary information from the many 
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papers mentioned is limited to the maximum and minimum 
stress on the inside boundary of the ring when the ring is 
loaded by a pair of opposite forces. There are other ap­
plications, however, like the use of rings as dynamometers for 
the simultaneous measurements of several pairs of opposite 
loads, which require the knowledge of stresses at all points of 
the inside boundary, and the possession of this knowledge 
parametrically for many ratios ID/OD of the inside to the 
outside boundary. 

The authors are proposing in another publication the use of 
coefficients of influence to evaluate the multiple loads applied 
to the rings. The object of this note is to present 
parametrically in a manner that permits a direct use of the 
data the values of stresses and displacements on the inside and 
outside boundaries for ratios ID/OD from 0 to 0.92. 

The results presented are drawn from both theoretical and 
experimental contributions. Advantage has been gained by 
the cross plotting of curves to increase precision. Advantage 
has also been gained by the use of the two limiting cases, the 
small circular hole in an infinite plate (Kirsch solution) and 
the curved beam formulae for the very thin ring. Both give 
highly accurate results. It is believed that this is the first time 
parametrical information has been presented covering 
practically the whole field. The scope of the paper is limited 
however to the elastic behavior of materials, and small 
deformations of the rings. Considerable information for the 
case of finite deformations can be found in another 
publication [12]. 

Stresses on the Inside and Outside Boundaries 

Only the stresses at four points of the boundaries for some 
typical a = ID/OD were calculated by Nelson [10]. The 
complete analysis was conducted here using his equations: 

("»)/ 
P P 

-M„ + ( -My cos2d*+MA cos40* 
0 -wRj irR0t 

-M0 cos60* + . . .) 
and 

("«)„ = ^ -M0' - £ - • + - £ - (M 2 ' cos20 ' -M 4 ' cos0* 
wR0t TrR0t itR0t 

+M6 'cos60* . . .) 
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M-71 

Fig. 1 Geometry and loading of the rings 

Fig. 2 Stress factors at the inner boundary of circular rings 
diametrically loaded (0 < a < 0.7; a as parameter) 

M„ 

M„ = 

M' = 

M' = 
2a2 

( 1 - a 2 ) ' '"" ( 1 - a 2 ) 

4 n a " - 2 ( l - a 2 ) ( l - a 2 n ) 

On 

4 ( 1 - a 2 ) 2 n2a2n 

for n = 2,4,6, 

Qn 
for « = 2,4,6, 

and 

- « 2 a 2 " - 2 ( l - a 2 ) 2 e„=( l -a 2 ") 2 -
The meaning of other symbols is explained in Fig. 1. 
There is good agreement between the more extensive 

computations conducted here (Figs. 2-11), and those shown 
by Nelson. It should be pointed out, however, that as a 
consequence of the series nature of the solution, a jump was 
found for the values of the stresses in the neighborhood of the 
point of load application for the low values of a. For the 

Fig. 3 Stress factors at the inner boundary of circular rings 
diametrically loaded (0.7 < a < 0.91; a as parameter) 

Fig. 4 Stress factors along the inner boundary of circular rings 
diametrically loaded (0 < a < 0.7; - 40 deg < 6 < 90 deg; 6 as 
parameter) 

computations reported here, sixty terms were used in the 
series. A larger number of terms may decrease the amount of 
the jump (see for instance Fig. 9). It was also observed that 
Nelson's values for the inside boundary at the vertical axis are 
slightly higher than some of the ones reported here. 

Displacements on the Inside and Outside Boundaries 

Nelson also gives the displacements for the four 
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Fig. 5 Stress factors along the inner boundary of circular rings 
diametrically loaded (0 < a < 0.7; 0 deg < B < - 4 0 deg; 0 as 
parameter) 

Fig. 8 Stress factors at the outer boundary of circular rings 
diametrically loaded (0 < a < 0.76 as parameter) 
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Fig. 6 Stress factors along the inner boundary of circular rings 
diametrically loaded (~ 40 < 0 < 90 deg; 0.7; < a < 0.923; 0 as 
parameter) 
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M-77 
Fig. 7 Stress factors along the inner boundary of circular rings 
diametrically loaded (0 deg < 0 < - 4 0 deg; 0.7; < a < 0.923; 0 as 
parameter) 

a = 0.92 

Fig. 9 Stress factors at the outer boundary of circular rings 
diametrically loaded (0.76 < a < 0.92 as parameter) 

aforementioned points (Fig. 1). The values for all points on 
the boundries, given in Figs. 12-21, were calculated using the 
following equations for (ur), and (ur) 0

10. 
P' P' 
-=,+ — (N2'cos2fl* 
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Fig. 10 Stress factors at the outer boundary of circular rings 
diametrically loaded (0.0 < a < 0.76; 0 as parameter) 

a = 0.86 

a = 0.84 

UJI. 

Fig. 12 Radial displacements at the inner boundary of circular rings 
diametrically loaded (0.0 < a < 0.7 as parameter) 
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E = Modulus of Elasticity 

Fig. 11 Stress factors at the outer boundary of circular rings Fig. 13 Radial displacements at the inner boundary of circular rings 
diametrically loaded (0.76 < a < 0.92; d as parameter) diametrically loaded (0.7 < a < 0.86 as parameter) 
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Fig. 16 Radial displacements at the inner boundary of circular rings 
diametrically loaded (0.7 < a < 0.92; 0 as parameter) 

Fig. 14 Radial displacements at the inner boundary of circular rings 
diametrically loaded (0.86 < a < 0.92 as parameter) 
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a = 0.7 

Fig. 15 Radial displacements at the inner boundary of circular rings Fig. 17 Radial displacements at the outer boundary of circular rings 
diametrically loaded (0 < a < 0.7; e as parameter) diametrically loaded (0.0 < a < 0.7 as parameter) 
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a =0.86 

a = 0.84 

Fig. 18 Radial displacements at the outer boundary of circular rings Fig. 20 Radial displacements at the outer boundary of circular rings 
diametrically loaded (0.7 < a < 0.86 as parameter) diametrically loaded (0.0 < a < 0.7 0 as parameter) 
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Fig. 19 Radial displacements at the outer boundary of circular rings Fig. 21 Radial displacements at the outer boundary of circular rings 
diametrically loaded (0.86 < a < 0.92 as parameter) diametrically loaded (0.7 < a < 0.92; 6 as parameter) 
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On the Singularities in Reissner's Theory 
for the Bending of Elastic Plates 

B--a/2. 

W. S. Burton1 and G. B. Sinclair1 

Wedge-shaped elastic plates under bending, with the edges 
forming the wedge vertex being either stress-free, clamped or 
simply supported, are characterized as to possible singular 
behavior within the context of Reissner's plate theory. 

Introduction 
Probably the first singularity analysis of an angular elastic 

plate under bending is William's treatment using the classical 
theory [1]. In the classical theory it is possible to satisfy stress-
free conditions at an edge solely in an approximate way, since 
only two boundary conditions can be enforced and there are 
three stress resultants. As the boundary conditions play an im­
portant role in governing singular behavior at the vertex of 
any corner in a plate it is to be expected that Reissner's theory 
[2], which admits three, physically-natural, boundary condi­
tions on an edge, may offer an improved, albeit singular, 
representation in these instances. This is the expectation that 
possibly motivated other analysts (e.g., Wang [3]) to perform 
analyses of complete, individual, crack problems using 
Reissner's theory rather than the classical, and indeed more 
physically sensible results are derived in these analyses. 
Specifically, for the crack-tip on the tensile face of the plate 
the same hydrostatic singular field ahead of the crack as oc­
curs in the extensional case of a cracked plate under tension is 
found; this is in contrast to the classical bending theory in 
which the principal stresses ahead of the crack differ in sign 
and magnitude. As a result it would seem reasonable to at­
tempt the analogue of Williams' study for the classical theory 
[1] and explore the singularities in Reissner's plate theory for a 
wider range of geometries than that investigated elsewhere and 
for a full range of boundary conditions; this is the intent of the 
present note. 

We begin by formulating a class of problems for a wedge-

Department of Mechanical Engineering, Carnegie-Mellon University, 
Pittsburgh, PA 15213. 

Manuscript received by ASME Applied Mechanics Division, December 19, 
1983; final revision July 15, 1985. 

e=o 

•0 = - a / 2 
Fig. 1 Geometry and coordinates for the plate 

shaped elastic plate under bending within the context of 
Reissner's theory. Next we establish suitable solution forms 
for the dominant asymptotic response near the wedge vertex 
and set down conditions for the existence of these fields. The 
conditions basically involve the analysis of an eigenequation 
for each pair of edge conditions considered. The note con­
cludes by displaying these eigenequations and discussing the 
eigenvalues satisfying them which give rise to singularities. 

Formulation 
The plate has thickness h and occupies the open wedge 

region, R, 

R={{r,B) l0<7-<oO,-Cv/2<6'<a/2!(0<a<2ir), (1) 
where (r,0) are the polar coordinates of a point P in the wedge 
with respect to the origin, 0, at the wedge vertex, and a is the 
vertex angle (Fig. 1). 

The plate is comprised of a homogeneous, isotropic, and 
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Table 1 Eigenequations for Reissner's plate theory generating 
singular moment resultants 

Edge Conditions 

Stress-free/stress-free 
Clamped/clamped 
Clamped/stress-free 

Stress-free/simply supported 
Clamped/simply supported 
Simply supported/simply 

supported 

Note: k= 1,2 for symmetric or 

Eigenequation 

sinXa = C{K 
sinXa = C2X 
sin2Xa = C 3 - C 4 X 2 

sin2Xa = C5 X 
sin2Xa = C6X 
cosXa = C7 

Constants 

C 1 = ( - ) * s i n a 
C2 = ( - 1/K)*+ 'sina 
C3=4//<(l + «)2 

Q = (lA)sin2a 
C5 = sin2a 
C6 = ( - 1/K)sin2a 
C 7 = ( - )*COSQ: 

anti-symmetric loading, respectively, and K = ( 3 - C)/(1 + v). 

linear elastic material having Young's modulus, E, and 
Poisson's ratio, v. For this plate the stress resultants and rota­
tions of Reissner's plate theory, in the absence of surface 
loading, can be expressed in terms of the out of plane deflec­
tion, w(r,9), and a single stress potential, x(r,6). That is, 

1 dx Tr dx 
V=-

M, 

30 K„ = 

dx 
30 

/ d2w 1 

dr 

i a2 

*.\ 
drdd/ 

dw 

~dV 

Mr=2y— 
or 

dx 
de A 

1 d2W 

T2" de2 

d2W 

dr2 

dw 

~~dr~ 

d2W 

de2 

Mr§=y{~ 
1 3 2

x 

302 

-(\-v)D-

dr 

1 dw 

1 dx 
r dr • ) ) 

(2) 

dr 
/ 1 dw \ 

I T 39/ 
27 3X 

£>(1 

27 

v) 

1 9x 

1 dw 

~r~"~86~ 

dw 

D(l~v) r 30 dr 

onR, where F r , Fe, the shear resultants, Me, Mn Mrg, the mo­
ment resultants and /Se, /3r, the rotations, are functions of r, 0, 
defined in the usual manner, with 7 = A2/10, D = Ehi/ 
12(1 -v2), the last being the flexural rigidity. Then the field 
equations of Reissner's theory are reduced to the Cauchy-
Riemann equations for the functions x~YV2x and Dv2w, 
i.e., 

- (X-TV 2 X)= -—(z>v2w), 
r 86 

(3) 
i a n 

1 7 ( X - T V 2 x ) = - r - (£>V2w), 
/• 30 dr 

on /?. Here V2 is the Laplacian operator in cylindrical polar 
coordinates. 

On each wedge face three homogeneous boundary condi­
tions are to be satisfied. These three boundary conditions are 
combined in sets of edge conditions to model various edges as 
follows: 

dr 

Stress-free 

Clamped 

Simply supported 

Me=Mre = 0, Ve = 0, 

(39 = /3r = 0, w = 0, 

M„ = 0,l3r = 0, w = 0, 

(4) 

on 0= ±a/2 (0</'<oo). These three cases combine to give six 
distinct problems for the wedge. When the same conditions 
apply on each face, it is possible to distinguish between sym­

metric and anti-symmetric contributions. Thus, in effect, nine 
problems are considered. Ensuring bounded displacements 
concludes our formulation and limits the singular behavior 
admitted-while this formulation is then still not complete, it 
suffices given our objective of characterizing possible singular 
fields at the wedge vertex. We next consider the construction 
of suitable sets of asymptotic solutions. 

Singularity Analysis 

From the form of the relations in (2), observe that if 
w = 0(rx+1), x = 0(rx+1). as r—0 on R, X a constant, then the 
shear resultants and rotations are O ^ ) , while the moment 
resultants are 0(rx~')- Accordingly we seek to construct 
separable solutions for w, x satisfying the governing equations 
(3) which furnish six independent constants multiplying these 
dominant contributions as /•—0, thereby providing a means of 
satisfying the six boundary conditions contained in any pair of 
the edge conditions (4). To this end, and noting that x - X V2x 
and Dv2w are harmonic functions and the interrelations in 
(3), we therefore take as our asymptotic solution forms for x 
and w, the biharmonic functions2 

X = rx+1F(\,6) + 0(rx+i), 

w = /-x+1G(X,0) + O(rx+3), (5) 

as r— 0 on R, where 

F(\,8) = (6lCos(X + 1)0 + b2sm(\ + 1)0 

+ b3cos(\- l)0 + 64sin(X- 1)0), 

G(A,0) = (&5sin(A+l)0 + 66cos(X+l)0 

-yb3sm(\- l)0 + 764cos(X- 1)6)/D. 

The stress and moment resultants and the rotations in (2) may 
then be written as 

Vr=rxF' +0(/ x + 2 ) , K9=-(A+l)/-x/7+0(/-x+2), 

M0=r^i[-2y\F'-D(CK+l)(l + v\)G + G")] + 0(rx+l), 

Mr = rx-1[2y\F'-D((\+l)(h + v)G+vG")]+0(r*+1), 

Mr9 = r*-l[y(F"-(\+l)(k-l)F)-D(l-v)\G'] + 0(rx+i), 

- 2 7 
h=r -(X+1)F-G' + 0(rK+2), 

& 

D{l-V) 

x b t f V ' - ( X + 1 ) G ] + 0 ( r X + 2 ) ' 

(6) 

D{l-v) 

as /•—0 on R, where the primes denote differentiation with 
respect to 0. 

With this set of separable functions for w and x the 
singularity analysis proceeds in a manner similar to that 
developed by Williams [4] for power singularities and by 
Dempsey and Sinclair [5] for logarithmic singularities. Impos­
ing the displacement regularity requirements on (6) and con-

2Note that one cannot use Reissner's solution [2] and have a sufficient 
number of independent constants available for the asymptotic analysis. 
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fining attention to singular solutions, the resulting conditions 
may be summarized by 

M = 0(/x~') for real X satisfying D = 0, 0 < X < 1, 

/ fsm(r,lnr)~) s 
M = 0l/-*-1 < y) for complex X = £ + ir\ 

^ [COSOJ/M/OJ' 

satisfyingZ) = 0,0<A/?eX<l, (7) 

M = 0(/x~' /«/•) for real X satisfying 

d"~'"D 
= 0, m<n, 0 < X < 1 , 

d\"-'" 

, f sm(rilnr) "] -, 
M = 0(r x^ ' /«r •< H for complex X = £ + i-n 

^ [_ cos(rjlnr) J ' 

satisfying— = 0, m<n, 0<Re\<\, 

as /•—0 on /?, where M = (M(,, M r , Mr6) is the vector of mo­
ment resultants. In (7), D is the determinant of the coefficient 
matrix stemming from the substitution of (6) into a set of edge 
conditions drawn from (4) and n is the order of this matrix, m 
its rank. For any particular combination of the edge condi­
tions (4) for a wedge angle a, the values of X in the ranges 
given in (7) may be regarded as the singular eigenvalues of the 
eigenequation, D = 0. We now investigate the eigenequations 
resulting from such expansions. 

Eigenequations 

For the particular problem of the symmetric bending of a 
stress-free/stress-free wedge, substituting (6) with 
bl=b3=bs=0 therein into the first of (4) and expanding the 
determinant of the resulting 3 x 3 coefficient matrix leads to 

sin(X + 1 )a/2(Xsina + sinXa) = 0(0 < a < 2TT) . (8) 

Equation (8) factors into two equations; however, the first of 
these, while not generating a completely trivial solution, does 
not give rise to any moment resultants and therefore con­
tributes no singular fields. Consequently, it may be discarded 
leaving as our eigenequation for this case only the second fac­
tor. The eigenequations for the remaining combinations of the 
edge conditions each possess similar, non-singular, 
multiplicative factors. In Table 1, we suppress these and list 
only those parts of each eigenequation that have attendant 
singular fields. 

Comparison of the first three cases in Table 1 with the cor­
responding extensional cases given in Williams [4] shows the 
eigenequations to be identical. Examining the fourth and fifth 
cases in Table 1 and noting that the conditions for the simply 
supported edge in (4) are the same as anti-symmetry re­
quirements, we see these eigenequations are equivalent to the 
anti-symmetric parts of the first and second eigenequations, 
respectively, for a wedge of angle 2a. It follows that these two 
cases are also effectively contained in Williams' extensional 
analysis [4]. Finally, taking as the physical analogue of the 
simply supported/simply supported edge condition, the exten­
sional anti-symmetry conditions, ur~0, oe = 0 where ur is the 
radial displacement and a0 is the tangential normal stress, we 
find that the last case too has a corresponding extensional 
eigenequation. The significance of this correspondence is that 
discussions in the literature on the extensional eigenequations 
are directly applicable to elastic wedges generated by 
Reissner's bending theory. 

Solutions for the dominant singular real part of X are given 

for the first three cases in Table 1 by Williams [4] and are 
decomposed in effect into symmetric and anti-symmetric parts 
by Kalandiia [6], thus accounting for the first five cases. The 
roots for the last case, simply supported/simply supported, 
can be determined by inspection. Some of the eigenvalues 
given in [4, 6] are actually the real parts of complex solutions; 
however, no truly comprehensive search for complex roots ap­
pears to be available in the literature. Such a parameter study 
is outside the scope of the present work. Nonetheless, for any 
given application the determination of complex eigenvalues 
proceeds routinely on separating the pertinent eigenequation 
for the specific a-value into real and imaginary parts and solv­
ing the resulting, simple, simultaneous pair of transcendental 
equations. Likewise, logarithmic singularities have not been 
exhaustively searched for, but are straight forward to check 
for in any specific instance. 

In conclusion we remark that the correspondence between 
the singular fields in Reissner's theory and those in extensional 
plate theory is not restricted merely to the singular eigen­
values, but carries over to the actual eigenfunctions which 
share the same r and 6 dependences, as can be deduced from 
the solution (6) and its counterpart in Williams [4]. 
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Dynamic Behavior of Beam Structures 
Carrying Moving Masses 

S. Saigal1 

Introduction 
The dynamic response of structures carrying moving masses 

is a problem of widespread practical significance. A detailed 
survey of research efforts in this field was given by Stanisic et 
al. [2]. The original problem is nonlinear in both local and 
convective derivatives [3] and is complicated by the presence 
of a Dirac-Delta function as a coefficient in the differential 
equation of motion. Previous methods [2] applied for the 
solution of this problem are approximate in nature and 
tedious in their hierarchy of mathematical operation. Recent­
ly, Stanisic [3] expressed the solution in terms of eigenfunc­
tions satisfying the boundary, initial and transient conditions, 
for a heavy mass moving over a simply supported beam. 
However, in engineering practice there are problems that in­
volve more complex boundary conditions and, therefore, it is 
of phenomenological interest to look into the physics of the 
dynamical behavior of a clamped and a cantilever beam under 
the action of heavy moving masses. The present study extends 
Stanisic's theory [3] to study the dynamic behavior of a 
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fining attention to singular solutions, the resulting conditions 
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M = 0(/x~') for real X satisfying D = 0, 0 < X < 1, 

/ fsm(r,lnr)~) s 
M = 0l/-*-1 < y) for complex X = £ + ir\ 

^ [COSOJ/M/OJ' 

satisfyingZ) = 0,0<A/?eX<l, (7) 

M = 0(/x~' /«/•) for real X satisfying 

d"~'"D 
= 0, m<n, 0 < X < 1 , 
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edge conditions each possess similar, non-singular, 
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only those parts of each eigenequation that have attendant 
singular fields. 
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supported edge in (4) are the same as anti-symmetry re­
quirements, we see these eigenequations are equivalent to the 
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respectively, for a wedge of angle 2a. It follows that these two 
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sional anti-symmetry conditions, ur~0, oe = 0 where ur is the 
radial displacement and a0 is the tangential normal stress, we 
find that the last case too has a corresponding extensional 
eigenequation. The significance of this correspondence is that 
discussions in the literature on the extensional eigenequations 
are directly applicable to elastic wedges generated by 
Reissner's bending theory. 

Solutions for the dominant singular real part of X are given 

for the first three cases in Table 1 by Williams [4] and are 
decomposed in effect into symmetric and anti-symmetric parts 
by Kalandiia [6], thus accounting for the first five cases. The 
roots for the last case, simply supported/simply supported, 
can be determined by inspection. Some of the eigenvalues 
given in [4, 6] are actually the real parts of complex solutions; 
however, no truly comprehensive search for complex roots ap­
pears to be available in the literature. Such a parameter study 
is outside the scope of the present work. Nonetheless, for any 
given application the determination of complex eigenvalues 
proceeds routinely on separating the pertinent eigenequation 
for the specific a-value into real and imaginary parts and solv­
ing the resulting, simple, simultaneous pair of transcendental 
equations. Likewise, logarithmic singularities have not been 
exhaustively searched for, but are straight forward to check 
for in any specific instance. 

In conclusion we remark that the correspondence between 
the singular fields in Reissner's theory and those in extensional 
plate theory is not restricted merely to the singular eigen­
values, but carries over to the actual eigenfunctions which 
share the same r and 6 dependences, as can be deduced from 
the solution (6) and its counterpart in Williams [4]. 
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is a problem of widespread practical significance. A detailed 
survey of research efforts in this field was given by Stanisic et 
al. [2]. The original problem is nonlinear in both local and 
convective derivatives [3] and is complicated by the presence 
of a Dirac-Delta function as a coefficient in the differential 
equation of motion. Previous methods [2] applied for the 
solution of this problem are approximate in nature and 
tedious in their hierarchy of mathematical operation. Recent­
ly, Stanisic [3] expressed the solution in terms of eigenfunc­
tions satisfying the boundary, initial and transient conditions, 
for a heavy mass moving over a simply supported beam. 
However, in engineering practice there are problems that in­
volve more complex boundary conditions and, therefore, it is 
of phenomenological interest to look into the physics of the 
dynamical behavior of a clamped and a cantilever beam under 
the action of heavy moving masses. The present study extends 
Stanisic's theory [3] to study the dynamic behavior of a 
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clamped and a cantilever beam under moving masses. The ef­
fects on response of the beam of magnitude and location of 
the moving mass on the structure and the convergence of 
amplitude coefficients of the series are studied. 

Equation of Motion 
The equation of motion of a beam on an elastic foundation 

subject to a moving mass M can be written in the non-
dimensional form, neglecting the convective part of accelera­
tion, as [3] 

d*Y(z,r) i I t t „ d2Y(z,r) 
5 +[l+e8(z-Z0)h 

3z4 

where 

dr2 

+ KY(Z,T) = P5(Z-Z0) (1) 

z = — ; z0(t)--

, pAL* 

EI 

x,(t) 

L ' 

_ kL4 

~~ET 

M _ * 
pAL' a 

MgL2 

EI 
Y(x,t)--

y(x,t) 

£7=flexural rigidity of the beam; p = density of the material 
of the beam; A = area of cross-section of the beam; L = length 
of the beam; k = coefficient of elastic foundation; g = accelera­
tion due to gravity; y{x,t)= deflection of the beam at location 
x at time t; 5() = Dirac-Delta function; x0(t)= position of the 
mass at time t. Also, we have, 

a) Boundary conditions: 7 ( 0 , T ) = Y'(0,T) = Y(\,T) = 
y ' ( 1 , T ) = 0 f o r c l a m p e d b e a m a n d 
y(0,T)= y'(0,T)= y"(l,T)= y"'(l,T) = 0 for cantilever beam. 

b) Initial Conditions: Y(z,0)= Y(z,0) = 0, where primes (') 
and dots ( ) denote the derivatives with respect to z and T, 
respectively. 

Eigenfunctions 
Assuming Y(z,T) = Z(z)e'°T, where fi is the dimensionless 

frequency, the homogeneous part of (1) leads to 

d4Z(z) 

dz4 — (fi2 -K)Z(Z) = efi2Z(z)S(z-z0) (2) 

The eigenfunctions are of the form of Green's function [3] and 
in the following two domains the homogeneous part of (2), 
i.e., 

d4Z(z) 

dz4 
-(Q2-K)Z(Z)=0 

is considered 

a) 0<z<zo, Z(0) = Z'(0) = 0 

b) z0<z<l, Z(1) = Z'(1) = 0 for clamped beam, and 
Z"(1) = Z1" (1) = 0 for cantilever beam. The solutions can be 
written as: 

a) For Clamped Beam 

'(cosXz - coshXz) + flj (z0)(sin\z - sinhXz), 

Z=A(Zo) 
0<z<zo 

a 2 ( z 0 ) [ cosX(z - l ) - cosh \ ( z - l ) ] + tf3(z0) 

[s inX(z-l)-s inhX(z-1)] , z 0 < z < l (3) 
b) For Cantilever Beam 

^(cosXz — coshXz) + b, (z0)(sin\z - sinhXz), 

0 < z < z o 

d2(z0)[cosX(z-l) + c o s h \ ( z - l ) ] + 63(z0) 

v [sinX(z-l) + sinhX(z-l)] , z 0 < z < l 

Z = B(z0) 

e=0.8 

0.2 0.4 0.6 0.8 1.0 
LOCATION OF MOVING MASS z0 

Fig. 1 Displacement of the clamped beam under the moving mass for 
various values of the mass ratio e 

O.I4r-

e=0.05 

e =0.025 

0.2 0.4 0.6 0.8 
DISTANCE ALONG BEAM x /L 

I.0 

Fig. 2 Displacement of the cantilever beam under the moving mass for 
various values of the mass ratio c 

The constants ax, a2, and «3 for the clamped beam and the 
constants bu b2, and &3 for the cantilever beam are deter­
mined from the conditions of continuity: 

dZ(z,z0)
 zo d2Z(z,z0) 

2{z,z0) 
dz dz2 = 0 (5) 

Integrating (2) and using the accompanying boundary condi­
tions, the transient condition representing the jump of the 
shearing force at z = z0 is obtained as 

d3Z(z,z0) 

dz3 = e02Z(zo,Zo) (6) 

(4) 

where Q2 = X4 - K. This condition is used in determining the 
dimensionless frequency Q. Finally, the unknowns A (z0) and 
B(z0) for the clamped and cantilever beam, respectively, are 
determined by imposing the condition of orthonormality with 
the weight function 1 + e8(z—z0) [3] as 

P Z2(z,z0)dz+ \ Z2(z,z0)dz + eZ2(z0,z0)=l (7) 
Jo J z„ 
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Fig. 3 Comparison of amplitude coefficients a1 and a2 for the first and 
second mode, respectively, at various times for mass ratio f = 0.4 
(magnify vertical scale by 10 for the cantilever beam results) 

were carried out numerically using Gauss integration of the 
tenth order [1]. The knowledge of the deflection of the struc­
ture under the moving mass as the mass travels across the 
structure is of interest to the structural engineer in highway 
and bridge construction. Such deflections are plotted in Figs. 1 
and 2 for the clamped and the cantilever beam, respectively. 
The nonlinear nature of the dynamic response with increase in 
mass ratio is evident from these curves. The plots of the 
amplitude coefficients «, and a2 corresponding to the first two 
modes in the series expansion for the clamped and the can­
tilever beam are given in Fig. 3. The drop of magnitude of a2 

compared to that of ax suggests a fast convergence of the 
series. In performing the above calculations, it was observed 
that the magnitude of the frequency measure Q was affected 
largely by the position of the mass on the beam and changed 
only slightly with the magnitude of the mass. 
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Response of the Beam 

The solution of (1) can be expressed as a series 
Oo 

Y(Z,T)= £ ) a,„(T,z0)Zm(z,z0) 
m=l 

where Zm (z,z0) are the orthonormal eigenfunctions described 
in the preceding section; am{T, z0) are the amplitude coeffi­
cients. Substituting in (1) and making the assumptions sug­
gested by Stanisic based on numerical evidence [3] that 
oZm (z,Z0)/dz0 and dam (T,z0)/dz0 together with their second 
order derivatives are very small so that their products can be 
neglected compared with d2am (T,z0)/dT2>Zm (z,Z0), the equa­
tion for coefficients a,„ is obtained in the differential form as 

d2am(T,z„) 
9 T 2 

with 

+ Q?„ (Zo )am ( T,Za) = PZm (Z0,Z0) 

«m(0,zo) = a,„(°.zo) = 0 

giv ing 

a,„(T,z0) = j g(T;6)PZm{z0,z0)d6 

where g(r;d) is the Green's function such that 

d2g(T;d) 

(8) 

de1 
- + n2

m(z0)g(r;6) = 5(T-d) 

and 

g(r;Tf) 
dg(r;Tf) 

dd 
= 0. 

T/ = tf/a; ry = time taken by the moving mass to cross the en­
tire beam. In addition, the Green's function has to satisfy the 
transient conditions 

g(T;8)\ _ = 0 a n d By _ = 1 . 
IT- 00 IT 

The amplitude coefficients a,„ can then be determined using 
(8). 

A More Direct and General Analysis of Mov­
ing Strong Discontinuity Surfaces in Quasi-
Statically Deforming Elastic-Plastic Solids 

W. J. Drugan1 

1 Introduction 

In a recent study, Drugan and Rice (1984) investigated what 
restrictions are placed on the possible existence of quasi-
statically moving surfaces of strong discontinuity (across 
which components of stress, strain or velocity jump) by stan­
dard weak continuum mechanical assumptions coupled with 
skeletal constitutive assumptions believed to describe 
realistically a large class of elastic-plastic materials. Using a 
small displacement-gradient formulation, they proved that the 
standard set of assumptions examined requires all components 
of stress to be continuous across such propagating surfaces, 
and that only certain components of the plastic part of the 
strain tensor may jump provided specific conditions are met. 

I develop here a more direct and general version of Drugan 
and Rice's (1984) main proof which lays bare its key features. 
This facilitates a demonstration that the severe restrictions 
deduced by Drugan and Rice do not hinge on their assumption 
of elastic linearity, but rather that the elastic component of 
material response can be arbitrary hyperelastic, with the key 
restrictions being that the elastic strain energy function is 
strictly convex and unaffected by plastic deformation. 

2 Formulation 

With reference to Fig. 1, let E denote a hypothesized surface 
of strong discontinuity that propagates with velocity V > 0 in 
the direction of the normal, x, , through an elastic-plastic solid 
under general three-dimensional conditions. The Cartesian 

Numerical Results and Discussions 
The formulations described above were used to determine 

the dynamic behavior of beams with a = 2.17, t>=6.096 m/s 
(20 ft/s), L = 6.096 m (20 ft). The integrations in (7) and (8) 
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were carried out numerically using Gauss integration of the 
tenth order [1]. The knowledge of the deflection of the struc­
ture under the moving mass as the mass travels across the 
structure is of interest to the structural engineer in highway 
and bridge construction. Such deflections are plotted in Figs. 1 
and 2 for the clamped and the cantilever beam, respectively. 
The nonlinear nature of the dynamic response with increase in 
mass ratio is evident from these curves. The plots of the 
amplitude coefficients «, and a2 corresponding to the first two 
modes in the series expansion for the clamped and the can­
tilever beam are given in Fig. 3. The drop of magnitude of a2 

compared to that of ax suggests a fast convergence of the 
series. In performing the above calculations, it was observed 
that the magnitude of the frequency measure Q was affected 
largely by the position of the mass on the beam and changed 
only slightly with the magnitude of the mass. 
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Response of the Beam 

The solution of (1) can be expressed as a series 
Oo 

Y(Z,T)= £ ) a,„(T,z0)Zm(z,z0) 
m=l 

where Zm (z,z0) are the orthonormal eigenfunctions described 
in the preceding section; am{T, z0) are the amplitude coeffi­
cients. Substituting in (1) and making the assumptions sug­
gested by Stanisic based on numerical evidence [3] that 
oZm (z,Z0)/dz0 and dam (T,z0)/dz0 together with their second 
order derivatives are very small so that their products can be 
neglected compared with d2am (T,z0)/dT2>Zm (z,Z0), the equa­
tion for coefficients a,„ is obtained in the differential form as 

d2am(T,z„) 
9 T 2 

with 

+ Q?„ (Zo )am ( T,Za) = PZm (Z0,Z0) 

«m(0,zo) = a,„(°.zo) = 0 

giv ing 

a,„(T,z0) = j g(T;6)PZm{z0,z0)d6 

where g(r;d) is the Green's function such that 

d2g(T;d) 

(8) 

de1 
- + n2

m(z0)g(r;6) = 5(T-d) 

and 

g(r;Tf) 
dg(r;Tf) 

dd 
= 0. 

T/ = tf/a; ry = time taken by the moving mass to cross the en­
tire beam. In addition, the Green's function has to satisfy the 
transient conditions 

g(T;8)\ _ = 0 a n d By _ = 1 . 
IT- 00 IT 

The amplitude coefficients a,„ can then be determined using 
(8). 

A More Direct and General Analysis of Mov­
ing Strong Discontinuity Surfaces in Quasi-
Statically Deforming Elastic-Plastic Solids 

W. J. Drugan1 

1 Introduction 

In a recent study, Drugan and Rice (1984) investigated what 
restrictions are placed on the possible existence of quasi-
statically moving surfaces of strong discontinuity (across 
which components of stress, strain or velocity jump) by stan­
dard weak continuum mechanical assumptions coupled with 
skeletal constitutive assumptions believed to describe 
realistically a large class of elastic-plastic materials. Using a 
small displacement-gradient formulation, they proved that the 
standard set of assumptions examined requires all components 
of stress to be continuous across such propagating surfaces, 
and that only certain components of the plastic part of the 
strain tensor may jump provided specific conditions are met. 

I develop here a more direct and general version of Drugan 
and Rice's (1984) main proof which lays bare its key features. 
This facilitates a demonstration that the severe restrictions 
deduced by Drugan and Rice do not hinge on their assumption 
of elastic linearity, but rather that the elastic component of 
material response can be arbitrary hyperelastic, with the key 
restrictions being that the elastic strain energy function is 
strictly convex and unaffected by plastic deformation. 

2 Formulation 

With reference to Fig. 1, let E denote a hypothesized surface 
of strong discontinuity that propagates with velocity V > 0 in 
the direction of the normal, x, , through an elastic-plastic solid 
under general three-dimensional conditions. The Cartesian 

Numerical Results and Discussions 
The formulations described above were used to determine 

the dynamic behavior of beams with a = 2.17, t>=6.096 m/s 
(20 ft/s), L = 6.096 m (20 ft). The integrations in (7) and (8) 
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Fig. 1 Quasi-statically propagating surface of strong discontinuity 

coordinate system xu x2, x3 moves with the surface E. Values 
of a field quantity, say g (x{, x2, x3, t), where / is. time, directly 
ahead of and directly behind the moving surface E will be 
denotedasg* = lim g(x{, x2> x3, ta =F /X), respectively, 

where ta is the time at which E arrives at a particular material 
point. The jump in such a field quantity across E will be 
denoted as [[g]] = g+ — g~. 

In the sequel, components of tensors with respect to the 
Cartesian coordinate system of Fig. 1 are indicated either by 
the Latin indices /, j , k, I which have range 1, 2, 3, or by the 
Greek indices a, /3 which have range 2, 3 only and thus refer to 
tensor components in planes parallel to planes that are tangent 
to E. Both types of index follow the summation convention. 

Referring the reader interested in a more detailed and 
justified development to Drugan and Rice (1984), I here sum­
marize the jump conditions implied by standard continuum-
mechanical postulates, and the weak constitutive assumptions 
to be employed. 

Equilibrium requires traction continuity across E, so that 

[ K ] ] = 0 (1) 

where atj = ay, is the stress tensor. I assume continuity of the 
displacement vector across E, [[«,]] = 0. In terms of the small-
strain tensor, etj = (1/2) (dUj/dXj + dUj/dXj), this requires 

[[ei«]]=-^-[[dK„/a*,]] (2) 

[[««*]] = 0. (3) 
The constitutive assumptions to be employed are identical 

to those of Drugan and Rice (1984), except that instead of re­
quiring the elastic part of a total strain increment to be linearly 
related to a stress increment, this relationship can be arbitrari­
ly nonlinear so long as the response is hyperelastic with a 
strictly convex elastic strain energy function that is unaffected 
by plastic deformation. Thus, I assume that a total strain in­
crement can be additively decomposed into elastic and plastic 
parts 

de^delj + defj, (4) 

where the elastic part is related to the stress increment by 

da„ = J \ del, (5) 
" del deki 

with 4>(ee) being the positive-definite, single-valued elastic 
strain energy function. 

The plastic behavior of the materials considered is assumed 
to be in accord with the maximum plastic work inequality 

(aij-afj)de?j>0 (6) 

where ay is the stress state (at yield) corresponding to the 
plastic strain increment defj, and a?- is any other stress state 
that is at or below yield. I note that assumptions (4) through 
(6) permit very general elastic and plastic anisotropy. 

3 Analysis 

A key step in the Drugan and Rice (1984) analysis is the 
realization that integration of the maximum plastic work in­
equality (6) at a material point just during the passage of E can 
provide an explicit restriction on jumps in components of 
stress and strain. Thus, we examine 

j ^ (ou-a*)dq*0, (7) 

which follows from (6) whenever <r+ remains on or inside the 
yield surface for all states along the strain path from e + to € " . 
This will always be true, e.g., for materials whose current yield 
locus incorporates all prior yield loci, so (7) clearly permits 
isotropic hardening as well as many types of anisotropic 
hardening including many cases of yield surface vertex 
formation. 

Employ (4) to rewrite (7) in the instructive form 

\l+ K - < t f ) * i / - J * e + (ou-o$) defcO. (8) 

The clarity of the present derivation lies in the fact that the 
first integral in (8) vanishes identically because I restrict pos­
sible paths from e+ to e" to those for which (1) and (3) are 
satisfied by all states traversed along the path. The vanishing 
of this integral is easily verified by noting that the integrand 
simplifies as 

(oij-o*)dey= (a^-a+^de^ (9) 

since au are continuous across E via (1), and finally that (9) 
vanishes identically since (3) requires dea$ = 0 across E. 

Now, (8) has reduced to the illuminating restriction 

~\[e+ (oy-a^de^O. (10) 

At this point one realizes that the assumption of hyperelastic 
behavior will permit direct evaluation of this integral; employ­
ing (5), we have 

<j>{ee" ) -<Mec+ ) - « t f ( C - 4 + ) SO. (11) 

The form of this expression implies immediately that if strict 
convexity of </>(ee) is required, then 

Uefj]] = 0. (12) 

This is true because strict convexity of 4>(ee) means that it 
must satisfy (II) with the inequality sign reversed, the equality 
holding only when eef = e|+ . Given (12), (5) requires 

[[*<,]] =0. (13) 

Thus I have proven two of the main results of Drugan and 
Rice (1984), namely that all components of stress and elastic 
strain must be continuous across a quasi-statically moving sur­
face in an elastic-plastic solid, under the more general condi­
tions that the elastic part of the response may be nonlinear 
hyperelastic with a strictly convex elastic strain energy func­
tion. The interested reader is referred to Drugan and Rice 
(1984) for derivations of restrictions on jumps in components 
of velocity and plastic strain for some important material 
models; I observe that all of these additional results remain 
valid for the more general constitutive assumptions made 
here, given the above proofs of (12) and (13). 

Acknowledgment 

Support of this work by the US National Science Founda-

Journal of Applied Mechanics MARCH 1986, Vol. 53/225 

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

tion, Solid Mechanics Program, under Grant MEA-8312348 is 
gratefully acknowledged. 

References 

Drugan, W. J., and Rice, J. R., 1984 "Restrictions on Quasi-Statically Mov­
ing Surfaces of Strong Discontinuity in Elastic-Plastic Solids," in Mechanics of 
Material Behavior: The Daniel C. Drucker Anniversary Volume, G. J. Dvorak 
and R. T. Shield, eds., Elsevier, Amsterdam, pp. 59-73. 

A Note on the Obtainment of Instantaneous 
Penetration Information From Final 
Penetration Data 

O. E. R. Heimdahl1 and J. C. Schulz1 

A simple, practical technique is described for generating in­
stantaneous penetration depth versus velocity information for 
a given projectile-target combination from experimentally ob­
tained final penetration depth versus impact velocity data. The 
technique applies to penetrations where the resistive pressure 
is a function of velocity only. 

Introduction 

Final penetration depth versus impact velocity data for a 
projectile-target combination are as a rule easily obtained ex­
perimentally. Measurements of instantaneous penetration 
depth as a function of instantaneous velocity tend to be more 
difficult. (See, however, [1, 2, 3].) This note describes a 
technique, applicable to a fairly broad class of penetrations, 
whereby final penetration depth versus impact velocity data 
can be used to generate instantaneous penetration depth ver­
sus velocity at any desired impact velocity for a projectile-
target combination. To the authors' knowledge this very sim­
ple technique, which appears to have practical application, has 
not been described previously in the literature. 

Description of Technique 

The equation of motion for a rigid body penetrating a 
material stably and without yaw is often assumed to be of the 
form 

— m dv/dt= —mv dv/ds=A g(v) (1) 

where m = projectile mass 
A =presented area 
s = instantaneous penetration depth 
v = velocity 
t = time 

g(v) = resistive pressure. 

The assumption is that the resistive pressure is a function of 
velocity only. The Poncelet, Petry and Young equations [4] 
are all of this form, differing only in the particular expression 
used for the resistive pressure. 

Integration of (1) yields 

s = m/A[G(V)-G(v)] (2) 

where 

V= impact velocity (velocity at s = 0) 
G(v)=\v/g(v)dv. 

The final penetration depth, P, obtained by setting v 
(2), is 

Oin 

*̂-V 

Fig. 1 Relationship between P- V and s - v axes 

P = m/A[G(V)-G(0)]. (3) 

Combination of (2) and (3) yields the important result 

s(v,V)=P{V)-P(v). (4) 

In words, (4) says that the instantaneous penetration depth 
equals the final penetration depth corresponding to the impact 
velocity minus the final penetration depth corresponding to 
the instantaneous velocity. This result may be arrived at 
heuristically by observing that at any time during a penetra­
tion obeying (1) the distance of penetration remaining depends 
only on the current velocity. 

Interpreted graphically (4) indicates that the s— v curve is a 
reflection and translation of the P— Kcurve. Thus, the instan­
taneous penetration depth as a function of velocity can be read 
directly from a plot of final penetration depth versus impact 
velocity simply by repositioning the axes. This is illustrated in 
Fig. 1 where the P— Faxes are shown solid and the s — v axes 
are shown dashed. The amount of translation, P(V„), 
depends on the particular impact velocity, V0. 

The resistive pressure can be determined from numerical or 
graphical differentiation of experimental P— Kdata through 
the relation 

g(v)^mv/A/(dP/dv). (5) 

The time corresponding to a given velocity can be estimated 
as 

(6) /= -m/A\ l/g(v) dv. 
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Errors associated with numerical or graphical integration limit 
accuracy of the time estimate. 

Discussion 
A technique has been described which allows determination 

of "instantaneous" penetration information from more easily 
obtained "final" penetration results. That is to say, if final 
penetration depth versus impact velocity data is available, 
then instantaneous penetration depth as a function of velocity 
for a given impact velocity can be generated. In addition, the 
resistive pressure and the time as functions of velocity can also 
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A Note on the Obtainment of Instantaneous 
Penetration Information From Final 
Penetration Data 

O. E. R. Heimdahl1 and J. C. Schulz1 

A simple, practical technique is described for generating in­
stantaneous penetration depth versus velocity information for 
a given projectile-target combination from experimentally ob­
tained final penetration depth versus impact velocity data. The 
technique applies to penetrations where the resistive pressure 
is a function of velocity only. 

Introduction 

Final penetration depth versus impact velocity data for a 
projectile-target combination are as a rule easily obtained ex­
perimentally. Measurements of instantaneous penetration 
depth as a function of instantaneous velocity tend to be more 
difficult. (See, however, [1, 2, 3].) This note describes a 
technique, applicable to a fairly broad class of penetrations, 
whereby final penetration depth versus impact velocity data 
can be used to generate instantaneous penetration depth ver­
sus velocity at any desired impact velocity for a projectile-
target combination. To the authors' knowledge this very sim­
ple technique, which appears to have practical application, has 
not been described previously in the literature. 

Description of Technique 

The equation of motion for a rigid body penetrating a 
material stably and without yaw is often assumed to be of the 
form 

— m dv/dt= —mv dv/ds=A g(v) (1) 

where m = projectile mass 
A =presented area 
s = instantaneous penetration depth 
v = velocity 
t = time 

g(v) = resistive pressure. 

The assumption is that the resistive pressure is a function of 
velocity only. The Poncelet, Petry and Young equations [4] 
are all of this form, differing only in the particular expression 
used for the resistive pressure. 

Integration of (1) yields 

s = m/A[G(V)-G(v)] (2) 

where 

V= impact velocity (velocity at s = 0) 
G(v)=\v/g(v)dv. 

The final penetration depth, P, obtained by setting v 
(2), is 

Oin 

*̂-V 

Fig. 1 Relationship between P- V and s - v axes 

P = m/A[G(V)-G(0)]. (3) 

Combination of (2) and (3) yields the important result 

s(v,V)=P{V)-P(v). (4) 

In words, (4) says that the instantaneous penetration depth 
equals the final penetration depth corresponding to the impact 
velocity minus the final penetration depth corresponding to 
the instantaneous velocity. This result may be arrived at 
heuristically by observing that at any time during a penetra­
tion obeying (1) the distance of penetration remaining depends 
only on the current velocity. 

Interpreted graphically (4) indicates that the s— v curve is a 
reflection and translation of the P— Kcurve. Thus, the instan­
taneous penetration depth as a function of velocity can be read 
directly from a plot of final penetration depth versus impact 
velocity simply by repositioning the axes. This is illustrated in 
Fig. 1 where the P— Faxes are shown solid and the s — v axes 
are shown dashed. The amount of translation, P(V„), 
depends on the particular impact velocity, V0. 

The resistive pressure can be determined from numerical or 
graphical differentiation of experimental P— Kdata through 
the relation 

g(v)^mv/A/(dP/dv). (5) 

The time corresponding to a given velocity can be estimated 
as 

(6) /= -m/A\ l/g(v) dv. 

'Naval Weapons Center, China Lake, Calif. 93555 
Manuscript received by ASME Applied Mechanics Division, July 2, 1985; 

final revision August 26, 1985. 

Errors associated with numerical or graphical integration limit 
accuracy of the time estimate. 

Discussion 
A technique has been described which allows determination 

of "instantaneous" penetration information from more easily 
obtained "final" penetration results. That is to say, if final 
penetration depth versus impact velocity data is available, 
then instantaneous penetration depth as a function of velocity 
for a given impact velocity can be generated. In addition, the 
resistive pressure and the time as functions of velocity can also 
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be determined. The technique is amenable to either numerical 
or graphical application. 

The assumption is made that the resistive pressure is a func­
tion of velocity only. More generally, this pressure will depend 
on time and/or depth in addition to velocity. A material with a 
memory (viscoelastic, viscoplastic, etc.) or a material with 
properties (density, strength, etc.) that vary in the penetration 
direction will violate this assumption. However, for penetra­
tion events for which the assumption applies, this technique 
allows extraction of additional useful information from test 
data. 
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Stability of Short Columns Subjected to 
Distributed Axial Loads1 

J. Rondal2 and R. Maquoi.3 The authors are to be con­
gratulated for their valuable contribution to the stability 
problem of columns subjected to distributed axial forces. 

Though of limited practical interest in civil engineering, the 
case of uniformly distributed axial forces is much more en­
countered in connection with offshore activities. 

The aim of the present discussion is, on the one hand, to 
bring additional theoretical reference values and, on the other 
hand, to comment briefly on the limitations of the results at 
the light of elastoplastic behavior of steel material. First, the 

'By Shastry, B. P., and Venkateswara Rao, G., and published in the March 
1985 issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 229-230. 

2Associate Professor, Institute of Civil Engineering, University of Liege, 
Quai Banning, 6, 4000 Liege, Belgium. 

3 Associate Professor, Institute of Civil Engineering, University of Liege, 
Quai Banning, 6, 4000 Liege, Belgium. 

last column of Table 1 in the author's paper can be completed 
by means of results published originally in reference [1], 

In addition, it must be emphasized that the critical buckling 
load is meaningful as long as it does not exceed the compres­
sion yield load [2, 3]. Thus, the range of low slenderness ratios 
is no more governed by the critical buckling stress and the 
author's conclusions are, therefore, questionable. The devia­
tion between these values of X and those for slender columns 
[1] is expressed in percents as: 

AX(percent) = 100 
X(slender column) - X (L/r) 

(1) 
X(slender column) 

and is plotted in Fig. 1. It decreases rapidly with L/r and tends 
to zero. Furthermore, for mild steel, which has/,, equal to 235 
MPa and is commonly used for steel construction in civil 
engineering, the transition between the squash load and the 
Eulerian critical load occurs for following slenderness ratio 

/.//•(mild steel) = IT V210,000/235 = 93.91 (2) 

For any kind of boundary conditions, the maximum 
discrepancy reaches only 1 percent, and can be disregarded 

Fig. 1 Relative discrepancy between author's values and values for 
slender columns 
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DISCUSSION 

(Fig. 1). For higher steel grades, for instance with a yield stress 
of 570 MPa, that is commonly used for casing and tubing, the 
discrepancy is about 3.5 percent and is still negligible. 
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Authors' Closure 

The authors appreciate Professors J. Rondal and R. Ma-
quois' interest in their paper and additional references cited 
and agree that yield criterion is to be considered while dealing 
with the stability of very short columns. However, as sug­
gested by the discussers, materials having high yield strength 
may represent columns with low L/r. For example, the higher 
grade steel quoted in the discussion represents a cantilever 
with L/r as low as 30. The theme of the paper was to provide 
stability parameters for a wide range of short columns and 
hence considered the range of L/r from 10 to 500 for the 
numerical results. The authors thank the discussers for the 
graphical representation of the numerical results for practical 
considerations. 

Sufficient Conditions for Small Particles to 
Hold Together Because of Adhesion Forces1 

J. Reed.2 In a recent article Fichman and Pnueli (1985) 
presented a particle impact-adhesion model for elastic-plastic 
impacts. There are some similarities between this model and 
another recent model (Rogers and Reed, 1984). The Fichman 
and Pnueli approach appears to be an improvement over 
Rogers and Reed since they calculate the limiting elastic veloc­
ity using a pressure distribution including adhesive forces 
whereas in Rogers and Reed adhesive forces are neglected. Un­
fortunately there is a serious error in their equations. 

Fichman and Pneuli's equation (7) has been incorrectly 
quoted from Johnson, Kendall and Roberts (1971). Conse­
quently, some of their subsequent equations are also incorrect. 
Equation (9) in Fichman and Pneuli is 

2d2 2 ( 6Trya\ l / 2 

TUT)
 (1) <5 = -

3R 

where 5 is the distance of approach of the centre of the two 
bodies, a, is the contact radius, R is the geometric radius of the 
two bodies in contact, y is the adhesive energy per unit area of 
both bodies and 

K-
(1 ^) ( i -V) 

where v is Poisson's ratio and E Young's modulus. 
In the limit where the adhesive forces are negligible the 

above equation should reduce to the classical Hertz equation 
(Timoshenko and Goodier, 1971) which is 

1 By M. Fichman and D. Pnueli, and published in the March 1985 issue of the 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 105-108., 

2Berkeley Nuclear Laboratories, CEGB, Berkeley, Gloucestershire GL13 
9PB, England. 

5=-
R 

(2) 

Obviously as y — 0 the Fichman and Pnueli equation gives <5 
— 2a2/3R which is not the correct limit. 

The Fichman and Pnueli equation (9) ought to be (as seen 
from Rogers and Reed, 1984, equation (13) or Barquins, 1983 
equation (7)) 

5=-
R 

2 (P.-Pp) 
3 Ka 

3R \ P, / 

(3) 

(4) 
3R 

where P0 is the applied load, and P , is given by 

P, = P0 + 3iryR + (6iryRP0 + (3iryR)2) (5) 

If the adhesive energy is negligible then P , = P0. 
Therefore, equation (4) approaches the Hertz solution as 
expected. 

The correct equations linking the critical elastic impact 
velocity, VeU and the elastic yield limit, p*, following the 
same method as Fichman and Pnueli, are 

-MVl, 

9K2n 

1 

1 [%i JPi -(67TY.RP1)
1/2][6P1 -(67T7PP!)172] 
P ]4/3 dP, 

9K2nRm 

and 

{•y Pl\ ~ 6(6^TP)1/2Pl/j + 9 iryR Pf/ ] 

±J^0pyi-(6.yR)"2Pr^) 

(6) 

(7) 

Equations (6) and (7) above ought to be used to link Ve\ and 
p* rather than equations (12) and (20) of Fichman and Pnueli. 

Because their equation (9) was incorrect this also means that 
the analysis used to calculate the plastic work in the annulus at 
the edge of the contact area epll (equations (23) to (32)) is also 
incorrect. 

Finally, the two energy balance equations ((21) and (22)) are 
misleading. We feel equation (22) has a typographical error in 
it. It would make better sense if it read 

eKIN — epl2 + H( eKIN — eei) ' ep\, 

Unfortunately, it is not clear anywhere in the article how epij is 
calculated. The energy balance criterion in equation (21) 
serves no purpose other than giving a sticking condition in an 
artificial situation (i.e. when the maximum pressure in the cen­
tre of the contact zone just equals the elastic yield limit). 
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(Fig. 1). For higher steel grades, for instance with a yield stress 
of 570 MPa, that is commonly used for casing and tubing, the 
discrepancy is about 3.5 percent and is still negligible. 
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Authors' Closure 

The authors appreciate Professors J. Rondal and R. Ma-
quois' interest in their paper and additional references cited 
and agree that yield criterion is to be considered while dealing 
with the stability of very short columns. However, as sug­
gested by the discussers, materials having high yield strength 
may represent columns with low L/r. For example, the higher 
grade steel quoted in the discussion represents a cantilever 
with L/r as low as 30. The theme of the paper was to provide 
stability parameters for a wide range of short columns and 
hence considered the range of L/r from 10 to 500 for the 
numerical results. The authors thank the discussers for the 
graphical representation of the numerical results for practical 
considerations. 

Sufficient Conditions for Small Particles to 
Hold Together Because of Adhesion Forces1 

J. Reed.2 In a recent article Fichman and Pnueli (1985) 
presented a particle impact-adhesion model for elastic-plastic 
impacts. There are some similarities between this model and 
another recent model (Rogers and Reed, 1984). The Fichman 
and Pnueli approach appears to be an improvement over 
Rogers and Reed since they calculate the limiting elastic veloc­
ity using a pressure distribution including adhesive forces 
whereas in Rogers and Reed adhesive forces are neglected. Un­
fortunately there is a serious error in their equations. 

Fichman and Pneuli's equation (7) has been incorrectly 
quoted from Johnson, Kendall and Roberts (1971). Conse­
quently, some of their subsequent equations are also incorrect. 
Equation (9) in Fichman and Pneuli is 

2d2 2 ( 6Trya\ l / 2 

TUT)
 (1) <5 = -

3R 

where 5 is the distance of approach of the centre of the two 
bodies, a, is the contact radius, R is the geometric radius of the 
two bodies in contact, y is the adhesive energy per unit area of 
both bodies and 

K-
(1 ^) ( i -V) 

where v is Poisson's ratio and E Young's modulus. 
In the limit where the adhesive forces are negligible the 

above equation should reduce to the classical Hertz equation 
(Timoshenko and Goodier, 1971) which is 

1 By M. Fichman and D. Pnueli, and published in the March 1985 issue of the 
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2Berkeley Nuclear Laboratories, CEGB, Berkeley, Gloucestershire GL13 
9PB, England. 

5=-
R 

(2) 

Obviously as y — 0 the Fichman and Pnueli equation gives <5 
— 2a2/3R which is not the correct limit. 

The Fichman and Pnueli equation (9) ought to be (as seen 
from Rogers and Reed, 1984, equation (13) or Barquins, 1983 
equation (7)) 

5=-
R 

2 (P.-Pp) 
3 Ka 

3R \ P, / 

(3) 

(4) 
3R 

where P0 is the applied load, and P , is given by 

P, = P0 + 3iryR + (6iryRP0 + (3iryR)2) (5) 

If the adhesive energy is negligible then P , = P0. 
Therefore, equation (4) approaches the Hertz solution as 
expected. 

The correct equations linking the critical elastic impact 
velocity, VeU and the elastic yield limit, p*, following the 
same method as Fichman and Pnueli, are 

-MVl, 
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and 

{•y Pl\ ~ 6(6^TP)1/2Pl/j + 9 iryR Pf/ ] 

±J^0pyi-(6.yR)"2Pr^) 

(6) 

(7) 

Equations (6) and (7) above ought to be used to link Ve\ and 
p* rather than equations (12) and (20) of Fichman and Pnueli. 

Because their equation (9) was incorrect this also means that 
the analysis used to calculate the plastic work in the annulus at 
the edge of the contact area epll (equations (23) to (32)) is also 
incorrect. 

Finally, the two energy balance equations ((21) and (22)) are 
misleading. We feel equation (22) has a typographical error in 
it. It would make better sense if it read 

eKIN — epl2 + H( eKIN — eei) ' ep\, 

Unfortunately, it is not clear anywhere in the article how epij is 
calculated. The energy balance criterion in equation (21) 
serves no purpose other than giving a sticking condition in an 
artificial situation (i.e. when the maximum pressure in the cen­
tre of the contact zone just equals the elastic yield limit). 
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Authors' Closure 

a) As pointed out by Reed, Fichman and Pnueli's (1985) 
work is an improvement1 on Rogers and Reed (1984). In­
deed, in addition to the elastic-plastic deformation at the 
center of the circle of contact, we have considered the plastic 
deformation at the edge of that circle. This plastic deforma­
tion always exists during impact, unlike plastic dissipation at 
the center of the circle, which appears only after the yield 
point there has been reached. We do not show how to 
calculate ep/l, the dissipation work at the center of the circle, 
because it is not needed to obtain the condition for the two 
particles sticking together. Once the yield point at the center 
has been reached-any surplus kinetic energy is dissipated. 
Thus, only the energy dissipated at the edge of the circle, ep,2, 
is required. This result has a very interesting implication: par­
ticles with diameters smaller than some critical values always 
stick together, whatever their velocities might be. 

b) We regret that there is a type-setting error and the second 
term on the right-hand side of our equation (7) has been omit­
ted. This equation (7) should read: 

P0=-k8ai~^- (1) 

This equation agrees with Reed's comments. 
c) Another typographical error has caused a 2/3 constant to 
appear in the first term of our equation (9), which corrected 
should read (the whole equation): 

. a\ 2 /67ir i . 

Unfortunately, this error was made before the paper was sub­
mitted, and influenced other expressions. R in equations (11), 
(12), (29) 4-(32) must be corrected to: 

d) Finally, Rogers and Reed (1984) does not have an equa­
tion (13) in it, and equation (5) in Reed's Comments should 
be: 

Pl=P0 + 3TyR + ~J6ITRP0 + (S-KyRf 

and not as written; which just shows that mistakes will hap­
pen. In conclusion, we are very grateful to Dr. Reed for his 
comments, which did bring about these necessary corrections. 

References 

Same as in Reed's Comments. 

A New Rate Principle Suitable for Analysis 
of Inelastic Deformation of Plates and 
Shells2 

J. N. Reddy3. Much of the paper is a review of well-known 
variational principles of elasticity which can be found in a 
number of books (e.g., see Oden and Reddy, 1976). The 'new 
variational principle' presented in the paper is not new, and 
can be found in the monograph by Oden and Reddy (1976). 
More specifically, the functional UM in equation (11) of the 
paper is exactly the same as that in equation (4.115) on page 
115 of this reference. The monograph also contains a number 

But do not rely on it. Their paper was submitted long before Rogers and 
Reed's was published. 

By S. Mukherjee and F. G. Kollmann, and published in September 1985 
issue of ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 533-535. 

Clifton C. Garvin Professor of Engineering Science and Mechanics, Virginia 
Polytechnic Institute and State University, Blacksburg, VA 24061. 
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of related (fourteen in total) functionals for linear elasticity 
(on pp. 114-119) (Oden and Reddy, 1974), and variational 
principles for viscoelasticity (on pp. 143-169) and nonlinear 
elasticity and inelasticity (on pp. 173-189). Also, the title of 
the paper is not justified because the authors have not 
presented any analytical discussion of the specialization of the 
elasticity principles to plates and shells. Only a qualitative 
discussion of a possible extention is presented. 
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Authors' Closure 

We thank Professor Reddy for his interest in our work [1]. 
We regret that the work of Oden and Reddy did not come to 
our attention prior to publication of our paper and that we 
ended up rediscovering their variational principle. The review 
of existing variational principles, which occupied half a page 
of our paper, was given in order to set the stage for what was 
to follow. These, of course, were clearly referenced ([5] and 
[6] of our paper). Further, we purposely restricted ourselves, 
in this paper, to a qualitative discussion of the application of 
our principle to inelastic shells. We have indicated in the paper 
that "a strictly two-dimensional formulation containing vec­
tor and tensor fields referred to the base vectors of the 
undeformed shell midsurface" would be published elsewhere 
([8] of our paper). This paper [2] has just been published. Pro­
fessor Reddy had communicated his concern about our paper, 
in a private letter to one of us, soon after it was published last 
September. We immediately replied to him and sent him a 
preprint of our Acta Mechanica paper. In view of this, we are 
really quite surprised to find his continuing concern regarding 
an analytical treatment of this variational principle for in­
elastic shells, as voiced in the last two sentences of his 
discussion. 
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The Problem of Minimizing Stress 
Concentration at a Rigid Inclusion1 

G. S. Bjorkman, Jr.2 and R. Richards Jr.3 The objective 
of this paper, as stated by Professor Wheeler, "is an op­
timization problem aimed at finding the best shape for a rigid 
inclusion imbedded in an elastic matrix of infinite extent, if 
the stress concentration is to be minimized." It should be 
emphasized that the solution to this problem had already been 
obtained earlier by the writers (Bjorkman and Richards, 1979; 
Richards and Bjorkman, 1980). In these two works the writers 
found that the rigid-inclusion shape which satisfied the 
harmonic field condition (i.e., the condition that the first 
invariant of the original stress (or strain) field remain un­
perturbed everywhere in the field) in a biaxial field is an 
ellipse whose axes are inversely proportional to the principal 
normal strains of the original field (i.e., alb = t2U{) 
irrespective of plane stress or plane strain. This is precisely the 
result Professor Wheeler obtains in equation (4.1) in less-

1 By L. Wheeler and published in the March 1985 issue of the ASME JOURNAL 
OF APPLIED MECHANICS, Vol. 52, pp. 83-86. 
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DISCUSSION 

Authors' Closure 

a) As pointed out by Reed, Fichman and Pnueli's (1985) 
work is an improvement1 on Rogers and Reed (1984). In­
deed, in addition to the elastic-plastic deformation at the 
center of the circle of contact, we have considered the plastic 
deformation at the edge of that circle. This plastic deforma­
tion always exists during impact, unlike plastic dissipation at 
the center of the circle, which appears only after the yield 
point there has been reached. We do not show how to 
calculate ep/l, the dissipation work at the center of the circle, 
because it is not needed to obtain the condition for the two 
particles sticking together. Once the yield point at the center 
has been reached-any surplus kinetic energy is dissipated. 
Thus, only the energy dissipated at the edge of the circle, ep,2, 
is required. This result has a very interesting implication: par­
ticles with diameters smaller than some critical values always 
stick together, whatever their velocities might be. 

b) We regret that there is a type-setting error and the second 
term on the right-hand side of our equation (7) has been omit­
ted. This equation (7) should read: 

P0=-k8ai~^- (1) 

This equation agrees with Reed's comments. 
c) Another typographical error has caused a 2/3 constant to 
appear in the first term of our equation (9), which corrected 
should read (the whole equation): 

. a\ 2 /67ir i . 

Unfortunately, this error was made before the paper was sub­
mitted, and influenced other expressions. R in equations (11), 
(12), (29) 4-(32) must be corrected to: 

d) Finally, Rogers and Reed (1984) does not have an equa­
tion (13) in it, and equation (5) in Reed's Comments should 
be: 

Pl=P0 + 3TyR + ~J6ITRP0 + (S-KyRf 

and not as written; which just shows that mistakes will hap­
pen. In conclusion, we are very grateful to Dr. Reed for his 
comments, which did bring about these necessary corrections. 

References 

Same as in Reed's Comments. 

A New Rate Principle Suitable for Analysis 
of Inelastic Deformation of Plates and 
Shells2 

J. N. Reddy3. Much of the paper is a review of well-known 
variational principles of elasticity which can be found in a 
number of books (e.g., see Oden and Reddy, 1976). The 'new 
variational principle' presented in the paper is not new, and 
can be found in the monograph by Oden and Reddy (1976). 
More specifically, the functional UM in equation (11) of the 
paper is exactly the same as that in equation (4.115) on page 
115 of this reference. The monograph also contains a number 

But do not rely on it. Their paper was submitted long before Rogers and 
Reed's was published. 

By S. Mukherjee and F. G. Kollmann, and published in September 1985 
issue of ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 533-535. 

Clifton C. Garvin Professor of Engineering Science and Mechanics, Virginia 
Polytechnic Institute and State University, Blacksburg, VA 24061. 
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of related (fourteen in total) functionals for linear elasticity 
(on pp. 114-119) (Oden and Reddy, 1974), and variational 
principles for viscoelasticity (on pp. 143-169) and nonlinear 
elasticity and inelasticity (on pp. 173-189). Also, the title of 
the paper is not justified because the authors have not 
presented any analytical discussion of the specialization of the 
elasticity principles to plates and shells. Only a qualitative 
discussion of a possible extention is presented. 
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Authors' Closure 

We thank Professor Reddy for his interest in our work [1]. 
We regret that the work of Oden and Reddy did not come to 
our attention prior to publication of our paper and that we 
ended up rediscovering their variational principle. The review 
of existing variational principles, which occupied half a page 
of our paper, was given in order to set the stage for what was 
to follow. These, of course, were clearly referenced ([5] and 
[6] of our paper). Further, we purposely restricted ourselves, 
in this paper, to a qualitative discussion of the application of 
our principle to inelastic shells. We have indicated in the paper 
that "a strictly two-dimensional formulation containing vec­
tor and tensor fields referred to the base vectors of the 
undeformed shell midsurface" would be published elsewhere 
([8] of our paper). This paper [2] has just been published. Pro­
fessor Reddy had communicated his concern about our paper, 
in a private letter to one of us, soon after it was published last 
September. We immediately replied to him and sent him a 
preprint of our Acta Mechanica paper. In view of this, we are 
really quite surprised to find his continuing concern regarding 
an analytical treatment of this variational principle for in­
elastic shells, as voiced in the last two sentences of his 
discussion. 
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The Problem of Minimizing Stress 
Concentration at a Rigid Inclusion1 

G. S. Bjorkman, Jr.2 and R. Richards Jr.3 The objective 
of this paper, as stated by Professor Wheeler, "is an op­
timization problem aimed at finding the best shape for a rigid 
inclusion imbedded in an elastic matrix of infinite extent, if 
the stress concentration is to be minimized." It should be 
emphasized that the solution to this problem had already been 
obtained earlier by the writers (Bjorkman and Richards, 1979; 
Richards and Bjorkman, 1980). In these two works the writers 
found that the rigid-inclusion shape which satisfied the 
harmonic field condition (i.e., the condition that the first 
invariant of the original stress (or strain) field remain un­
perturbed everywhere in the field) in a biaxial field is an 
ellipse whose axes are inversely proportional to the principal 
normal strains of the original field (i.e., alb = t2U{) 
irrespective of plane stress or plane strain. This is precisely the 
result Professor Wheeler obtains in equation (4.1) in less-

1 By L. Wheeler and published in the March 1985 issue of the ASME JOURNAL 
OF APPLIED MECHANICS, Vol. 52, pp. 83-86. 
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Review of Progress in Quantitative Nondestructive Evalua­
tion. Vol. 3A and 3B. Edited by D. O. Thompson and D. E. 
Chimenti. Plenum Publishing Corp., New York, 1984. 1489 
pages. Price $225. 

REVIEWED BY S. K. DATTA1 

This volume contains the texts of presentations at the an­
nual Review of Progress in Quantitative NDE held at the 
University of California, Santa Cruz, Aug. 7-12, 1983. There 
are 142 papers and the transcript of the panel discussion on in­
version and reconstruction. The editors currently noted in the 
Preface: "This Review, possibly the most correctly com­
prehensive annual symposium in NDE, emphasizes both basic 
research and early engineering applications; it provides a 
valuable forum for the transfer of technical information." In 
this volume the reader will learn about the latest developments 
in NDE modeling and applications. Because the emphasis here 
is on the current state of the art, the papers tend to be sketchy. 
However, overall they provide a valuable source of informa­
tion for those involved in NDE research and applications. 

The Volume is organized into 9 chapters dealing with the 
following topics: NDE Reliability, Ultrasonics (Section A: 
Probability of Detection; Section B: Scattering; Section C: 
Sizing; Section D: Transducers; Section E: Signal Processing; 
Section F: Imaging and Reconstruction), Eddy Currents (Sec­
tion A: Probability of Detection; Section B: Modeling; Sec­
tion C: Sizing; Section D: Probes), Acoustic Emission, Ther­
mal Wave Imaging, and Optical Methods, Inverse Methods, 
Composite Materials, Material Properties, Acoustoelasticity, 
and Residual Stress. In addition to these there are two 
chapters dealing with new techniques and new NDE Systems. 

The reviewer believes that this volume will be a useful addi­
tion to the libraries of the practitioners in NDE. 

Handbook of Heat Transfer Fundamentals. Second Edition. 
By W. M. Rohsenow, J. P. Hartnett and E. N. Ganic. 
McGraw-Hill, New York, 1985. 1440 pages. Price $95. 

REVIEWED BY P. D. RICHARDSON2 

Heat transfer plays an important role in almost every 
technological process. Experiment and analysis in this subject 
flourished even in the 19th century. Having personally entered 
the subject in the 1950's, and having prepared very recently a 
chapter for another Handbook, I approached this review with 
relish. 

As subjects grow and develop they go through phases. In 
heat transfer the use of dimensional analysis led to simplifying 
approaches - parametric representation of differential equa-

Professor, Department of Mechanical Engineering, University of Colorado, 
Boulder, CO 80309. Fellow ASME. 

Professor of Engineering, Brown University, Providence, RI 02912. Fellow 
ASME. 

tions for theoretical work, and use of dimensionless numbers 
for plotting experimental data - which found their summaries 
in McAdams' "Heat Transmission" (1933). This work and its 
later editions served as handbooks as well as demonstrations 
of the applicability of analytical methods to practical prob­
lems. The period 1945-1965 brought new technological 
challenges - supersonic flight, space flight and nuclear reac­
tors prominent among them - and a new tool, the digital com­
puter. This latter was a foil for additional experiments of im­
proved accuracy because comparison with more accurate and 
reliable calculations was possible. This applied particularly to 
laminar forced convection. (Turbulent forced convection also 
benefited from introduction of computational approaches, 
but accuracy and broad reliability, while improved, do not 
match that for laminar flows.) The 197-page Chapter 8 
(Forced Convection, External Flows) illustrates this time 
frame in its references: for the 1950's there are 8 citations per 
year, rising in the early 1960's to about 15 per year and then 
falling progressively to 1.5 per year in the 1980's. By contrast, 
the surge in Numerical Methods in Heat Transfer (Chapter 5) 
is more recent; citations for the early 1960's run close to 1 per 
year but accelerate in the later 1960's and run close to 10 per 
year in the early 1970's. A major factor in this was the in­
troduction of finite element methods. 

In 1973 the first edition (and single volume) of the Hand­
book of Heat Transfer was published. Research has pro­
gressed since then. The volume under review is nearly 1500 
pages long, 2 1/2 inches (63 mm) thick, in English and SI 
units, with 14 Chapters, and is the first of two volumes for the 
second edition. It has almost 700 illustrations. A fine example 
of how well subject matter has been updated is given by War­
ren Rohsenow in his 94-page Chapter 12 on Boiling. The 
studies of the 1960's (which included major advances in 
phenomenological understanding of boiling) are represented 
by over 10 citations per year, and even in the latter half of the 
1970's the citations run about 8 per year. Chapters not men­
tioned already cover Mathematical Methods, Conduction, 
Thermophysical Properties, Natural Convection, Forced Con­
vection (Internal Flows), Rarefied Gases, Electric and 
Magnetic Fields, Condensation, Two-Phase Flow (each of the 
latter four topics being covered is less than 50 pages), and 
Radiation. Chapter authors are all distinguished researchers. 

In a volume of this scope and purpose authors need to pro­
vide perspective, physical understanding, analytical represen­
tation, results for important cases or situations (including 
equations, graphs, or tables which can be used directly by the 
reader) and an entry to the literature. The authors have done 
this well. However, it is a handbook and not an encyclopedia: 
There are problems within the scope of the chapters for which 
solutions have been published but which are not represented 
here. The subject index of roughly 2000 line entries is thin; the 
most useful indexes often run to 2-2.5 entries per page of text, 
at which level this volume would have 3000 or more line en­
tries. There is no author index. A reader-friendly feature is the 
almost completely uniform nomenclature throughout. 
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BOOK REVIEW/RECEIVED 

The chapter on thermophysical properties, curtailed from 
that in the first edition, should be different by giving uniform­
ly the latest internationally-agreed property data and by giving 
information for modern materials: e.g., Table 65, reproduced 
from the 1950's, includes in its "selected nonmetals" none of 
the polymers in widespread use in the 1980's. One may 
perhaps allow use of outdated material properties in an 
elementary text where they will be used only in exercises: but 
in a handbook I would hope to find the currently most ac­
curate values. The page of references on Fickian interdiffusion 
coefficients could have been saved by citing T. R. Marrero and 
E. A. Mason, J. Phys. Chem. Ref. Data, Vol. 1, 1972, pp. 
3-118, which reviews them. 

Into whose hands would I place this Handbook? Certainly 
students and colleagues who might want a direct introduction 
to specific topics; also research engineers, consultants and 
other technically adept engineers. For some problems it is 
enough; for others, it helps provide an entry to the literature, 
especially from the 1955-1980 era. 

Continuum Theory of the Mechanics of Fibre-Reinforced 
Composites. Edited by A. J. M. Spencer. Springer-Verlag, 
New York, 1984. 284 pages. 

REVIEWED BY Z. HASHIN1 

This book contains lectures given by A. H. England, D. F. 
Parker, A. C. Pipkin, T. G. Rolgers and A. J. M. Spencer on 
various aspects of the title subject matter at the International 
Centre for Mechanical Sciences (CISM) in Udine, Italy in 
1981. The subject may be appropriately defined as mechanics 
of idealized strongly anisotropic materials. A basic assumed 
characteristic of such materials is inextensibility, i.e., zero 
strain, in one or more directions (fiber directions) (although 
Pipkin considers a case where the tensile strain but not the 
compressive strain vanishes). Another often assumed 
characteristic is incompressibility. 

The first two chapters by Spencer, and Rogers are con­
cerned with inextensible and incompressible materials. 
Spencer discusses constitutive relations for elasticity and 
plasticity and Rogers is concerned with finite deformations 
and the intrinsic stress singularities and discontinuities which 
arise in these kinds of idealized materials. The third chapter 
by England is concerned with plane problems for inextensible 
and incompressible linearly elastic strongly anisotropic solids. 

Professor, Department of Solid Mechanics, Materials and Structures, Tel-
Aviv University, Tel-Aviv, Israel. Fellow ASME. 

1. Advances in Heat Transfer, Volume 17, edited by 
James P. Hartnett and Thomas S. Irvine, Jr. Academic Press, 
Inc., Orlando, Florida, 1985. 360 pages. Price $79.00. 

2. Dynamic Fracture, edited by M. L. Williams and W. 
G. Knauss. Martinus Nijhoff, The Netherlands, 1985. 312 
pages. Price $49.00. 

3. Handbook of Mechanics, Materials, and Structures, 
edited by Alexander Blake. John Wiley & Sons, Inc., 
Somerset, New Jersey, 1985. 710 pages. Price $64.50 

4. Shell Theory, by Frithiof I. Niordson. Elsevier Science 
Publishers, The Netherlands, 1985. 408 pages. Price $49.00. 

Pipkin in the fourth chapter discusses stress channelling and 
boundary layers in plane linear elastic deformation on the 
basis of inextensibility but not incompressibility, demon­
strating that the stress singularities and discontinuities en­
countered in the idealized material are limiting cases of high 
stress gradients in strongly anisotropic materials. The fifth 
chapter by Rogers is concerned with mechanics of helically 
wound fiber reinforced cylinders' when the material is inex­
tensible in fiber directions and incompressible. This is a 
subject of engineering significance and it appears that the 
incompressibility assumption may introduce significant 
inaccuracies for the elastic behavior of actual fiber composites 
while the inextensibility assumption would be acceptable only 
for high modulus graphite/epoxy composites. In Chapter 6 
Pipkin discusses fracture mechanics for inextensible 
materials. I believe this to be of particular interest in view of 
the relative simplicity of the theory in comparison with usual 
fracture mechanics of anisotropic materials. The test of the 
theory is of course experimental verification for high modulus 
fiber composites. 

In Chapter 7 Spencer discusses reinforcement of holes in 
plates by fiber reinforced disks and Chapter 8, written by 
Parker, is concerned with wave propagation in inextensible 
and incompressible materials. Spencer in chapter 9 discusses 
dynamics of rigid-plastic beams and plates. He presents a 
number of simple solutions to important problems and it 
would seen that the simplified theory for idealized materials 
should be of particular value for this subject matter. Finally 
Pipkin in Chapter 10 generalizes Rivlin's theory of inex­
tensible networks to the case when the fibers are inextensible 
in tension but not in compression thus taking into account in 
simple and elegant fashion the microbuckling of stiff fibers 
within a soft matrix. 

The editor and the authors are to be commended for having 
succeeded in joining the various chapters organically together 
and they have thus been able to present a coherent and logical 
account of this interesting and important area of the 
mechanics of solids. 

Finally, a semantic comment: The subject presented is 
mechanics of idealized strongly anisotropic materials and its 
description as mechanics of fiber reinforced materials is not 
always appropriate. The assumption of inextensibility would 
be quite inaccurate for glass/epoxy and metal matrix fiber 
composites and should probably be restricted to high modulus 
graphite/epoxy and fiber reinforced rubber. The assumption 
of incompressibility would not be adequate for linear elastic 
behavior and is much more appropriate for plastic strains and 
for fiber reinforced rubber. 

5. Methods of Structural Safety, by H. O. Madsen, S. 
Krenk, and N. C. Lind. Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1986. 403 pages. 

6. Parametric Random Vibration, by R. A. Ibrahim. 
John Wiley & Sons, Inc., 1985. 342 pages. Price $59.95. 

7. Numerical Methods in Heat Transfer, Vol. Ill, edited 
by R. W. Lewis and K. Morgan, John Wiley & Sons, Inc., 
Somerset, New Jersey, 1985. 294 pages. Price $54.95. 

8. Elastic-Plastic Fracture Mechanics, edited by Lars 
Hannes Larsson. D. Reidel Publishing Company, The 
Netherlands, 1985. 527 pages. Price $64.00. 
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