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Impact With Friction

J. B. Keller

Departmerits of Mathematics
and Mechanical Engineering,
Stanford University,
Stanford, Calif. 94305

A theory of the impact or collision of two rigid bodies, taking account of friction, is
presented. It determines how the direction of sliding varies during the impact, which
must be known fo calculate the direction of the frictional force and thence the fric-
tional impulse. This is accomplished by analyzing the equations of motion of the

bodies during the collision. The normal impulse is determined by using a coefficient
of restitution. When the direction of sliding is constant throughout the collision, the
theory agrees with that given by Whittaker, which is correct only in this case.

1 Introduction

In rigid body mechanics, a collision between two bodies is
treated as instantaneous, with contact at a single point. Each
body is assumed to exert an impulsive force on the other at the
point of contact. In the absence of friction the impulse of this
force can be calculated in terms of a coefficient of restitution.
But in the presence of friction there is no satisfactory method
of determining the impulse within the framework of rigid
body mechanics.

To develop one we give up the idea that the collision is in-
stantaneous, and assume instead that it has a duration ¢, small
compared to a typical time scale 7" of the motion before or
after the collison. From the equations of motion of the two
bodies during the collision we determine their relative tangen-
tial velocity at the point of contact. This slip velocity and the
law of friction yield the time varying frictional force exerted
by each body on the other. The integral of this force is the fric-
tional impulse delivered during the collision.

When the direction of slip remains constant throughout the
collision, the frictional impulse is in the slip direction and its
magnitude is just the coefficient of friction times the
magnitude of the normal impulse. This result provides the
basis for Whittaker’s (1904) method of treating impacts with
friction. However, he did not note that it holds only when the
slip direction stays constant during the collision, and is incor-
rect otherwise. Its incorrectness became evident when Kane
(1984) applied it to a compound pendulum striking a fixed sur-
face. He found that for certain parameter values, Whittaker’s
method led to an increase of energy. The explanation is that
the slip velocity reverses its direction during the impact, so
Whittaker’s method is inapplicable.

Our calculation has the intrinsic difficulty associated with
the motion of two rigid bodies, and the added difficulty that
the normal force is an unknown function of time. To over-
come the first difficulty, we take advantage of the fact that the
positions of the bodies hardly change during the collision.
Formally we do this by solving the problem asymptotically as
t./T tends to zero. To overcome the second difficulty we use
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the normal impulse up to time ¢ as the independent variable,
instead of 7 itself. In this way we climinate the normal force
from the equations of motion.

The problem is formulated and simplified via asymptotic
considerations in Section 2. Then the normal impulse is in-
troduced as the new independent variable and the tangential
impulse is expressed as an integral of the slip direction in Sec-
tion 3. The slip direction is found in Section 4. The resulting
theory is summarized in Section 5, and it is applied to some
special cases in Section 6.

Some interesting problems of impact with friction are con-
sidered in the mechanics text of Kilmister and Reeve (1966).
However, one of their analyses is marred by an error.!

2 Formulation

Let us consider two rigid bodies labelled j=1 and j=2
which collide at the time ¢’ =0. Then their center of mass
velocities U; and their angular velocities ©; will change discon-
tinuously from their values U; and {}; just before the colli-
sion to their values Uand Q" just after the collision. The goal
of the theory of collisions is to determine the jumps
[Ul=Uf - U and [Q;]1=9} - Q7.

To determine thém we introduce the ,contact force
((— 1Y/t )F(t' /t,) exerted on body j at the point of contact by
the other body during the collision, which we assume to start
at¢’ =0and toend at ¢’ =¢,. The factor (— 1) guarantees that
the forces exerted by the bodies on each other are equal and
opposite. The factor 1/¢, makes the magnitudes of the forces
large enough to have a significant effect during the collision.

The contact force depends upon the velocities of the bodies
during the collision, so it is necessary to analyze them.
Therefore, we denote by M the mass of body J, by J; its cen-
tral moment of inertia tensor, by F§(¢'/T) the external force
applied at its center mass, and by G¢(¢'/T) the external torque
on it, Here T is a characteristic time on which the external
forces and torques vary. Then the equations of motion are

1on pages 190 and 191 the authors treat the problem of a lamina falling ver-
tically, without rotation, in a vertical plane and hitting a fixed horizontal plane.
They solve it correctly by Newton’s method, but incorrectly by Poisson’s
method. Their error is to omit v’ from the first equation on page 191, which
should be m(¥ —v’)=R’, and to ignore the condition of zero normal velocity at
the end of the compression phase, which is v’ —w’(a” — bz)l/Z =0. When these
errors are corrected, the result is the same as that found by Newton’s method.
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au; (-1y t’ (z"
Gt ) e () e
d(J,Q) (—1y t >
' . Rf(T
¢ ¢ ,
xF( r )+Gj( T ) j=1,2 (2.2)

In (2.2) R;(¢’/T) is the vector from the center of mass of body
J to the point of contact.

The concept of impact or collision is based on the assump-
tion that e=¢,/T is small. To study the motion during the col-
lision we introduce the new dimensionless time variable
{=t'/t, and rewrite (2.1) and (2.2) as

U .
M; fidt’ =(— 1YF(t) +eTF(et),

a(Jsy)

dt

The quantities U{¢, €), Q;(¢, €), J;(e?, €) and R(e¢, €) depend

upon ¢ as well as upon ¢£. We assume that they have limits as ¢

tends to zero. Therefore, we let e tend to zero in (2.3) and (2.4)
to obtain the following equations for these limits:

av,
o~ (- YFW,

2.3)

(— 1Y R,(et) X F(t) + €TGE(et). 2.4)

M, @.5)

dQ; .
J;(0) thz(_ 1Y R;(0) X F(£). (2.6)

We see that J;(0) and R;(0) are constant in (2.6) so we shall
just write J; and R;. The external forces and torques do not
occur in these equations, which hold only during the collision.
Since t=1¢'/t, vanishes at ' =0, the initial conditions are
UO=U, 20=0. @7
Now ¢=1at ¢’ =/, so the values U;" and /" after the colli-
sion are given by
Ur =U(1, Qf =9;(1). 2.8)

Then the jumps in U; and ©; during the collision, obtained by
integrating (2.5) and (2.6) from t=0 to #=1 and using (2.7)
and (2.8), are

(2.9)
(2.10)

[U]=(-1yM; 1
[2,]=(- YJ; ' ®; x1).
Here 7is defined by

1
I= So F(ndt, 2.11)

3 Determination of 7

To find I we denote by n the unit normal to the surfaces of
the two bodies at the point of contact, pointing into body 2. It
is independent of f in the limit e=0. Then we write N(f) = ne»
F(t) for the normal component of F. The integral of N(¢) from
0O'to t is the normal component of impulse exerted upon body 2
up to time ¢, which we denote by 7(¢):

t
()= SO N(s)ds. 3.1

In terms of 7 we can formulate Poisson’s version of the
theory of impact. First we introduce u(¢), the relative velocity
of the two bodies at the point of contact, defined by

cu)=Uy +Qy X Ry — (U +Q, XRy). (3.2)
Then we let ¢, be the time when u(?) = nsu(?) vanishes:
Un(t) =0 3.3)

2/Vol. 53, MARCH 1986

The interval from t=0 to t=t¢, is the compressive phase of the
collision, and during it the normal impulse on body 2 is 7(¢,).
The subsequent interval, from ¢=/{, to £=1, is the phase of
restitution during which the normal impulse on body 2 is
7(1) — 7(fy). Poisson’s hypothesis is that the latter impulse is e
times the former, i.e., 7(1) — 7(¢,) = er(Z,), where e is the coeffi-
cient of restitution. Thus

(1) =1+ e)7(ty)-
Since n+l=1(1), (3.4) yields the normal component of 7.
The tangential part of the contact force is due to friction. It
is proportional to the normal force N when the two bodies are
sliding relative to one another, so we shall write

FO)=N@)[n+f0), nf)=0. (3.5

The tangential vector f{¢) is given by the laW of friction, which
holds for N=0:

3.4)

f=—phg if up#0,
Ifl=

Here p is the coefficient of sliding friction, u; is the tangential
part of u(?), and i is a unit vector along w4

3.6
if uT=0. ( )

3.7

~ u .
Uur=u—Wen)n, uy= | L ur#0.

url

Now use (3.5) for F with f=—puid; in (2.11). Since
N(Hdt=dr, as (3.1) shows, we use 7 as the integration variable
and write #, as a function of 7. In this way we get, with

7, =7(t,),
I=7()n— [,LS

Finally we substitute the result (3.8) for 7 into (2.9) and (2.10)
to get

1= 1M} {1 +omn -k

(1) (1+eyrg

Ar(Ddr=(1+e)ron— ,ILS dp(rydr. (3.8)

0 0

(1+ayrg

ﬁT(T)dT} R 3.9

0

(1+eyrg

@)= (Ryx [ remn—p|  drar]). 6.10)

0

4 The Slip Direction i ,()

Our results (3.9) and (3.10) involve the slip direction #,(7)
and the normal impulse 7, imparted during the compressive
phase. To find them we differentiate (3.2) and use (2.5) and
(2.6) to get

du 2
- =2{1\4!»‘1F+(.IJ»‘1[R/-><F])XRJ~].
j=
Next we use (3.5) in (4.1) and divide by N, to obtain

4.1

1 du

2
N = A M D+ U R X (e ADXR; ) (4D

j=1
From (3.1) we see that N~ 1d/dt=d/dr, so we introduce 7 as

a new independent variable in place of ¢, and (4.2) becomes

2

Y (M7 (4 )+ U7 R X (n+ HD X R, ). (4.3)

j=1

The initial value of u(7) is obtained by using (2.7) in (3.2) and

noting that £= 0 corresponds to 7= 0. In this way we get

u(0)=Uz +95 X R, — Uy —Qf XR,. (4.4)

To solve (4.3) we split it into its normal and tangential parts

by multiplying it by n- and (1 — nn+), respectively, which gives

du
dr

diy

2
=M M Yo ne (U R x (n+ N X R}, (4.5)

j=1

Transactions of the ASME
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dur
dr

2
= Y M7+ (1 —nne )7 Ry X+ HDXR;),  (4.6)

j=1

The initial values u,(0) and u(0) are the normal and tangen-
tial parts of the right side of (4.4).

When u{7)#0, (3.6) yields f= —piir. Upon using this in
(4.5) and integrating from 0 to 7 we get

2
U (1) = un(0) + (M7 + M5 7 + 2 n

Jj=1

{07 [ (e s ]) xR} 07

By using (4.7) in (3.3) we obtain the following equation for
7o =17(4):

2
(M + My 7o+ Z:ln-{(Jj—l &,
=

0
x (nro—«ugo aT(T')dT'>]) xR,} ~ —upy0). (48
Next we set f= — piiy in (4.6) which becomes
du .
—L = — (M + M iig(7)
dr
2
+ 3 (1=nn) (7 IR X (n— pi)) X R; ) 4.9)
j=t
From (4.4) we get the initial condition
ur0)=(1—nn}Us +9Q5 XR,— Ui —Qf XR,). (4.10)

These equations, (4.9) and (4.10), determine #,(r) for
Os7r=(l+e)r.

To solve (4.9) we introduce the constant vector a and the
two-by-two constant matrix B defined by

2
a= Y, (1—nn){J7 ' [R;x n)) X R}, @.11)
j=1
Biip= —u(M7 '+ My )i
2
+u Y (1—nne) (R x (U5 [R; x di7]). 4.12)
j=1
Then (4.9) takes the form
M7 _ 4y T (4.13)
dr lugl

Next we write u; = (pcosf, psinf) where p=lu| and 6 is an
angle in the tangent plane at the point of impact. Then we can
rewrite (4.13) as

d, .
L a,cos + a,sinf + B, cos20

dr
+ (B, + By, )sinfcost + B,,sin?0 = g(§), 4.14)
do .
P =" a,sind + a,cost — (B, — B,,)sinfcost
-
— B,sin?8 + B, cos?0 = h(6) 4.15)

By eliminating p from these two equations we get an equation
for @ which has the solution
8 -

1 9
——— elB) 8(0”)/h(®")d8” 39 1

r=00) |

Then we find

4.16)

Journal of Applied Mechanics

p(7) = p(0)eIa8) 2@/ 8o 4.17)

The solutions (4.16) and (4.17) determine 8(7) and p(7), and
thus u,(7). They are valid provided that A[8(0)] 0, because
the integrals diverge in that case. However, then 6(7) = 6(0) and
p increases linearly in 7, as we shall see in section 6.

These results hold provided that u,(7) does not vanish. If
ur(7*)=0 for some 7* satisfying 7(1)>7* =0, we much check
to see if u(7) will remain zero for 7=7*. To do so we set
duy/dr=0 in (4.6) and solve for f. If the solution f satisfies
(3.6), i.e., if Ifl =p, then uz(r) will remain zero and f will re-
main constant for r=7*. Then in the preceding equations
(3.8)-(3.10) we must replace

*

(1+e)rg T
’uSo tp(7)dr by ﬂj‘o Apndr+[(1 +eyrg— 1. (4.18)
A corresponding change must be made in (4.8) if 7* <7,.

5 Summary of the Theory
We can now summarize our theory as follows:

(1) Calculate the slip velocity uy(r) from (4.16) and (4.17)
for 0<7=<(1+e)7y, with 7, the solution of (4.8).

(2) Evaluate the jumps [U;] and [Q;] from (3.9) and (3.10).

(3) If up(r*)=0, check to see whether or not u,(7) remains
zero for 7> 7* by the procedure in the preceding paragraph. If
uy does remain zero make the replacement (4.18) in the ex-
pressions for the jumps, and a corresponding change in (4.8) if
<79,

The theory involves two material constants: the coefficient
of the restitution e and the coefficient of friction . The main
difficulty in using this theory arises in calculating u,-. We shall
now illustrate how to use the theory in some special cases.

6 Applications

(a) Coustant Slip Direction.
yield

Suppose that (4.9) and (4.10)

dur(0)
dr
Then u(r) remains parallel to u(0) and the slip direction

i(r) stays constant until u;(7) vanishes at r=r*, Thus the
solution of (4.9) is

parallel to u,(0). 6.1)

du0
ur(r)=us(O)+7 L;T( ) , Os7=<7* 6.2)
T
Then (4.7) also yields the simple result
dun(0
up(r) = up(0) + 7 u;'( ), O=r=7*, 6.3)
T

Now we can use (6.3) in (3.3) provided that 7* =7, and
solve for 7, with the result
Ta = _._M_ T, <7*
0T dun©)/dr” 0T
To find 7* we use (6.2) to write u,(7*) =0, multiply by u,(0)
and solve to get

™ = — 13(0)/u7(0)sdu(0)/dr.

(6.4)

6.5)

If 7*>(1+e)7y, so that u; does not vanish during the colli-
sion, the jumps (3.9) and (3.10) simplify to

= —(—1VYM- _.ﬂ —ul
[Ul=~(~-1YM;'(1+e) dun0)/dn (n—pii 0), (6.6)

N un(0) _ o
[Q]=—-(-1y(1+e Qun©O)/dr J R X (n— pii r(0))]. (6.7)

The right side of (6.6) is (—1YM; ', so we see that the

MARCH 1986, Vol. 53/ 3
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magnitude of the frictional impulse is u times that of the nor-
mal impulse, in agreement with Whittaker’s theory.

(b) Slip Direction Changes Once. Let us now suppose that

(6.1)~(6.5) hold, but that

To=7*<(1+8&)7,. 6.8)
Then for 7>7*, duy/dr and 4, will have constant. values
dur(r* +)/dr and di7(7* +). They can be obtained from (4.9)

by using the fact that i (7* +) is parallel to du,(* +)/dr.
Then (3.8) yields '

I=(1+eyron~ ur*i(0) — ul(1+ )7y — 7*1idr(7* +). (6.9)

The jumps [U] and [Q,] are given by (2.9) and (2.10) with this
value of 1.

- In the special case of a rigid pendulum striking a fixed sur-
face, we have 7* =7, because both the normal and tangential
relative velocities become zero at the same instant. Further-
more, #p(t*+)=—iuy0) because the tangential velocity
reverses its direction at 7*. Then (6.9) becomes

4/Vol. 53, MARCH 1986

I=(1+€)ron — (1 — @)ty i {(0). (6.10)

In this case the magnitude of the frictional impulse is
u(l—e)/(1 +e) times that of the normal impulse. This is
smaller than the ratio x which holds when the slip direction re-
mains constant throughout the collision.
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On the Understanding of Chaos in
Duffings Equation Including a
Comparison With Experiment

The dynamics of a buckled beam are studied for both the initial value problem and
JSorced external excitation. The principal focus is on chaotic oscillations due to
forced excitation. In particular, a discussion of their relationship to the initial value
problem and a comparison of results from a theoretical model with those from a

DPhysical experiment are presented.

Introduction, Background and Motivation

In the present paper the following equation is studied
" . A
AtyA= S (1-A)=F(7) 1)

This is the particular form of Duffings equation (with a
negative linear stiffness) studied by Moon [1]. It is known this
equation has solutions with chaotic oscillations under certain
conditions. Here we extend the earlier work on Duffings
equation and provide an improved understanding of why the
chaotic oscillations occur by first considering the initial value
problem when F=0. These results are of substantial interest
in their own right as well as leading to additional un-
derstanding of why chaotic oscillations occur. The present
theoretical results are also compared to the physical ex-
periments of Moon. The opportunity to compare the present
theoretical results with the experimental data of Moon is also
an important motivation for this work.

A physical model is helpful in the interpretation of
Duffings equation. Following previous authors [1-4], we
interpret equation (1) as describing a one mode oscillation of a
buckled beam under the action of a prescribed lateral external
force, F(7). Other physical systems may also be described by
this equation, but they will not be discussed here. As may be
seen from equation (1), when F=0 there are three static
equilibrium solutions: A =0, +1 and — 1. It is easily shown
that the first of these (an unbuckled beam) is dynamically
unstable and the latter two are stable with respect to in-
Jfinitesimal disturbances. It is of great help in understanding
the onset of chaos to consider next the stability of the static
equilibria, 4 = +1 or — 1, with respect to finite disturbances.
This is done in the following section of the paper and then
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Fig.1 Phase plane trajectory

chaos due to a harmonic force, F(r), is considered directly in
subsequent sections.

The Initial Value Problem for the Homogeneous
Duffings Equation (F=0)

It is helpful to think first in physical terms. Consider the
buckled beam at rest in one of its stable (with respect to in-
fintesimal disturbances) static equilibria, say 4= +1. With
prescribed initial conditions,

A(r=0)=A4,
A(r=0)=A,

consider the transient solution and the final steady state
solution as 7—oo. Obviously A(r—o)—+1 or —1. The
question is which of these two solutions is the correct one for
given Ay, A,. As shall be seen, the answer is in a certain sense
unknowable (or to use a more technical term, uncertain).
Once the reason for this is understood, the occurence of chaos
for certain F#0 becomes more understandable, perhaps even
expected.

It is possible to construct a diagram (which is called a shell
plot because of its appearance) that summarizes compactly
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Fig.2 Shell plot Fig. 3(a) Phase plane trajectory (1 period motion)

which of the two static equilibria solutions will be reached for 8
a given set of initial conditions, 4, 4,.

To anticipate the form of the shell plot, consider a specific
example of initial conditions and the subsequent solution ar
trajectory. This is shown as a phase plane trajectory in Fig. 1
for Ag=1 and A, =1. Because A, >0, A increases for small
time but then decreases for larger time because of the
nonlinear restoring stiffness. Indeed, A subsequently becomes
negative (the beam moves from one buckled configuration,
A= +1, to the other, A= —1, and beyond). The damping -4k
term, yA, leads to dissipation of energy; thus the beam does
not continue to oscillate between and about the two static
buckled equilibria, but instead spirals into one of them as -8 : 1 L L o

-1.6 -2 -8 -4 A .8 1.2 1.6
7. DISPLACEMENT w=1 F, =.178

From such phase plane trajectories, one can construct the 2 PERIOD. gamma=.168
shell plot, which shows the final state of the system as r7—o0, Fig.3(b) Phase plane trajectory (2 period motion)
A=+1or -1, for given initial conditions, 4, and 4,. This is »
shown (partially) in Fig. 2. Here A, is plotted versus 4, and
various regions are identified with integral values, 0, 1, 2, 3,
4, ... Note there are two disjoint regions associated with
each integer value. Consider first the integer zero (0) regions.
For definiteness consider the region where A4,=0. If the
system starts with Ay, 4, within the zero region, the solution
spirals into A= +1 as 7—0 and crosses the A =0 axis zero
times. Consider now the 1 region. A solution begun there
moves clockwise and crosses the 4 =0 axis one time and
enters the zero region for A < 0. Once there, it spirals into
A=~1 as r—co, To firmly establish the pattern, finally
consider the 2 region. For initial conditions in the 2 region,
the phase plane trajectory moves clockwise, crosses the 4 =0
axis the first time and moves into the 1 region for 4 <0. It : L
then continues to move clockwise and crosses the 4 =0 axis a e 2 -8 -4 04 8 1218

§ . . . DISPLACEMENT w=lF, =.197
second (and final time) and moves into the 0 region for 4 >0. 4 PERIOD. gamma =168

Once there it spirals into A = +1 as 7—co. Fig.3(c) Phase plane trajectory (4 period motion)

The pattern is now clear. For 4, >0, initial conditions in an
even integer region reach a final state of A= + 1. Those in an
odd integer region reach a final state of 4= — 1. The integer
number corresponds to the number of crossings of the A =0
axis during the completion of the motion (phase plane
trajectory). For A, <0, a similar sequence of events occurs.
For initial conditions which lie precisely on a shell boundary,
the final configuration would be A, A —0 as 7—oo. In practice
this will never occur, of course, because the shell boundary
curves are of vanishing thickness.

It is interesting to note that a shell plot of any finite extent
can be constructed from a single artfully chosen phase plane
trajectory, once the zero region is known. The latter region is
readily determined by direct calculation.

Now comes the central point, If there is sufficient un-
certainty in the values of the initial conditions, 4, Ay, it is

VELOCITY
o]
T

VELOCITY

VELOCITY

DISPLACEMENT gamma =.168

clear from an examination of the shell plot that the final - TRAJ. OF CHAOS F, = 2|
system state, A =+ 1 or — 1, is unpredictable, unknowable or Fig.3(d) Phase plane trajectory (chaotic motion)
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uncertain. This point is made all the more powerful by noting
that as the damping becomes even smaller the width of each
region of the shell plot (excluding the 0 region) becomes even
smaller and vanishes as y—0. Hence for any (finite) un-
certainty in A, or A, the final system state is unpredictable as
v—0.

Two additional points are worthy of note in concluding this
discussion. First, the boundary contours of the shell plot are
curves of essentially constant total (kinetic plus potential)
energy. Secondly as y—0, the boundary curves for the two
zero regions correspond to the separatrix of the undamped
system.

Although not concerned with chaos, the reader will find
Ref. 5 on the initial value problem of interest.

The Continuous Oscillation Problem for the

Inhomogenous Duffings Equation (F = 0)
Here a simple harmonic external force is considered,
F=Fysinwt 2)

where F is the force amplitude and w its frequency of ex-
citation. This is not the only force-time history which might
be studied. It is, perhaps, the simplest periodic force.

As the reader may note, the initial value problem previously
studied can be also thought of as an external force problem.
For example, an initial velocity, A,, corresponds to an im-
pulsive force,

F(1)=A5(7) 3)

This suggests that a study of continual impulses, periodically
or randomly spaced in time, would be of interest. Never-
theless, only a simple harmonic force will be considered here.

The response of the system will be considered first for fixed
frequency, w=1, and increasing force amplitude, F,. The
frequency is normalized by the small amplitude natural
frequency about the beam buckled equilibrium. For F,
sufficiently small, it is expected that the response of the
system will be a simple harmonic oscillation about one or the
other of the two static equilibria, A= +1, or —1. For
definiteness the initial conditions, Ay =1, Ay =0 are chosen
so that for small F,, the harmonic response oscillation is about
A=+ 1. Itis anticipated that, as F;, increases and the response
phase plane trajectory approaches the zero region boundary
of the shell plot, interesting response behavior will occur.

Note that for small F, the phase plane trajectory is an
ellipse indicating a simple harmonic response oscillation. As
F, increases additional harmonics beyond the fundamental
are detected and the phase plane trajectory is distorted from a
simple ellipse. See Fig. 3(a) for the result for F, = 0.177. Also
shown for reference is the boundary for the zero region from
the previously discussed shell plot.

For 0<F,=<.177 the response is termed 1 period motion.
By that is meant, as the force oscillates through one period,
the response also oscillates through one period. For F, =.178,
however, as the force oscillates through one period the
response oscillates through only one half a period. For the
response to go through one period, the force must oscillate
through two periods. Thus this is called 2 period motion. See
Fig. 3(b). This change from 1 to 2 period response as
Fy, = 0.177 — 0.178 appears to be a bifurcation.

At a higher F, 4 period motion occurs. See Fig. 3(c) for
example, and at yet higher F;, 8 and 16 period motion occurs.
Holmes [4] has suggested that 32, etc. period motions occur as
F, increases further. This may well happen but this behavior
has not been observed by the present authors. Possibly this is
because the range of F; over which the higher period motions
occur is very small. This period doubling behavior has been
previously described and discussed by Feigenbaum [6] in a
more general context.
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For F, =0.205 chaos is observed, i.e., no periodicity is
apparent. See Fig. 3(d) which gives results for F, = 0.21. As
Holmes has indicated, for yet higher F,, the chaos no longer
appears and periodicity returns.

It is clear that for F; just below the value where chaos first
appears the periodic response phase plane trajectory ap-
proaches and slightly penetrates the boundary of the zero
region shell plot. See Fig. 3(c). Moreover it is clear that for
this frequency, w=1, chaos occurs when the motion is no
longer about only one of the static equilibria points, say
A= +1, but instead encircles both, A= +1 and — 1. This is
called snap-buckling. These observations suggest that the
onset of chaos can be associated with periodic motions which
penetrate the zero region boundary and thus lead sub-
sequently to motion about both static equilibria points. Moon
in an earlier paper [1] suggested a more restricted notion of
this sort when he took as an empirical criterion for the onset
of chaos that the periodic response maximum velocity (in his
calculation he assumed one period motion) must exceed the
maximum velocity of the system separatrix. Recall it has been
shown here that the zero region boundary of the shell plot
corresponds to the system separatrix as y—0.

It is speculated, though it remains to be shown, that as y—0
any penetration of the zero region boundary by the phase
plane trajectory leads to chaos. For small, but finite, v the
phase plane trajectory may (slightly) penetrate the zero region
boundary before chaos occurs. Hence the penetration of the
zero region boundary by a phase plane trajectory at a certain
force level may provide a lower bound criterion for the onset
of chaos, at least for wnear 1.

For excitation frequencies well away from resonance, in
particular for w< <1, chaos was found to occur even without
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snap-buckling. The minimum F, for the onset of chaos occurs
for w=0.85. This is the characteristic frequency for free
vibration about both static equilibrium points.

Comparison of Theory and Experiment

Calculations similar to those described in the previous
section have been carried out for several excitation
frequencies, w. From these a summary plot may be con-
structed of the force required to cause snap buckling, period
doubling, or chaos versus the excitation frequency. Such a
plot for the onset of chaos is shown in Fig. 4(a) and 4(b) for
v=0.168 and 0.0168, respectively. The uncertainty in the data
is less than a diameter of a circle.

Time integrations using the Runge-Kutta method were
performed for frequency values ranging from 0.1 to 1.5 for
varying force levels at damping levels of 0.168 and 0.0168.
Principal lower and upper force chaos boundaries were found
for a discrete series of frequencies by incrementing the first
from zero until chaos was observed. See Fig. 4. Force in-
crements of 0.01 and, where necessary, 0.001, were used. All
results shown are for simulations started from the initial
condition values of one for the displacement and zero for the
velocity. Other initial conditions were tried, but no observable
effect of initial conditions on chaos boundaries was detected.
Of course, the time history details do depend upon initial
conditions, particularly in the chaotic regime.

The types of chaos found in the simulations varied from
frequency to frequency. However, the form of the Poincare
map for a given set of frequencies tended to be of the same
type when the lower force steady state periodic phase plane
portraits were shaped the same and possessed the same
periodicity and when the corresponding upper force portraits

8/Vol. 53, MARCH 1986

were also the same across the frequency band. The lower and
upper plane portraits were not identical. Such identification
or association of results at several frequencies has led us to
connect some data points in Fig. 4(¢) and 4(b) by straight
lines. Such results suggest that chaos lies in fragmented
pockets in the force-frequency plane. These pockets can also
have smaller pockets of force-frequency combinations within
them that can lead to periodic phase plane orbits.

It is apparent from the situations simulated that chaos can
assume many forms. Some of the entries into the chaotic
region in the force-frequency plane for certain frequency
values were precipitated by beam snap-through; others were
not. At certain frequencies, the system went into chaos even
before the beam snapped through. Period doubling was
observed at some frequencies, e.g., »=0.9 and 1.0, but not at
others. Chaos appeared at all frequencies simulated, though
this does not preclude the possibility of finding frequencies
that are chaos-free. A simple boundary cannot be drawn in
the force-frequency plane above which there is guaranteed
chaos; in fact, the simulations point to the opposite.

The simulations run at high damping levels gave the same
qualitative answer as the ones run at low damping. The major
difference is that the width of the chaotic band in the force-
frequency plane for the low damping case is much narrower
than its counterpart for higher damping. The limit of zero
damping may be pathological. Another difference is that the
higher damping case allows a much richer selection of
equilibrium periodic phase plane orbits. As the damping is
decreased, the Poincare maps also lose their ordered struc-
ture.

The correlation between data obtained from simulation and
the data obtained by Moon from his physical experiment also
appears to be generally good. See Fig. 4(b). The principal
difference is that at w=0.65, the simulation predicts chaos at
much higher force levels, F,#0.45-0.55, than those observed
by Moon in his physical experiment, F,=.17. It is worthy of
note that the simulation predicts that snap-through of the
beam occurs at F,=.12 and it is possible that this snap-
through was identified as chaos in the physical experiment. At
higher frequencies, snap-through and chaos occur at force
levels which are much closer together. Of course other factors
may enter in including the effects of higher beam modes.

For brevity, we have not shown the large number of phase-
plane portraits and Poincare maps that have been calculated.
The authors would be pleased to make these available to other
investigators who may wish to extend the present study. In
Fig. 5(e) and 5(b), two representative Poincare maps are
shown for w=1 and the two damping values used in this
study.

Conclusions and Future Work

Among the conclusions reached based upon the present
work are the following:

(1) The initial value problem for a second order
homogeneous system is a key to the understanding of higher
order systems, including the inhomogeneous second order
system.

(2) Chaos is not difficult to find by numerical simulation,
however a Feigenbaum (period doubling) sequence may be
difficult to find for some parameter conditions.

(3) A comparison between theoretical results for Duf-
fing’s equation and (physical) experiments for a buckled beam
shows generally good agreement.

(4) Future theoretical studies should consider

e investigating the limit as damping approaches zero;
setting the damping identically zero may lead to
pathological results

® multimode convergence studies (based upon the
results from panel flutter calculations [7, 8], it is
expected good convergence will occur)
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(5) Future experimental work should attempt to study
e various damping levels
e determination of period doubling conditions
e identification of entire pockets of chaos
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parameter dynamic systems. Liapunov functions are used to develop stability
conditions that are direct in terms of the mass, damping, and stiffness matrices. The
significance of what is presented here is twofold. First, this technique can be applied
to general asymmetric systems. Second, it offers direct conditions that can easily be
programmed on a digital computer to handle high-order systems. Many previously
developed results, such as the KTC theorem and its extensions, are mentioned.
Next, it is shown that the present study may provide broader applications because

general systems are included and a more convenient approach is offered. Examples
are used to illustrate the validity and applications of the presented results.

Introduction

Stability of the equilibrium of linear, lumped-parameter
dynamic systems described by the vector differential equation

Mi+Cx+Kx=0 )

has received extensive attention for many decades. Here, M,
C, and K are n X n real matrices referred to as mass,
damping, and stiffness matrices, and the vector x is a real
n % 1 vector of generalized coordinates. Routh in his famous
essay of 1877 [1] solved the problem of determining necessary
and sufficient condition for the asymptotic stability of the
general form of the foregoing systems, where no restriction is
placed on the coefficient matrices. However, his conditions
require the knowledge of the coefficients in the characteristic
polynomial of the system and the evaluation of certain
determinants, which may be rather difficult to apply when the
order of the system is at all large. Another approach is the
equivalent result of Liapunov [2, 3]. This method also in-
volves solving a 2nth order matrix equation and  the
evaluation again of some determinants. As a result, alter-
native methods such as those which provide simpler con-
ditions directly in terms of the coefficient matrices prove to be
more attractive.

The development of such stability conditions dates back to
the time of Lord Rayleigh [4]. He proved that for the systems
with positive definite mass and stiffness matrices if the
damping matrix is positive definite, the equilibrium is
asymptotically stable. The equilibrium becomes unstable if
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either the damping or the stiffness matrix is not nonnegative
(i.e., C or K has at least one negative eigenvalue). In later
studies it was shown that, under certain conditions, the
equilibrium can still be asymptotically stable when C is only
positive semidefinite (denoted C 2 0). Moran [5], illustrated

" that the necessary and sufficient conditions for the system (1)

to be asymptotically stable are that none of the eigenvectors
of the corresponding conservative system lies in the null space
of the damping matrix. In another study by Walker and
Schmitendorf [6] a controllability approach was taken to
prove that the equilibrium is asymptotically stable if and only
if the n? X n matrix

I C
CM™'K)

@

L C(M-IK)n—l

has rank n.

If gyroscopic forces (e.g., Coriolis, Lorentz forces) are
added to a symmetric system, then the equation of motion
modifies to the more general form

MX+(C+G)X+Kx=0 (€))
where G is a skew symmetric matrix (i.e. G = —G7). In this
case the well-known Kelvin-Tait-Chetaev (KTC) theorem can
be applied. According to this theorem if C is positive definite
(denoted C > 0), then the system (3) is asymptotically stable
(unstable) if the corresponding nondissipative nongyroscopic
system, which can be characterized here by C = G = 0, is
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stable (unstable) [7]. In a later study, Zajac introduced the
notion of pervasive-damping,! associated with positive
semidefinite damping matrix, and proved that for a per-
vasively damped system, the equilibrium is still asymptotically
stable if the corresponding nondissipative nongyroscopic
system is stable [8, 9]. This extends the application of the KTC
theorem, particularly in space mechanics. Other studies, such
as the ones by Miiller {13} and Hughes and Gardner [14] have
suggested an ‘‘observability”’ approach for determining the
stability of a gyroscopic system with positive semidefinite
damping matrix.

Finally, considering the effects of constraint damping?
and/or circulatory forces® modify the equation of motijon to
its most general form, described by

MX+(C+ Q)i+ (K+Ex=0 6]

where E is a skew symmetric matrix, Obviously, this class of
systems does not fall within the scope of the KTC theorem
and its extensions. Mingori {18] generalized the K7C theorem
to include these systems. He demonstrated that if the matrices
in equation (4) satisfy the following three conditions:

EC 'M=MC-'E (5a)
EC-'G=GC'E (5b)
EC-'K=KC-'E (50)

and if a matrix H is defined as
H=EC-'MC-'E-GC-'E+K 6)

then the equilibrium of (4) will be asymptotically stable if all
of the eigenvalues of H are negative. The equilibrium is
unstable if at least one of the eigenvalues of H is positive.
Although this approach includes a broader class of systems
than the KXTC theorem, it has limited applications due to the
restrictive nature of the conditions in equation (5). However,
if one is willing to sacrifice generality for simplicity, it is
possible to develop less restrictive conditions for a subclass of
general systems. According to [19], if the asymmetric matrices
(C+G) and (K+E) are, symmetrizable and possess positive
eigenvalues, then the stability is determined by stability of the
matrix

P=M"YC+DS+S(C+GDT™M"T )
where
S=ST=R(K+E) 8)

and R is an arbitrary positive definite matrix. Due to the
assumption on symmetrizability of (K+E), it is always
possible to find a matrix R to satisfy the equation (8) [20].
However, to the best of our knowledge, no simple, effective
method for finding R has been introduced yet. The methods
available presently require long, tedious computations which
prove to be inefficient for most cases.

The main object of the present study is to develop stability
conditions that include general asymmetric systems, avoid
restrictive conditions, and can be programmed on a digital
computer to handle systems with many degrees of freedom.

lDamping is pervasive if the dissipative function R = 1/2 xTCx is non-
negative and can be identically zero only when the system is at the equilibrium
state for ¢ > 0 {10]. Roberson [11] and Connell [12] have proposed different
met>hods for determining whether or not a system is pervasively damped when
cZo.

2 Constraint damping results when the linear approximation of the
dissipation forces are derivable from a dissipative function of the form
R, =172 xTcx + T Ex. This type of dissipation may happen in a dissipative,
gravity-oriented satellite {15]. A complete discussion of this type of dissipation
can be found in [15-18].

Circulatory forces are linear generalized forces which can be expressed by
the vector f = — EX, where F is a skew symmetric matrix. Such forces arise in
contemporary mechanical, aeronautical, and missle engineering.

Journal of Applied Mechanics

Results

Assuming a nonsingular mass matrix (i.e., det (M) # 0),
one can reformulate the general linear system presented in the
equation (4) as

X+AXx+Bx=0 ©)]
where
A=M-Y(C+G) (10a)
and
B=M"YK+E) (10b)

are both real asymmetric matrices. Consider the function V
given by

V=xT(B+BT)x+[xTAT + xT][Ax+X] + XTX. ay
Differentiating V and substituting
X= —AX—Bx 12)
into V results in
Ve=—xT(ATB+BTA)x~x7(BT - B)Xx—x"(B—B")x
—~xT(A+AT)X
which can be presented as
V=—27Qz
where
|:Ql Q.7 }
0=
O, Qs
Q0,=Q7T=ATB+BTA (130)
0,=Qf=B-B" (13b)
Q,=07=A+4T (13¢)
and

[

Lemma 1. The matrix Q is positive definite if and only if
Q, and the matrix

0:-0,0,7'0f (14

are positive definite.

Lemma 2. The matrix Q is positive semidefinite if and only
if Q, is positive definite and the matrix (14) is positive
semidefinite.

The proof is established in the Appendix.

Theorem 1. For the system (9), the equilibrium is stable if
the symmetric matrices

B+BT (15)

and Q, are positive definite and the symmetric matrix (14) is
positive semidefinite. )

Proof: By assumption, V is positive definite and V is
nonpositive. Therefore, according to [2], (theorem 4.1, pp.
14), the equilibrium is stable.

Theorem 2. The equilibrium is asymptotically stable if the
symmetric matrices (14), (15), and Q, are all positive definite.

Proof: Considering the assumptions, V'is positive definite
and V is nonpositive (i.e., V' > Oand V < 0). In addition, the
function V cannot remain zero, unless x and x are both zero.
Consequently, the results in [21] suggests that every motion of
the system (9) is either asymptotically stable (tends to z = 0)
or unstable (unbounded). But no motion can be unstable,
since according to theorem 1, it is at least globally stable.
Therefore, the equilibrium is asymptotically stable.

Theorem 3. The equilibrium is unstable if (15) is not
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nonnegative (i.e., (15) is negative definite, negative
semidefinite, or indefinite) and Q, and (14) are both positive
definite.

Proof: The assumption on (15) implies that ¥ may be
negative. Furthermore, the assumption on @, and (14) in-
dicates that Vis nonpositive and is identically zero if and only
if x and x are both zero. According to [21], every motion of
(9) either is asymptotically stable or unstable. But ainy motion
starting at a point %y, X, such that V{(x,, %) < 0 becomes
unbounded since V is nonpositive along the motion [2, pp.
19].

Alternatively, a different set of conditions may be obtained
by choosing a different function V. For the function

V=x"(ATB+B—B"B)x+ (xTBT + x7)(Bx +X) (16)
the first time derivative is
V=%xT(ATB+B~BT"B)x+x7(A"B+B—BTB)x

GTBT +XT)(Bx+xX)+ (x"BT + xT)(Bx + %) an
Assuming the matrix

ATB+B~B"B (18)

to be symmetric and substituting equation (12) into the
equation (17) gives

V=xT(ATB+B~BTB)x +x"(BTA+ BT — BTB)x
+(XTBT —xTAT —x"BT)(Bx +x)
+(xTBT +XT)(BXx — AX — Bx)
or .
V="-2xTBTBx—xT(A+AT - B-B")x 19
Based on the functions ¥ and V, the following theorems can
be stated for the system in the equation (9):
Theorem 4. The equilibrium is stable if the matrix (18) is
symmetric and positive definite and the matrix

A+AT—B—BT (20)

is nonnegative.

Theorem 5. The equilibrium is asymptotically stable if the
matrices (18) and (20) are both positive definite.

Theorem 6. The equilibrium is unstable if (18) is not
nonnegative and (20) is positive definite.

Validity of these theorems follow directly from the proof
stated for Theorems 1-3.

It is worthwhile to mention that, although there are many
systems where the matrix (18) is symmetric (one such system
will be presented in example 1), it is possible to find systems
where (18) is not symmetric. For such systems theorems 4-6
fail to provide any results and, therefore, theorems 1-3 must
be used alternatively. '

Examples

The purpose of the following examples is to illustrate the
presented approach, thus a small number of degrees of
freedom are used. However, the power of the method is hoped
to be in defining the stability of systems with many degrees of
freedom.

Example 1: Consider the system

10 —-3.25 4 -2
X+ X+ x=0
1 4 1 2

the conditions (18) and (20) give

26 -9
A’B4+BT—-BTB= {
-9 4
12 —1.25
A+AT—-B—-BT=
~1.25 4

12/ Vol. 53, MARCH 1986

B
Discretized model of a damped, flexible, rotating shaft

Fig. 1

Since the foregoing matrices are both positive definite,
theorem 5 indicates that the equilibrium is asymptotically
stable. In addition, substituting 4 and B into equations (13),
(14), and (15) results in

78 -35 8 -3
Ql = ) B+BT=
—35 29 -3 4
and
19.9248 -2.2162
0:-0,0,7'0f =
-2.2162 7.9720

which are all positive definite. Therefore, therorem 2 also
indicates that the equilibrium is asymptotically stable.

One way to verify the validity of these results is to form the
associated lambda-matrix and obtain the latent roots of the
system. Doing so results in

M= —1.1238541.2745
Asa=— .7615032.3985 i

where / = v/ — 1, which is in agreement with the prediction of
theorems 2 and 5.

Example 2: As another example, consider the discretized
model of a damped flexible, rotating shaft presented in [22]
and shown in Fig. 1. The mass is attached to a coordinate
system which rotates at a constant angular velocity Q. To
make the problem more comprehensive, we assume the
existence of a conservative force that is proportional to the
radial distance of the mass from the origin and perpendicular
to the radius vector. Such a force can be visualized as arising
in a rotating fluid or in an electromagnetic field.

The governing equation of motion for the shaft is

m 0 ¢ —2mQ
i+ u
0 m 2mQ Cy
kl —sz F
+ u=0
~F ky —mQ? 21
where u = [u,, u,]" represents the displacements in the

directions of the two rotating coordinate axes. Without loss of
generality let m = 1 and rewrite equation (21) as

: cy =20 ky=Q? F
u+ u+ u=0
29 Cy . —F k, — Q2 22)

This allows one to use the results presented here to determine
the way each parameter:affects the stability of the given
system. For instance, upon substituting 4 and B into the

“matrices (13-15), the conditions required by theorem 2 can be

reduced to the following inequalities
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(k, — 0% >0 (23a)
(k=03 >0 (23b)
>0 (23¢)
pip3—p3>0 (23d)
24>0 (23e)

(23/)

Paps —pi>0
where '
P =2(c,(k, — Q%) —2QF)
Py = (¢ F+2Qky — Q?) — 20k, — Q%) — ¢, F)
P3=2cy(ky — Q) — 20F)
Pa=cy —4F%(c\(ky — Q) - 2QF)/(p\p3 — p3)
Ps = —2F2(c F+2Q(k, — 92) - 2Q(k, — Q) — ¢, F)

Ps =C1 —4F% (¢ (ky — Q) = 20F)/(p1p3 —p3)

Now, one can easily investigate how each parameter affects
the foregoing conditions and, therefore, the stability. This
may be used also to determine the stability boundaries.

It is worthwhile to mention that the results in [18] fail to
provide any answer to the preceding problems, since the
commuting conditions, shown in (5), are not satisfied.
Although the approach in [19] may provide an answer, the
symmetrizability of the matrices 4 and B needs to be
determined first. The approach used here eliminates that step.

Observations

The results presented here can be applied directly to the
mass, damping, and stiffness matrices. Consequently, for
systems with few degrees of freedom, an approach similar to
that presented in example 2 can be used to determine the effect
of parameter variations on the stability of system or to design
a system. When dealing with high-order systems, one can
show the effect of parameters on the stability by repeatedly
changing the parameters and testing the conditions through
an iterative routine. This requires eigensolution of the
matrices Q,, (14), and (15) if theorems 1-3 are used, or
matrices (18) and (20) if theorems 4-6 are employed.
However, since all these matrices are symmetric, many well-
known classical methods, such as Jacobi’s method, Given’s
method, Householder’s method, QR method, can be used
effectively [23-25].

It is known that the additional damping and stiffness
matrices, resulting from velocity and displacement feedback,
can stabilize an unstable system or in some cases destabilize an
otherwise stable system. The approach presented here can be
used to investigate the influence of the feedback gains on the
stability of an actively controlled system. To illustrate this
more clearly, consider the actively controlled system described
by

. a, 7} b] b2
X+ X+ X=

by by
0 &1 0 hy
X+ X
0 82 h2 0

for this system, the conditions (18) and (20) can be reduced to
4(a;+bi)as+by+82)
—(a;+ay3—by—by+g,—h —hy)*>0
a(by+hy)+a3by+by+hy=
(@2 +8)by +(as +8)(b3 +hy) + by + 1y

Journal of Applied Mechanics

a,by +ay(by+hy)+ by —b? — (b3 +hy)? >0

[a,b) +ayby +ashy + by — b~ (by + hy)1x

[(ay +g1)(by + 1) +{as +82)by + by

~(by +hy)* = by~ as +81)by +(as +g2)(bs + hy)
+(by +h) = by(by + 1)) — (b3 + hy)by)* >0,

which can be employed to find how the gain constants g, — g,
affect the stability of a given system (where @, —a, and b,
—b, are known). The importance of feedback control in
stability of dynamic systems and different ways of measuring
their effects have been discussed in many studies, such as [26]
and [27]. However, the significance of the approach presented
here is that it extends the results in these studies to asymmetric
systems.

Conclusion

For general linear lumped-parameter systems, which can be
described by a second-order vector differential equation,
different stability conditions were established. These con-
ditions are directly in terms of the coefficient matrices, thus
they can be used to determine the effect of system parameters
on stability or to design a controller for an actively controlled
system. Examples were used to illustrate the validity and the
utility of the presented approach. A number of previously
developed studies such as the K7'C theorem and its extensions,
the results on systems with constraint damping, and those on
symmetrizable systems were mentioned. Although for systems
with few degrees of freedom, the present approach is not
necessarily advantageous over the Hurwitz stability criterion,
it may prove to be more effective for systems with many
degrees of freedom.
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APPENDIX
Lemma 1. The 2n X 2n real symmetric matrix

o "

Q, Qs

is positive definite if and only if both Q; and Q; — 0,0, !
Q, T are positive definite,
Proof: The matrix Q is positive definite if and only if
V=2TQz

is positive definite for all z0. The vector z can be presented
as

Q= (A1)

z=Ty,

14/Vol. 53, MARCH 1986

where

1 -Q71g,”

T:

0 I
and
‘ Y1

y_—..
Y2

Therefore, V can be written as

I 0
V=yT
-0, I
o Q.7 I -0,71Q,7
y
0, O 0 I
or

V=305 +»:.7(Qs — 0,0, 7' Q;)y,.
The function V, and as a result the matrix Q, is positive
definite if and only if Q, and Q; —Q, Q™' Q,T are both
positive definite.
Lemma 2. The 2n X 2n matrix Q, presented in the
equation (Al), is positive semidefinite if and only if Q, is

positive definite and Q;-Q, @, ! Q,7 is positive
semidefinite.
Proof: Same as Lemma 1 except the term “‘positive

definite’” is replaced by ‘‘positive semi-definite’’ for the

matrix &, - Q, 0, ' @, 7.
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mapping of spherical and spatial kinematics and the instantaneous invariants of the
corresponding spherical and spatial motions. In addition, in the case of spherical
motions, the equations for the inflection cone and cubic cone of stationary geodesic
curvature, important in spherical mechanism synthesis, are derived in terms of the
curvature and torsion of corresponding image curves. Similar relationships defining

the polhodes of spherical motions and their curvature at the reference instant are
recast as well. A simple example involving a special spherical four-bar motion is

also presented.

1 Introduction

The set of rigid rotations of the three dimensional
Euclidean space E®, and the set of rigid displacements
(rotations and translations) of E* both form differential
manifolds known as Lie groups, see Herman 1966. Con-
tinuous curves in these manifolds are known, respectively, as
spherical and spatial rigid motions. By choosing coordinate
systems for the fixed and moving spaces, we may represent a
spatial motion as a parameterized set of rotation matrices
A (t) and postion vectors d(¢); T(¢): (A(¢), d(¢)). Ravani
and Roth 1984 showed that by using Study’s parameters
(Study 1891), a geometric mapping can be defined that carries
a spatial motion 7°(¢) into a special curve in a projective space
of three ‘‘dual” dimensions. They went further and showed
that the real part of the same mapping carries A (¢) into a
curve in a three dimensional real projective space; see also
Bottema and Roth 1979. Using such a mapping, a motion can
be studied by studying its image curve in the image space of
the mapping. Ravani and Roth applied the mapping! to the
study of spatial motions and mechanisms and in this way
generalized a technique which has been highly developed in
the study of planar rigid motion; see Blaschke and Muller
1956, Bottema and Roth 1979, DeSa and Roth 1981 a,b, and
Ravani and Roth 1983.

11t should be pointed out that many other mappings can also be defined. In
this paper, we are only referring to the mapping defined in Ravani and Roth
(1984). ‘
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In this paper, we develop the basic framework for applying
this geometric mapping to the study of local properties of
spherical and spatial motions. The study of local properties of
rigid body motion is a highly developed branch of kinematics
known as Instantaneous Kinematics. Important tools in this
area are the canonical coordinate systems and unit angular
velocity parameterization; see Veldkamp 1967, Kirson 1975,
Roth and Yang 1977, Bottema and Roth 1979. The use of the
canonical coordinate system and the unit angular velocity
parameterization results in a set of unique constants that
characterize the motion-the so-called Instantaneous In-
variants. It is clear that the shape of the image curve of a
mapping of a rigid motion also provides a set of constants
which characterize a motion. In fact Blaschke and Muller
1956 have used this idea to study the differential kinematics of
planar motions. In this paper, we generalize this technique to
the study of differential kinematics of spherical and spatial
motions. We will use the mapping introduced by Ravani and
Roth 1984 and relate the differential properties of the image
curves of spherical and spatial motions to the instantaneous
invariants characterizing such motions. In the case of
spherical motions, we go further by relating the local or
differential properties of point paths of such motions to the
local properties of their corresponding image curves. In
addition, the inflection cone and cubic cone of stationary
geodesic curvature important in spherical mechanism syn-
thesis are derived in terms of the curvature and torsion of the
corresponding image curve. The relationships defining the
polhodes of spherical motions and their curvature at the

" reference instant in terms of the local properties of the

corresponding image curves are also derived. Finally, we
examine the motion of a special spherical four-bar mechanism
for which an image curve is known and obtain its in-
stantaneous properties throughout the motion.
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2 Euler Parameters of Orthogonal Matrices and the
Mapping

A 3x3 orthogonal matrix characterizing a spherical
displacement can be written in terms of it Euler parameters:

(B+ct—c3—c3)  2(cic;—coc3)

A=0"2 | 2cycy +coe3) (3~ct+c3—c3)
2(c3¢; —€pC2) 2(c3¢, +¢pey)
ey
where
QP =ch+ci+ei+ci 2)

and ¢; ({ = 0,1,2,3) are the Euler parameters of the or-
thogonal matrix 4. Since the matrix A depends on three
independent parameters, namely the ratios ¢;/¢cy (0 = 1,2,3),
we can map it (Ravani and Roth 1984) into points of a three-
dimensional projective space L’. A spherical motion
characterized by a parameterized set of orthogonal matrices
A (t) is then mapped into a curve in the image space &', In
view of the fact that the Euler parameters, c;, can always be
normalized such that

cd+ct+cd+ci=1, 3

the image of A(f) can be considered as a curve, K, on a
hypersphere of unit radius in a four dimensional affine space.

The differential geometry of curves on the surface of a
hypersphere has been studied by McCarthy 1983; see also
Flanders 1963 and O’Neill 1966. Such results can therefore be
used to relate the local properties of spherical motions, that is
the distribution of velocities, accelerations, change of ac-
celerations, etc., of each point in the body, to geometric
parameters which characterize the shape of the image curve,
K, of the motion.

A spatial displacement is characterized by a 3x3 or-
thogonal matrix 4 and the position vector d. These two
quantities can be combined to construct an orthogonal 3 X3
dual matrix A characterizing a spatial displacement. The dual
matrix A is driven by

A=A+eDA @)

where
0 —d; d,
D= d, 0 -d,
—d, dy 0

and e is_the dual unit defined such that 2 = 0. The dual
matrix A4 can be written in a form identical to equation (1)
using dual Euler parameters ¢; = ¢; + ec;* (| = 0,1,2,3) where
the dual parts ¢* of the parameters are defined by the
relations

1
CO*: 5 (dxcl +dyC2 +dZC3)

1
Cl*z E ("‘dyCo +dzC2 —‘dyC3)

1
= E(—dyco“dzcl +d,c3) (5)

1
C3* = 5 ("dzco +dycl _dxcz)

and ‘
P=+G+3+4. (6)

Since the 3x3 dual matrix A characterizing a spatial

16/ Vol. 53, MARCH 1986

displacement depends on three independent dual parameters,
namely the ratios ¢;/é ( = 1,2,3), we can map it into a point
of a dual three-dimensional projective space L'. A spatial
motion characterized by a parameterized set of orthogonal

2(C1C3 +COC2)
2(c263 — cocy)

@G-c-G+e)

matrices A (£) (with ¢ being a real parameter) is then mapped
into a special curve in the image space L’. For more details on
this mapping see Ravani and Roth 1984,

In the view of definition (5) of the dual parts of the Euler
parameters, we can write

coCg +Cicff e +He3ed =0 )

If normalized (real) Euler parameters are used, then this last
equation implies that

C=G+d+ét+3=1 8)

This means that the image of A(¢) can be considered as a
curve K on a dual hypersphere in an affine space of four dual
dimensions. Ravani and Roth 1984 have shown that ?
remains invariant under the group of transformations arising
inthe &’ space from different choices of the moving and fixed
frames in the real space. This, in the view of elliptic geometry
of L’ space, means that all choices of moving and fixed
frames in the real space, result in mappings which differ by
only %’ displacements. The final conclusion is that the in-
trinsic properties of the image curve K of a motion are in-
dependent of the coordinate system and the parameterization
used to define the motion.

Spherical Motion. A continuous rigid motion of Euclidean
three-space which maintains a fixed point has the property
that the trajectory of every point in the moving body lies on
concentric spheres about the fixed point. This motion termed
spherical motion is represented by a parameterized set of 3 x 3
orthogonal matrices A(¢). If p: (x,,2) is a point in the
moving reference frame M then its trajectory a, (1) (X(1),
Y(#), Z(t)) is the set of points in the fixed frame F with
which p coincides as F(t) varies with #, given by the motion
equation

o, (1) =A(t)p

To study the instantaneous properties of the motion in the
vicinity of a reference position, which we denote with the
parameter value ¢ = 0, we expand A (¢) in a Taylor series
2

A(t)=A0+A1t+A2%+ ey (9(1)
The subscript denotes the #™ derivatives evaluated at the
reference position. The coefficient matrices 4;,i = 0,1,2, . . .
are not unique to the motion since the reference frames M and
F are chosen arbitrarily. Bottema and Roth show how a
canonical set of reference frames may be chosen such that (9a)
is unique up to the choice of the motion parameterization.

The motion parameter ¢ defines the speed at which the body
moves through a sequence of positions; it does not affect the
shape of trajectories traced by the moving body. By choosing
the standard unit angular 'velocity parameterization, we
obtain a unique representation of the motion

. ¢2 ¢3
A(¢)=1+A1¢+A27+A3F+ R 9b)

where ¢ is the new motion parameter, ¢ = 0 denotes the

reference position. I is the 3 X3 identity matrix and 4;, i =

1,2,3 are given by
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0 -1 0 -1 0 e

Al= 1 00 N Az—- 0 -1 0 )
0 00 —e 00

0 (1 +e%) Yy
/3

A= | —(1+ed) 0 (Ee_'Yx)
3
~Y (56+7x) 0

The constants e, v,, v, define the spherical motion to third
order. Each additional order of the expansion (9) adds three
more constants. These constants are called the instantaneous
invariants of the spherical motion.

The matrix function A(f) is also prescribed by the four
Euler functions c¢;(¢), { = 0,1,2,3. The Taylor series ex-
pansion of A (¢) about ¢ = 0 may be computed in terms of the
series expansions of ¢; (£):

r? &
C,'(t) =Cy +C,~,t+c,~2—+c,-3—+ PN
2 6
We will relate the instantaneous invariants ¢, v, and v, to
constants ¢;,, | = 0,1,2,3, n = 0,1,2, . . . by determining the
values of the c¢;, in the canonical coordinate system. In the
computations which follow it is useful to note that

(11

c;i(t)c; (t) =cipCjo + (Cipcjt +CinCiodt
2
+ (Cocpp +Cntjo +26i¢j1)~—

5 (12)

3
+(C,‘0Cj3 +C,‘3Cj0 +3C,‘1Cj2 + 3Ci2Cj1)z

By choosing the reference frames £ and M of the fixed and
moving bodies so they coincide at the instant # = 0 we have

1 0 0
Ag= |0 1 0
0 0 1

2 2 2 2
Cho +Clp—C5H — ¢ 2(C10C20 —CooC30)

_ 2 2 2 2
= | 2(Cc20C10 + CooC30) Cjo — €10 + €2 — €30

2
2(c30€10 — Co0C20)

1 and Ciop = 0, i= 1,2,3.

from which we conclude that cg :
AAT(®) of the motion at

The angular velocity matrix Q(f)
the instant ¢ = 0 1is given by

[

Q=A4,4=4,
2cy;  —2c3 2¢y;
= 2¢y; 2c0; —2cyy (14)
—2¢y 2¢yy 2¢cq
The angular velocity matrix is skew symmetric (27 = —Q);
therefore c; = 0. The vector w = (2¢y;, 2¢;;, 2¢3) is the

angular velocity vector of the motion at this instant and we
orient the reference frames F and M such that the z-axes of
both frames is directed along w. This forces both ¢y, and ¢
to be zero and we have

0 _2C31 0
QO =A1 = 2(‘31 0 0 (15)
0 0 0

Journal of Applied Mechanics

2(€c20¢30 — Co0C10)

The second order term A, is now computed to be

2002 “‘“2(,’%1 —2C32 2(.'22
Ay = 2¢3; 2c0; — 23 —2¢y (16)
—2C22 2C12 2C02 + ZC%I

This is simplifed by means.of the restriction which (6) places
on the functions ¢; (¢) i = 0,1,2,3:

3 2
!
1= [C% +2cipci )t + (2cpcn + 26'121)‘2—
i=0
t3
+ (60,’16‘,’2 +2C,‘0Ci3)€ + .. :] (17)
Since 3

Ec%0=c<2)0+c%0 +eho+cy=ch=1 (18)

i=0
the coefficient of every other term in (17) must equal zero.
The first order term simply restates the requirement that cg,

= 0. The second order term introduces the identity
2002 +2C§1 =0, (19)

We further simplify (16) by rotating the reference frames F
and M about w so that ¢;; = 0 and 4, becomes

—4(,%1 _2C32 2C22
A 9 = 2C32 - 4C§1 0 (20)
— 2C22 0 0

The angular acceleration matrix £ at ¢ = 0is given by

d . .o ..
BEQ)=— [AAT1=AAT+AAT=A; +A,4] Q1)

2(c10€30 + CooCa0)

which yields
0 foad 2C32 2C22
E= 2¢3, 0 0 22)
— 2C27_ 0 0
(13)

2 2 2
2(€30C20 + CooC10) Co —Cio — C5p +C3p

In vector form we obtain w = e = (0, 2¢,,, 2¢3,) thus the
choice of the canonical coordinate frame is such that the
angular acceleration vector lies in the y-z coordinate plane.
We specify the sense of the y-axis to be such that the y-
component of e is positive. The canonical frame is now
completely prescribed.

The third order term A3 is given by

(2c03 —6C31¢32)  —2(c33 +3cpzC31) 2¢93

Az = | 2cs +3cp263) (2003 —6C31¢3) 2(3c33031 —€13)

2(3cppca te13)  (2cp3 +6C3105)

23

- 2023

The third order term of the normalization condition (17)
yields
6031032 +2C03 =0 (24)

Using this relation as well as (19) we obtain
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- 12C3]C32 —2C33 +6C§1 2C23
Ay= |2c43~6c3, —12cq 05 6CyyCq — 2¢43 (25)
—2C23 6(‘22631 +2Cl3 0

So far we have the constants ¢3;, €y, €3, €13, Cy; and c33
which define A4 (¢) to the third order. Each additional order of
the expansion adds four constants, one of which may be
eliminated using the normalization relation (17), thus only
three of the four are independent.

The unit angular velocity parameterization is defined such
that the magnitude of the angular velocity is unity throughout
the motion. This is equivalent to requiring that

- % trace (%) =1 (26)
where 2 is the angular velocity matrix and the trace operator
computes the sum of the diagonal terms. A series expansion
of Q(z) yields

Q) =Qy+Et+ [I‘~Qg + % (QOE~EQO)] e24+ ... 21D
where 0y and E are given by (15) and (22) and I' is
0 —2¢33 + 603 2C55
I'= | 2cy ~6c, 0 —2¢)3 (28)
—2cq3 2¢3 0

The requirement of a unit angular velocity adds further
constraints on the values of the constants c;,, one for each
order of the expansion of Q%

i

~3 trace (Q3) =4c}, =1 (29)
1

3 trace (QoE +EQy) =4c3 ¢35, =0 30)
1 s o 1

- E trace ((E _Qo)+ “2‘ (90F+P90) =

—2¢3; (= 2¢33 +6¢31) + (2c2)* + (2c3)* +(2¢5,)* =0 (31

These relations vield the results that ¢;; = 1/2, ¢y, = 0and

1
€33 == (2032 + g)

The coefficients matrices of A (¢) in the canonical coordinate
system are thus obtained in terms of the coefficients of the
Euler functions as:

(32)

0 -1 0
Ay=1, A, 1 00
0 00
-1 0 2¢y
Ay= 0 -1 0
—2Cy 0 0

0 (@ch +1) 2053 '

Az= | —(4ch +1) 0 3¢y —2¢3 |. (33)

— 203 3¢y +2cy3 0

Comparing (33) to (10), we see immediately that

€ Y. .
Cyp = ~2—,c13=7xandcz3=7y.
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In summary,

coo =1 €1p=0 Ccy=0 c3 =0
cor =0 ¢ =0 €y =0 cy =1/2
cp=—1/4 ¢;p=0 cp=e/2 ;=0
€3 =0 Cl3=v/2 Ccpn=7,/2 cyp=—(2/2+1/8).
(34)
Image Curves of Spherical Motions—Differential

Properties. Using the Euler functions ¢;(¢), i = 0,1,2,3 we
obtain a curve ¢(¢) on the unit hypersphere which is the image
of the matrix function 4 (¢). In canonical coordinates ¢(¢)
takes the form to the third order

0 0 0
0 0 e/2
c(¢) = + o+ $2/2
0 1/2 0
1 0 ~1/4
(vx/2 h
¥, /2
+4 7 L $3/6 (35)
(54D
28
(- O J

where ¢ represents the unit angular velocity parameter. The
differential geometry of hyperspherical curves such as ¢(¢) is
developed in detail in McCarthy 1983. Two functions
characterize the shape of these curves analogous to the cur-
vature and torsion of curves in three dimensional space.

The geometric properties of curves on the hypersphere are
studied by means of the Frenet reference frame (7,N,B,E) and
the arc-length parameterization ¢ (s). The directions E and T
of the Frenet frame are chosen along c¢(¢) and ¢(¢). These
directions are mutually perpendicular since cec=1 implies
2c+¢=0. The direction N is chosen along the component of
dT/ds which does not lie in the E-T plane; in the same way B
is chosen along the component of dN/ds not contained in the
E-T-N subspace. The important result of these definitions is
the Frenet equations for hyperspherical curves.

dE _ .
ds

ar

ds

N _ T+7B
a5 = KTt

dB
ds
The functions « and 7 measure how ¢ bends out of the E-T
plane and how it bends out of the E-T-N subspace. We will
refer to these functions as the curvature and torsion of the
curve ¢(¢). The Frenet equations prove that « and 7 com-
pletely define the shape of hyperspherical curves.
Formulas for « and 7 in terms of ¢(¢) and its derivatives
with respect to ¢ are given in McCarthy 1983 as

=—E+N

—N (36)

, - *[€ACAC)A*(CACAC)]
- (C‘C)3 (37)
and
. 1(¢AcAcAS) a8

T (éed)ii?
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Equations (37) and (38) use the algebra of multi-vectors,
Flanders 1963, in order to generalize the vector cross product
to four dimensional space.

The dual of the rank three multi-vector ¢A€Ac is computed
to be the four dimensional vector

—e/4

0

*(€ACAc) = (39

0

The combination of operations in the numerator of (37) is in
essence the dot product of (39) with itself; thus we have

(e/4)r

2= =4¢? (40)

(1/74)3
The canonical coordinate frame is defined in such a way such
that e = 0; thus we have « = 2e. This is the curvature of ¢ (¢)
at the reference instant ¢ = 0.
The numerator of (38) is the determinant of the 4 x 4 matrix
formed from the vectors ¢, ¢, ¢ and ¢, thus 7is given by

BN w]--2

An expression for «’ is also given in McCarthy 1983 which in
our case becomes

C2))

di (€ [*[(CACAC)A* (€A EAC)]} — 3(c+O)[*[(€ACAC)A*(cA¢AC)])

pansion of 4 (¢) for spatial motion is also given by (9) and
(10). We now define the origin of F such that the series ex-
pansion
¢2 ¢3

d(¢) =d0 +d1¢+d2 —2— +.d3 ? +...
takes a particulary simple form. First, we require that the
origins of M and F coincide at the reference instant ¢ = ¢ =
0, thus dy= 0. Now, as is described in Bottema and Roth
1979, the origin of F is restricted to lie on the line coinciding
with the instantaneous screw axis (ISA) of the motion of M
relative to F. The ISA is the unique line in the direction of the
angular velocity vector w with the property that points in M
lying on it have velocities in the direction parallel to w. This
defines d; to be d; = (0,0,d,;) since the direction of w has
been chosen as the Z axis of F.

Finally, on the /SA there is a unique point with the property
that its accleration vector lies in the Y—Z plane of the
reference frame F. This point is the striction point at the
reference position of the ruled surface generated by the in-
stantaneous screw axis. Choosing this point as the origin of F
we have d, =(0,d,,,d,;). Each additional order of expansion
of d(¢) adds more constants, for example ds = (dy3,dy3,d,3).
Thus in the canonical coordinate system of spatial motion we
have to the third order

(46)

ds (E+6)172 (é+ €)%k

the dual of the multi-vector ¢A ¢Ac is the vector

—v,/4

*(CACAC) =< /4 (43)

0

0

thus (42) simplifies to be
OIEIIEI)
4 4 4

k'= =4y,. (44)

(3)2(5) "

Equations (40), (44), and (41) give the curvature «, rate of
change of curvature «’ and torsion 7 of the image curve ¢(¢)
of a spherical motion in terms of its instantaneous invariants
e, vy and vy,.

Spatial Motion. The spatial motion of a general rigid body
in Euclidean three space is represented by a parameterized set
of orthogonal matrices A (¢) together with a vector function
d(¢). Choosing a reference frame M in the moving body and
another F in the fixed space defines the pair
T(t):(A(r),d(r)) such that is p:(x,y,z) is a point in M its
trajectory e, (t) = (X(¢),Y(¢),Z(t)) in Fis given by

a, (1) =A(t)p+d(s). 45)

A (t) defines the orientation of M relative to F and d(¢) the
position of its origin relative to the origin of F. A canonical
pair of reference frames M and F and a special motion
parameter ¢ may be chosen so that the Taylor series ex-
pansions of 4 (¢) and d(¢) contain a unique set of constants
known as the instantaneous invariants of the spatial motion.
The orientation of these two frames and the special motion
parameter are defined in exactly the same way as was done
previously for spherical motion. Therefore, the series ex-

Journal of Applied Mechanics

42)
. 0 0 0
dy= 40|, d;= 0 5, dy= dy,
0 d, i dy
dy
andd; = dys “7n
dys

The instantaneous invariants of spatial motion to the third
order are the constants e, v,, v, and dy,, dy;, d, dy3, d3,
d;; each additional order adds six more invariants, three
from A (¢) and three from d (¢).

The spatial motion T'(¢): (A(¢), d(¢)) is also prescribed
by the four dual Euler functions ¢; (¢), i = 0,1,2,3. The series
expansion of these functions about f = ¢ = 0is given by

i (@) =c; () +eci(d)

¢2 3
=<C[0 +C“¢+C,'27 +cp "g‘ + .. )

¢ ¢’
-i~e(c,-’{)+c,4“1 +c,’-"2—2— +cf 3 +...),

i=0,1,2,3 48)

The real part of (48) depends only on the matrix A (¢), and
the relationship between the invariants e, v, and v, of A(¢)
and the constants c¢;,, { = 0,1,2,3, n = 0,1,2,3 has already
been determined. The result is that the real part ¢(¢) of the
dual curve €(¢) representing the spatial motion is exactly
equation (35) and what remains is the evaluation of the dual
part ¢* (¢). This we compute from the defining equations (9).
Since the series expansions of ¢ (¢) and d(¢) in the canonical
coordinate system are both known, equations (34) and (47),
respectively, we obtain ¢* (¢) by direct computation to be to
the third order
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oY (0 0 o0 0
0 0 2
_ 2
C*((;b): 3 0 L+< dzl L¢+ { dzZ ¢2/2
T2 T2
0 0 _dz_l
N " _ N 2 J
r3dzle _ 3dy2 dx3 A
4 4 2
_9
+ 3 2 L7 /6 49)
My dg
8 2
3d22
L 4
vy

The constants d,,, dy;, dp, dia, dy3, d 3 in (49), together with
e, v, and v, are the instantaneous invariants of the spatial
motion.

Image Curves of Spatial Motions — Differential Properties.
The dual Euler functions €;(¢) = ¢;(¢) + ec (), I =
0,1,2,3 define a dual curve ¢(¢) which is the image of the
spatial motion T'(f):{A(¢), d(¢)). In canonical coordinates
€(¢) is to the third order

0 0 N s 0 N
0 0 i_e@
2 2 o
é(¢) = < 0 TVl dy 1YY de (7
ol _ b2
2 2 2
1
1J 0 —Z+e@
- \. J N 2 J
Y 3 d
( 7X+6(4edz1 4dy2 ;3>
Y _ 9 ;
+4 2 2 | 9 50
e? 1 3 dy
(5D eGe-%)
<2 g/ T\
3
Ezdzz
(. J

where ¢ is the unit angular velocity parameter.

The curve ¢(¢) is a four dimensional vector function over
the set of dual numbers. Vector functions similar to €(¢) but
having only three dual number components have been used
extensively to study ruled surfaces (see Dimentberg 1965 and
Veldkamp 1976). In those works a complete dual vector
calculus is developed and it is seen to be formally identical to
the usual vector calculus over the set of real numbers. This
may be attributed to the fact that algebraically dual numbers

have all the properties of real numbers with the exception that

division by pure dual numbers (those of the form ¢ = 0 + ¢b)
is undefined. If we avoid this singular situation all com-
putations using real numbers may be made using dual
numbers as well. With this justification we move ahead with

the ‘‘dualization’’ of equations (36), (37) and (38) to obtain

results concerning the differential geometry of ¢(¢).
In order to study ¢(¢) we require the dual Frenet reference

20/ Vol. 53, MARCH 1986

frame (7,N,B,E) and the dual arc-length parameterization.

This will allow us to obtain the dual Frenet equations. We

define the arc-length §(¢) of €(¢) by the equation
¢ .

s)=| (ééynay &)

the dot denotes differentiation with respect to ¢. As long as

the integrand of (51) is not a pure dual number, this function
can be inverted to yield ¢(§). In practice we compute

derivatives with respect to § by noting S§(¢(5)) = §
therefore
ds ﬁlf._ =1 (52)
dp d§
from which we obtain
do 1
ds ] 53

where § = (6+¢)172, R .
Finally we see that for any dual function f(¢) we obtain f( §)
such that

df _df d¢ 1 df

ds do ds v do

The dual Frenet reference frame for ¢(¢) is defined in a

manner formally identical to the way the Frenet frame of
hyperspherical curves is obtained. £ is chosen in the direction
¢, and T in the direction dé/ds. The direction N is chosen
along the component of d7/ds which does not lie in the E-T
plane; in the same way B is chosen along the component of
dN/d5 orthogonal to the E-7-N subspace. The result of these
definitions is the dual Frenet equations for dual hyper-
spherical curves:

(54

d .
— =T

pr

dt A

ds

fﬂ:-kﬂ%ﬁ

ds

dB .

=N 55
a7 (53)

The dual function % and # together with the dual function
U(¢) characterize differential geometry of €(¢). From (53)
we compute

1 da

172
) >

170=(61'6
. A d
by = (€, +6,)/0y= —e% (56)

. A 1
Uy =(C;o€3 +6,96))/Tg = Ef[dzlez —2edy, —dy)

Furthermore using (37) and (38) we compute

i=2e+e2(d), +2d, e) (57)
and
A 2, 1 2
T=-—Foer 2y, (de+d,)+3d;1* — (3dy;, +2d,5)e]
' (58)
and finally (42) yields
e =4'yy+€2[4dz1’yy +3d226—‘dy3]. (59)

These computations were  facilitated using the symbolic
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computation software MACSYMA with functions defined to
manipulate dual numbers and wedge products.

In order to completely characterize a general motion to
third order nine independent instantaneous invariants are
required. The geometric parameters defining the curve ¢(¢)
to third order also provide nine independent constants: the
three dual parts of §(¢) and the six constants which form the
real and dual parts of %, 7 and &'. The equations (56)-(59)
define the relationships between these two sets of constants.

Up to this point, we have derived the relationship between
the instantaneous invariants and the intrinsic properties
(curvature, torsion, rate of change of curvature) of image
curves of spherical and spatial motions. These relationships
allow determination of instantaneous invariants of a motion
from its image curve without the need for transforming the
motion to the canonical coordinate system.

In the next few sections, we take a different view point. We
study the instantaneous kinematics of a motion directly in
terms of the intrinsic properties of its image curve. We do this
only for spherical motions.

Local Properties of Point Trajectories of Spherical
Motions. Having obtained geometric parameters which
characterize the local properties of the image curve ¢(¢) (x,
«’ and 7), we substitute these back into the series expansion of
the orthogonal matrix A (¢) and study geometric properties
of point trajectories generated by spherical motion. The A4,
and A, terms in (9b) are now given by

-1 0 «x/2
A, = 0 -1 0
—K/2 0 0
and
0 (1+«2/4) k'/4
Ay = —(1+x2/4) 0 k(3+71)/4
—-x'/4  k(3-7)/4 0

If a,(¢) is the trajectory of p:(x,y,z) fixed in the moving
frame then we have to the third order

X -y —x+ (x/2)z
o, ()= <y ¢+3 X "<y $*/2
b4 0 —(k/2)x
A +&2/4)y+ (k' /4)z

3

+ —(1+K2/4)x+%(3+T)Z % (62)

— (k' /) + —:—(3—1)y

We can now determine the geodesic curvature y of o, which is
defined by the relation

acaxa  z(X2+y)—(k/2)x(x? +y* +2%)
(&e d)s/z - (x2 +),2)3/2

The set of points p:(x,y,2) in the moving frame with the
property that v, = 0 satisfy the relation

Vp = (63)

27(x2 +y2) — kx(x2 +y2 +2%)=0 (64)
which is the well-known inflection cone now written in terms
of the curvature « of the image curve ¢(¢).

The rate of change of geodesic curvature v, of the
trajectory a), is given by

Journal of Applied Mechanics

_ (@ d)(as@x @) = 3(aX d)(ar éX &

’

P (G0 @)’
2432 2 ©5)
x*+y*+z8)
= W {lx’x+ k(3 — Dyl(x2 +¥2) — 3kixyz ]}
The set of points for which v, = 01is given by
[ x4+ k(B — 1) Y102 +32) - 3k2xyz=0 (66)

which is the well known cubic cone of stationary geodesic
curvature now written in terms of «, ¥’ and 7 of the image
curve c(¢).

Equations (64) and (65) form the link between the geometric
properties of the image curve and those of the curves traced
by points in the moving body. For example if « = 0 the image
curve locally follows a great circle of the hypersphere to the
third order. Motions with this property have degenerate loci
¥, = 0and vy, = 0: the first locus becomes z = 0, the second
x = 0. If ¥’ = 0the image curve has constant curvature to the
third order and (66) divides into the two loci y = 0 and x? + y2
- (Bxk/(3—7))xz = 0, a plane and a circular cone respec-
tively. The value 7 = 3 does not seem to have any special
geometrical meaning for the image curve though it causes (66)
to degenerate into the plane x = 0 and circular cone x2 + y* —
(B«?/x’)yz = 0. Finally, if ¢’ = 0and 7 = 3, (66) becomes the
three planesx = 0,y = Oandz = 0.

The curves (64) and (66) are important in the instantaneous
synthesis of spherical four bar linkages since they identify
points which may be used for the moving pivots. All the
results of instantaneous spherical kinematics can be cast into
form which links the results directly to geometric properties of
the image curve.

The Axodes of Spherical Motion. The axodes of spherical
motion are cones with vertices at the origin. One 7 is fixed in
the fixed reference and the other m,, is fixed in the moving
frame. The spherical motion may be considered to be
generated as my rolls without slipping over wr. The in-
tersections of the axodes with the unit sphere are called the
polhodes. In this section, we derive the equations for the fixed
and moving polhodes; we will also use - and 7y, to denote
the respective polhodes.

Points on the moving polhodes m,; are those which have
zero velocity at some time during the motion. From the
velocity equation

d, (¢) =Ap (67)
we seek p in M such that &, = 0. This is easily obtained by
multiplying (67) by A7 and setting &, = 0 to yield

0=ATAp=MQ($)p. (68)
Since MQ is skew-symmetric the solution of (68) for p is simply

the vector formed from Q. Carrying out this computation
we obtain to the second order

0 0 k(1 —7)/4
Tpu(®)= <0 b +<k/2 y o+]  k'/4 /2 (69)
1 0 —x%/4

The equation for the fixed polhode is obtained in a similar
way. We substitute A7p for p in (67) and set &, = 0 to yield

0=AATP="Q($)P (70)
The solution for P is the fixed polhode:
0 0 — k(1 +7)/4
¢2
Tr(@)= <0 >+<k/2 o+ k' /4 5 (70
1 0 —(1+k2/4)
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The geodesic curvatures vy,, and v, of these two curves are
easily computed using (63) and we have

-(1-17) (1+7)
- p and Yap P (72)

Analytically Defined Spherical Motion. Bottema and Roth
(1979) survey a wide class of motions which are defined by
setting the independent parameters of a motion equal to
various functions of a single parameter ¢. An example of this
is the particular case of a symmetric spherical motion defined
by setting the Euler parameters ¢; (), { = 0,1,2,3 equal to the
functions

Co(t) =0
ey (t) =a{l-1*)
C'L(t) =2bt

() =c(1+£?)

where a, b and ¢ are constants. This is the coupler motion of a
special spherical four bar linkage.

We introduce this example to illustrate the generality of
local analysis using the image curve ¢(¢) = (c;(#), c2(¢),
3 (1), co(t)). Equation (73) defines ¢(¢) as a curve in the
projective space L’. In order to examine ¢(¢) on the hyper-
sphere we normalize it

c(t)

HO= et

(74)
and compute its curvature

(c? +a?)t* + (2¢% + 4% —2a*)¢% +(c? +a?)

We can also determine the polhodes of the motion and the
geodesic curvatures of the moving and fixed polhodes at any
instant.

Conclusions

In this paper, we have shown that kinematic mapping can
be used as an elegant geometric tool to study local kinematics
of spherical and spatial motions. Similar to instantaneous
invariants of a motion, the mapping curve also provides
constants that uniquely characterize a motion. We have
applied the results to the study of instantaneous kinematics of
spherical motions and have cast important results of spherical
curvature theory in terms of the intrinsic properties of image
curves of spherial motions.

Acknowledgment

This work was supported by NSF grant MEA-8315796 to
the University of Pennsylvania and by U. S. Army Research
Office grant DAAG29-84-K-0182, to the University of
Wisconsin—Madison.

References

Blaschke, W., and Miiller, H. R., 1956, Ebene Kinematik, Munich.

Bottema, O. and Roth, B., 1979, Theoretical Kinematics, North-Holland,
New York, 550 pp.

DeSa, S., and Roth, B., 1981a, ‘‘Kinematic Mappings, Part 1: Classification
of Algebraic Motions in the Plane,”” ASME J. of Mechanical Design, Vol. 103,
No. 3, July 1981, pp. 585-591.

DeSa, S., and Roth, B., 1981b, “Kinematic Mappings, Part 2: Rational

k(?) =8abc[

and torsion
7(t) =0. (76)
The torsion 7(f) of X (¢) is zero as a result of the fact that ¢
= 0, (see equation 38). At the instant ¢ = 0, we have
c+a? ]3/2 _ac
4b*(c? +a%) T op?
and we conclude that the instantaneous invariants at this
instant are:

¥(0) = 8abc[ an

2ac
6=7)2—’ ‘YX:O! 'yyzo

78)
We can also determine, for example, the curvature properties
of point trajectories at the instant # = 0, in view of equation
(63) are given by
ac
2b?
The rate of change of geodesic curvature of point paths of the
motion at this instant then becomes (see equation 65):

X2 +y*+22 [ 3ac 3a?c?

LT [Fz—y(xz -

vp =z (X +y*) - < ))C(x2 +y2 42/ +y (19)

xyz:‘
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(4b2%c? + 4a? b2yt + ((16a% — 8b2)c? + 8a2 )12 + db?c? + da* b?

] 372 (75)
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which represent an approximation to the system dynamics. The implications of this
“point control’’ approach are discussed with regard to plant modeling accuracy,
uncontrolled regions, open-loop and closed-loop control strategies, system iden-
tification, and feedback estimation, Sample optimal control histories are illustrated

Sfor a single-link manipulator member with end load.

Introduction

Recently, efforts have been made to control maneuvers of
mechanical systems which cannot be adequately modeled
using a rigid body assumption for all or some of the system
components, especially in the fields of satellite attitude
control [1, 2] and robotics [3]. With few exceptions (e.g., [4])
these efforts deal with the distributed nature of such systems
by attempting to develop an approximate model of the entire
system using a finite number of time-dependent variables that
are influenced by the control(s) according to a set of ordinary
differential equations (ODEs). This general approach (which
includes lumped parameter methods and controlled-modes
methods) has two primary advantages and three significant
disadvantages when compared with an alternative approach
developed herein. The advantages of conventional
discretization schemes are (1) that a large body of theory
already exists to produce both optimal open-loop trajectories
and closed-loop control laws for systems governed by ODEs,
and (2) that, if control is successful, it is complete (in the sense
that the entire system is modeled and controlled rather than a
few regions or points within the system). The three disad-
vantages of the finite-dimensionalization approach are related
to (1) the difficulty of adequately modeling a distributed
parameter plant using a small number of variables, (2) the
difficulty of acquiring from a few sensors accurate, real-time
estimates of the controlled variables for state feedback, and
(3) the difficulty of system identification.

An alternative method described below makes use of
transfer functions which relate the response of one or more
points (or rigid regions) within a distributed parameter system
to the controlling input(s). The preferability of this system
description from the standpoints of plant model accuracy,
state estimation, and identification is discussed as the method
is introduced immediately below. The issue of constructing
optimal open-loop trajectories that control points of interest
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Fig.1 Manipulator arm model

within the distributed parameter system is examined at length.
(A similar approach is used to generate open loop trajectories
for a second order system in [5].) Examples of optimal open-
loop trajectories are provided. The availability of closed-loop
control laws using the convolution integral descriptions of
motion is discussed next. Finally, the problem of uncontrolled
regions within the system is examined empirically from the
open-loop test cases.

The Control Response Description

Rather than a set of linear ordinary differential equations,
the present method makes use of a convolution integral
description of the response of controlled points on a flexible
system to one or more controlling inputs. Such convolution
integrals are derivable for the single-member manipulator
arm model of Fig. 1, the several system configurations
discussed in [6, 7], and a great many other linear, nonrigid
systems. The general forms of the integrals are

x(t) = u(Ng(t— NdX )
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(1) = §yu(NEE—NaN @)

where

[ J@=dral
and where g(?) is of the general form

19 ©)

g(0)=Cot+ Y, Cexpls,f]+ C,expls, ] @)

n=1

The constants C,, and s, are complex. If x is the deflection of
some point on the system measured with respect to a reference
point moving with the same system, C, is generally zero. If x
is an absolute position, C; is nonzero and real. In the absence
of damping, the s, are purely imaginary.

The function g of equation (4) is the inverse Laplace
transform of a transfer function X(s)/U(s). This function is
derived below for any point of interest on the system of Fig. 1.
The derivation represents an exact solution to the governing
partial differential equations. No order truncation of the
system dynamics is required until the actual trajectory is
determined. Furthermore, a large number of terms can be
retained in the response descriptions (equation (4)) with little
incremental computational cost. Hence, the ‘spillover”
problem inherent in the controlled-modes methods [1] is
avoided.

For the case of actual systems in which the first several
parameters of equation (4) must be identified experimentally,
sensors would, in principle, be required only for the purpose
of measuring the input force and the corresponding ac-
celeration of points to be controlled. This contrasts with the
more demanding identification requirement of Ilumped
parameter models in which sensors must be located at each of
the modeled degrees of freedom [8]. Similarly demanding
identification measures are needed for systems modeled with
modal amplitude ODEs. Such requirements may be im-
practical, for instance, on an orbiting satellite.

The Manipulator Arm Integrals

Consider the system of Fig. 1. Along the length of the arm
(0=z=<L), the modulus of elasticity (E), the transverse area
moment of inertia (/), and the mass per unit length (o) are
constant. Although the radius of the base axis of rotation is
assumed for convenience to be zero, a motor armature and
gear box are modeled by way of nonzero rigid mass moment
of inertia, I,, located at this base axis. The end mass, m,
(located at the opposite end of the arm) is considered to oc-
cupy a point. The control torque, u, is continuously variable.

The variable y(z, f) is the deflection of the arm at a point
located a distance z from the torqued end, measured relative
to the undeformed position of the arm. The angular
displacement, 6(¢), is the angular position of the base
measured from its original or reference position.

To achieve point control of this system, four convolution
integral types are required, given by

0(t) = §u(Ng(t— NN )
6(t) = § u(NE(E— NN ©6)
¥z, 0) = [ u(Ng. (1= NaN ¢
$(z,0) = [ u(NE, (t— N\ ®)

It should be emphasized that g, and g, in equations (7) and (8)
will vary depending upon the choice of the point location z.
As will be seen, these convolution integrals are useful not only
for determining optimal control solutions, but also for the
exact monitoring of the response to any given input of un-
controlled points in a system.

If the deflections are assumed to be small, the angular
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velocity low, and the member narrow, the governing partial
differential equation is linear and given by

EI(3*y/0z%) + pl62y/88* + 2(d?0/di*)] =0 ®
Also,
I(d?6/dt?) + mL(d?y(L,t)/df?) + pfé 2(8%y/02)dz=u (10)
where .
I,=1I,+pL?/3+mlL? an
The geometric boundary conditions at the torqued end are
»©0,0=0 (12)
ay/dzl,_o=0 13)
The natural boundary conditions at the free end are
Bryrazt o, = (14)
EN33y/0z%) — m(Ld*0/df* + 3%y/ot*) 1, =0 (15)

The required transfer functions are found by taking a
Laplace transformation of equations (9)-(15) in the time
domain as follows:

ENd*Y/dz*)+ ps*(Y +20) =0 (16)
1,570+ mLs? Y(L) + ps(. 2Ydz=U (17
Y(0)=0 (18)

dY/dzl,.q=0 (19)

AY/dzt = 20)
ms?Y(L)+mLs?O—EId Y/dz® | ,_, =0 @1)

where Y(z), ©, and U are the Laplace transforms of y(z,?),
0(0), and u(?), respectively.
A general solution to equation (16) is

Y(2) = exp(Bz)[A cos Bz + B sin fz]

+exp(— (z)[C cos Bz + D sin fz] — Oz 22)

where
3% = ps*/4EI (23)

The constants A, B, C, and D are evaluated using equations
(18)-(21). The resulting solution for Y'is then substituted into
the definite integral of equation (17), which is evaluated
analytically. From this result and equation (22) the transfer
functions G(s) and G,(s) are found, where

G=6/U (24)
G,=Y@)/U (25)

Both of these rather long expressions have the same purely
imaginary poles. Summing the residues about these poles [9]
yields g and g, in the series form of equation (4). In the case of
both series, the s, are imaginary, and, in the case of g, Cy =
0.

Optimal Open-Loop Trajectories

Although the following development is applicable to any
system for which the response of points of interest are related
to the control input according to equations (1, 2), the method
will be illustrated in the context of the single member
manipulator of Fig. 1 and equations (5)-(8).

" Central to any optimal control problem is the performance
index selection. The selection made here for controlling the
flexible manipulator is based upon a trajectory planning
strategy that has been offered for rigid manipulators [10]. In
particular, the suggested trajectory for a rigid version of the
single-degree-of-freedom model would interpolate in time
between the initial angular position 6, at time ¢, and the final
desired angular position 8, at time ¢, according to
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Table 1 Physical properties of the system

Table2 Trajectory comparisons

Arm length (L) — 3.0m
Cross-sectional dimensions — lcmX6cm
End mass (m) . - 1.0kg
Base mass moment of inertia (/) - 0.2 kg-m2
Mass per unit length (o) — 0.54kg/m
Bending stiffness (EI) —~ 27.8N-m?
10.0
fo s,
7.5 )
\
= 5.0 f o R
£ \ e
g 2 [
&= 4 \ ~.
S 0.0
-l
g -2.51 \)
= POINT CONSTR'D \ (
o
S 50 z=2.5 //
z= 3,0 — )
7.5k 2200 mmm—— - A
-10.0 i 1 1 1 1 1 L1 I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
TIME (sec)

Fig.2 Optimal control histories

0()=Cy+ Cit+Cyt? + C33 + Cut* + Cs

The six constants in this polynomial are evaluated such that
the desired angular positions are realized initially and finally,
and such that initial and final velocities and accelerations are
zero. A seldom observed fact is that the resulting smooth
trajectory represents the minimum of

I= 5% #(NdA (26)

where, for the rigid case, the control torque « is related to § by
u=1I§

Because of its association with a recommended rigid-
manipulator trajectory plan, because it tends to yield smooth
control histories, and because it allows for the initial and final
specification u(fy) = u(f;) = 0 (such that initial and final
control discontinuities are avoided), the performance index of
equation (26) is selected for the flexible control problem.

To develop the necessary conditions for an optimal
maneuver, we begin with an assumption that the system is
initially at rest. A control function u*(¢) is sought that, over
the interval f, = 0to #,, will bring the base of the arm from an
initial state of rest at the position 6 = 0 to a desired final
angular position, 8, and velocity, 8, such that J is minimum.

In addition, N previously selected points (z;, 23, . . . Zn)
along the length of the arm may be brought simultaneously to
a condition of zero deflection and zero rate of deflection. To
this end, the performance index of equation (26) is augmented
using 2N + 2 constant Lagrange multipliers, K;, in con-
Jjunction with equations (5)~(8).

Journal of Applied Mechanics

Residual
Case Description? energy (J) U nax (N-m)
1 Deflec’natz = 2.5 1.77 8.8
constrained @ {;
2 Deflec’nat z = 3.00 1.17 9.0
constrained @7
3 No extra constraints 9.67 5.0

?Final conditions of 0(tp)=m, é(tf) = 0 specified for all three cases.

I=[7 (20N + K, [(Ng., (6= N+ K [4NE,, (6, V)]
+ o Koy [uNEL, (= N+ Koy [uNE, (= M)
+ Koy 1 [Nty — N —0,/t4]
+ Kon 12 [N =N = 0,7t 13 dN=[Y Fai,u,Ndn — 27)

Applying the Euler-Lagrange necessary condition to equation

27
d oF oF
~ (=)= =0 28
dt (au) ou 28)
results in the requirement
.. 1 .
u*(t)= 5 [K]gzl (tf—t) +K2gzl (tf“t)+ e
+ Koy 18— )+ Koy 28— 1)) 29
Integrating equation (29) yields
1™ .
w=3 |, ], Ko G0+ Kt =0+ .
Kon18(tp— ) + Koy 28Uty — ) YdEAN+ C1 1+ G,y (30
Requiring that #*(0) = u*(¢;) = 0leads to
C,=0 31)
Leyr ¢ .
== 0 (K =0+ -+ Konaaity= D) dz)
(32)
Thus, the optimal control may be written in the form
wO=K i+ K0+, . .+ Ko afone2(D) (33)
where, for instance,
Fi®) =150 82, (tr— D=1 [0 8., (= HdEAN) /2 (34)

The multipliers K; are found by substituting equation (33)
into the appropriate forms of equations (5)-(8) evaluated at
t=1;. The result is a matrix equation of the form

[0 /1N (=N foNg (=N« Favs sV, (1 =N rOK ]
0 K,
-y al - (35)
by
4, ] LA Vet ~ N Fonr2EE =N 1L Kower

from which K through K, 5, , may be found.

To illustrate this method, consider three cases of a 180 deg
rotation of the manipulator arm. In each case the total
maneuver time, ¢, will be five seconds, with 6, = 0 and 6, =
. The physical properties of the system provided in Table 1
are consistent with an aluminum arm. In case 1, a point 2.5
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Fig.3 Mid-trajectory arm positions

meters from the base of the 3-meter arm is controlled; in case
2, the end point is controlled; and in case 3, only the angle and
angular velocity of the base are controlled.

The optimal control histories which result from these three
cases are illustrated in Fig. 2. It is interesting to note that in
the unconstrained case 3 no braking control is required. It is
optimal, in fact, for the elastic member itself to supply the
braking torque for the hub. Because only positive work is
done on the arm for this case, the residual (elastic plus kinetic)
energy in the system is high compared with the other two
cases. This comparison is illustrated in Table 2 along with a
comparison of the peak torque required for each case. The
residual energy is computed by integrating the product u§ over
the maneuver time. ‘

Figure 3 illustrates an additional comparison between cases
2 and 3. A sequence of member positions determined (via
equations (5)-(8)) each 0.5 seconds through the maneuver is
shown for these two cases. Certain of the frames indicate the
velocity distribution along the member. As is clear from the
final velocity profile in each case, most of the residual energy
is kinetic rather than elastic. The relatively small deformation
at f = ¢, probably occurs because u*(f,) = 0.

The control of a second appendage point reduces the final
velocity distribution to the extent that it cannot be detected
using the velocity profile scale of Fig. 3. Fifteen terms were
required in each infinite series expression in u* to produce
adequate solution convergence.

Closed-Loop Control

An interesting observation that can be made upon
examination of the preceding open-loop control cases is that
uncontrolled regions can be “‘brought into line”’ by con-
trolling only a few points within a system. Many applications
of the point control method, however, would require feed-
back to accommodate possible disturbances, modeling errors,
or control errors. One closed-loop control approach which
makes use of the convolution integrals, published first in [7],
minimizes

1" =7 w*(Nd\ (36)

The resulting trajectories tend to be unsmooth. The coun-
terpart to this control law which minimizes

I={7 > (Nd\ (37

is developed below. The goal is as it was for the open-loop
case; starting from a state of rest, bring the base and N ap-
pendage points to a prescribed position and velocity at ¢ = ¢,

26/Vol. 53, MARCH 1986

while minimizing /. Now, however, the angular acceleration
of the base, 0,,(f), is continuously available. (It should be
noted that a similar development to that given below could be
used for cases of angular position or angular velocity feed-
back.)

Consider the mid-maneuver time =T, 0<T</{,. Clearly,
‘I will be minimum if 2(¢), T<t=<{, is selected such that

HT)=§7 > (Ndx (38)

is minimized subject to the final requirements on 6(¢,), 9(tf),
and the like. In addition, # must be selected such that u(t;) =
0 and u(7) is continuous.

The necessary condition for minimizing equation (38) gives
rise to equation (29) and equation (30) as before. However, C,
and C, are no longer determined simply, as in equations (31)
and (32). Furthermore, the value of the multipliers will change
depending upon the prior acceleration history, 8,,(f), sensed at
the base.

To illustrate this, consider the following form of the in-
tegral in equation (5) evaluated at =1,:

0,=Py(D)+ 7 u(Ng(t;— Ndr (39)

where

Py(T) =, u,(Ne(t;— Nd\ (40)

and where u,(\) (0=\<T) is the ‘‘actual,” sensed, control-
plus-disturbance torque acting at the base. This ‘‘actual”
torque can be determined from the measured acceleration
6., (¢) according to

TRGES WM N (EINEN

where ¢ may be found from equation (24) such that

(41)

=L 1{I5°GE1 "}
The sinusoidal form of ¢ allows for the rearrangement of

equation (41) into two integrals with time-varying coefficients
of the form

()= 13 (D 6D NN+ 7, OF1 6, (NG, (NAN)  (42)

n=1

Equations (40) and (42) may be integrated numerically
throughout the maneuver to continually produce new updates
for Py. Analogous quantities (Py, Pyl , Py-] » Py, , etc.) can be
computed for the other controlled quantities (9(tf), Wz, tp),
y(zl’ t/)’y(ZZ! tf)’ etc.).

At time T, then, the multipliers K;, along with the in-
tegration constants C, and C,, can be reassessed using the
matrix equation

]»_Pyl (N [ K]
-P, (D K,
=[Q(D)] 43)
0/—1;0(7") Koniy
éf—_Pe'(D Konia
w(T) C
L 0 1 L G

The elements of [Q(7)] in equation (43) are given by
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§2d, (Vg (6= NaN (L dy (Vg (tr—NaX

§7dy,(NE.(t;— NaN

d(7)
d,{y)

dy(T)
dz(?f)

where, from equation (30), v
dy () =05, &, (t;~ B)dtd\

dy(t)=§,1; &z, (1~ E)dEdN

(45)
(46)

and so on.

The frequency with which the multipliers are updated may
vary depending upon the computational facilities which are
available. The matrix [Q(7)] is the same for any given
maneuver regardless of the measured 6,,(#). Thus, [Q(7)] !
may be developed well in advance of time 7, making plausible
a real time implementation of the algorithm. The optimal
closed-loop control takes the form of equation (30) in which
the most current values for K; and C; are used.

This control law is, as stated, predicted upon the assump-
tions that all disturbances act on the rigid base, and that the
rest of the system is modeled perfectly. Further investigation
is required to determine the behavior of the algorithm when
these assumptions do not hold.

Discussion

An alternative approach to the maneuver control of
nonrigid systems is introduced. Rather than attempting to
achieve a desired final distributed state of the system, the
method makes use of transfer functions to control only a few
points within the system. As demonstrated in an open-loop
maneuver simulation, a judicious selection of the number and
location of these points can result in acceptably good
alignment of the uncontrolled regions at the end of the
maneuver.

The approach offers certain inherent advantages over
conventional finite-dimensionalization schemes in the areas of
system modeling accuracy, system identification, and
feedback estimation. The principal disadvantage of the ap-
proach lies in the absence of proven, stable, and robust

Journal of Applied Mechanics

[FRIR(IEINN

i 8., (t;=Nd\

(44)

feedback control algorithms that are based upon the con-
volution integral descriptions of motion.
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1 Introduction

Modal parameter identification is crucial for linear system
identification (Berman, 1979). The key point in identification
is to determine the relationship between the system parameters
and the measured dynamical data. There are different ways to
relate the modal parameters to the measured data, which leads
to different identifying methods.

Modal parameters can be identified either by a frequency-
domain method or by a time-domain method. These two
methods are often complementary to each other. Each of them
has its own features and merits. They not only provide dif-
ferent approaches to the problem, but also reveal deeper
knowledge from different respects. The frequency-domain
method for system identification is relatively mature and has
been widely used in engineering research. The time-domain
one is still developing.

Because in practice the system input data are often
unavailable, in recent years attention has been paid to system
identification when only output data are available. Two main
methods have appeared in time-domain identification in this
respect. One is the ITD method (Ibrahim et al., 1977a, 1977b),
by which the system parameters are identified from the free
vibration data. Another one is the ARMA model method
(Gersch, 1975; Wu, 1977), which regards the random response
as the time series of an ARMA process and identifies the
system parameters by the ARMA model. Yet the latter has
been applied mainly to identifying the eigenvalues, i.e.,
estimating the natural frequencies and damping of the system
(Gersch and Liu, 1976; Pandit and Wu, 1983).

In this paper a new method is presented for identifying the
system eigenvectors by the ARMA model. Since eigenvectors
must be identified in a multidimensional space, usually one
has to use a multivariate ARMA model. However, determin-
ing a multivariate ARMA model is laborious, since a
nonlinear least-square estimation or two-stage least-square

procedure is required. In our approach, a multivariate AR
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presented. It is shown that system eigenvectors can be effectively estimated through
the multivariate AR model representation of the system response to white noise ex-
citation. In contrast to the usual ARMA model approach, in this method only a
linear least square algorithm is required, so that a great amount of calculation
is saved. Results of digital simulations support the identification method.

model is determined first from the random response data.
Then it is used to estimate the Green function matrices of the
corresponding ARMA model. Based on their relation to these
Green functions, the modal parameters are then identified. In
this approach it is not necessary to determine the ARMA
model itself, so that the laborious computation for its model-
ing is saved. Results of digital simulations support this iden-
tification method.

2 The Multivariate ARMA Model and Its Main
Properties

Consider a zero mean-valued k-dimensional (¥ may be any
finite positive integer) stationary random sequence y,, satisfy-
ing the following equation:

r q
Ve~ Ea,-y,_,=W,— Ecjwt—j M
i=1 j=1

where ¢; and ¢; are k X k matrices, and w, is a k-dimensional
white noise sequence. It is assumed that w, is uncorrelated to
¥; when j<¢, and has the properties:

Efw,]=0, Elw,w!] =D6,,

where D is a kX k real positive-definite matrix, and 6, is a
Kronecker symbol.
By defining a backward shift operator B as

By,=y,_,
and letting

A(B)=1I- i ;B

i=1

q
C(B)=I-Y, ¢;B/
j=1
equation (1) may be written as
A(B)y =C(B)w, 2)

The random sequence y, is said to be stationary (Priestly,
1981), if and only if ‘‘all the zeros of detA (B) lie outside the
unit circle” (3a) and y, is said to be invertible, if and only if
““all the zeros of detC(B) lie outside the unit circle” (3b).
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Satisfying equation (1) and the stationary and invertible con-
diton (3), y, is called a k-variate ARMA sequence, or said to
be governed by a k-variate ARMA model.

The roots of det4 (B) = 0 are defined as the eigenvalues of
the k-variate ARMA model.

It can be proved (Wang, 1984) that, similar to the univariate
one, the multivariate ARMA model also has its transfer form
and inverted form: :

y,=A-Y(B)C(B)w,= E Gw,_;

Jj=0

=Y, G:Bw,=G(B)w, Gy=I )
Jj=0
w,=C ' (BYA(B)y,=— Y, Ly,
j=0

=— ), LBy, =L(B)y, Lo=-I 5)
i=0

Some important properties of the Green functions and Inverse
functions are as follows:

1. G, in equation (4) is called the Green function matrix
(or Impulse response matrix), which describes the ‘“‘memory”’
effect of the system to the impulse, which acted at the instant
(#—)). The convergence of [G;} decribes the stability of the
system.

Substituting equation (4) into equation (2), we have

A(B)G(B)=C(B)
Comparing the terms on the both sides with the same power in
B, we have
A(B)G;=0, j>q (6)
The general solution of equation (6) has the form:

kxp

Gj= E ,-RJ,:,

i=1

J>q M

where R;’s are inverses of the cigenvalues of the ARMA
model, and coefficient matrices E;’s are determined by the in-
itial conditions, G,’s, j=q. Since G; = 0, for j<0; when
g<kxp, the solution of equation (6), satisfying the initial
conditions, may be written as

kXp
Y, ER/ , whenj=0
G;=3 i=1 (8)
0 1)
2. L, in equation (5) is called an Inverse function matrix.
From equations (4) and (5), we obtain
G(B)L(B)=A4A"1(B)C(BYC'\(B)A(B)=1I

when j<0

or
(+GB+G,B2+. . . YI-LB—L,B*~. .. )=I

Comparing the terms on the both sides with the same power in
B, we obtain

G, =L,

Go= Y, L, ;G;+Lyy .. ... (9)

3 The Relation Between Damped Linear System and
Its ARMA Model

Suppose that the differential equation of motion of a
damped linear system may be written as

Journal of Applied Mechanics

my(t) +cy(8) +ky(t) =w(?) (10

where matrices m, ¢, and k are all assumed to be nXrn real
symmetrical positive-definite matrices.
The transfer function matrix of the system (10) can be ex-

pressed as
2n

H(s)= ), UUl/s;(s—s;)
i=1 .

where s,’s are the system eigenvalues, and U,’s are corre-
sponding eigenvectors, which are complex in general.

The impulse response matrix of system (10) can be expressed
as

2n
Yetvuls, , =0
h(t)=£ 1 H(s) =4 i=1

0 )
The stationary response of system (10) is

<0

¥ = SO h(u)w(t—u)du

Putting it in discrete form, we have

yi= ) hwi (1)
j=0
where
b2 =y(tv), v: sampling time interval
w,_; =w(tv—jv)
(t+ 1w
h = S h{u)du
v
2n
=) e U UT (e — 1)/s? (12)

i=1

under the assumption that w(¢) is constant over the sampling
time interval.

It is known that the correlation function of the response of a
damped linear system under white noise excitation is asymp-
totically stationary. Hence, there always exists a stationary
random response, for which the discretized version is a sta-
tionary random sequence.

Since the discretized random response of system (10} is a
stationary time series, it satisfies the following n-variate AR-
MA model (Hanna, 1970):

A(B)y,=C(B)w,
Its transfer form may be written as

o

Y= E G;B'w,
j=o

The y,’s in the above equation and in equation (11) express the
same response sequence of the system, so that the corre-
sponding Green function matrices should be equal. We have

nxp

), RIE,

i=1

ZEn e UUT (e — 1)/s? =
i=1
Comparing the corresponding parameters on both sides of the
above equation, we obtain
p=2
R, =e
E;=UUl (e~ 1)/s}

Equation (13) gives the relation between the parameters of a
vibration system and the corresponding ARMA model.

(13)
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4 Identifying the Modal Parameters of a Vibration
System

It is easy to see from equation (13) that, having estimated all
the R; and the corresponding coefficient matrices E; of the
ARMA model, we can identify all modal parameters of the
vibration system. The identifying process consists of the
following three steps.

1 Estimating Eigenvalues of an ARMA Model Based on

Correlation Function Data (Zhang and Qiu, 1983), From
equation (2), we have
detA (B)y, = {adjA(B)}C(B}w, (14)
Noting that detA (B) is a polynomial of B, we choose a z,, any
one of the components of y,, and write down the corre-
sponding equation in equation (14):
detA (B)z,=Q(B)w,
where Q(B) is the corresponding row vector in
{adj A(B)}C(B).

Equation (15) may be regarded as a higher order univariate
ARMA model. According to the definition of eigenvalues of
an ARMA model, system (15) and (2) should have the same
eigenvalues. Therefore, the estimation of eigenvalues of a
multivariate ARMA model may be reduced to that of a higher
order univariate one.

Assume that the order of detd (B) is m, and the order of
Q(B) is qg. Let

detA(By=1-f,B—f,B*—. .. —f,B"

The autocorrelation functions, u,’s, of a univariate ARMA
model satisfy the following difference equation:

detA (B)u, =0, k>q
Since m>q, the above equations may be written as

um—lfl +um—2f2 + }
N>m

(15)

Un_J1tuy_ o+ Uy =uy
or in the matrix form:

PyF, =0y (16)
where
F.=lfi...... Sl
Ov=1lty ...... unl”
pN{”"'-l':::::.”‘f.. }
Un_g oo v Unm

The least square solution of equation (16) is
F,, =[PLPN1~'PQN
Then we find the zeros of detAd (B) for the ARMA model.

2 Determining the Multivariate AR Model. We know that a
multivariate ARMA model has its inverted form:

- E-Lijyt’ L0= -1
j=0

We can always find a finite order multivariate AR model to
approximate this infinite order model with sufficient ac-
curacy. We might as well let its order be J, and write it as

J
ABy=(1- Y 4,8 )y=w,
i=1

Postmultiplying p7_; to the above equation and taking ensem-
ble averages, we have

7
Is= E Ajrs—js
j=1
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s=12,...,J a7

J
ro= Y, A ,AT+D

ij=1
where
re=Eyyl_ ]
Equation (17) is known as Yule-Walker (Y-W) equation. Let
ay= [4, A, AT
To I -y
rf To Tj-2
vJJ i R R S B R B |
riy ryj-2 Ty
vy= In r rA”

Equation (17) may be written in the matrix form:
Vy=Ugdy (17a)
Therefore, we may obtain the Y-W estimation for the
multivariate ARMA model. We shall take
N

N 1
s='ﬁ E rytT—s

t=s5+

for the estimation of r,. One of the merits is that this estima-
tion has the property of positive-definiteness, which is
necessary for determining the AR model. Since ¢, is positive-
definite, its inverse, 97/, does exist. From equation (174),we
can obtain a unique 4,

dyy =05 4,
In practice, it is more convenient to use the well-known recur-
sive algorithm for Y~W estimation:
dy =7y

D

dp+1,p+l=(rp+1 E apj p+1—j)(F0” Eépjrj)—
Jj=1

Gpr1y == 8pr1p41Cpp11-)

2 ATa-1
h=nrp
Coprlp+l =(r

D P
4 AT\-T
E Jp+l J) (rO Eapjrj)
=¢,~C

i) p+1,p+la o+l
.121’2;

Cpar,j

3 Estimating Modal Parameters of a Vibration System.
Having found the eigenvalues of the ARMA model, R/},
written as

R '=a,+jb;
and letting the eigenvalues of the vibration system be
si=Re(s;) +/Im(s;)

we have

Re(s;) = — (1/v)inVa? + b?

Im(s;) = — (1/v)tan~! (b;/a;)
Then the natural frequencies and modal damping ratios may
be obtained as

w?=ReXs;) +Im2(s;), = —Re(s;)/w;

Having obtained the approximate estimation of inverse func-

tions of the stationary random sequence, we find by equation
(9) the approximate estimation of the Green functions:

Gy, Giye oo , G,
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Table 1 Results of digital simulations (Uy; =

U,, = 1.00000)

» ‘f’a 2z Single-point excitation - ol Multi-point excitation
A ) (S coretica
% '_3(} % Accurate Pseudo- Accurate Pseudo-
2 o, \ ©| correlation random correlation random
5y —~1.56010 —1.53904 - 1.56010 ~1.56010 ~1.62435
+j21.5777 +721.5069 +j21.5777 +421.5777 +j21.5535
%] 0.07211 0.07138 0.07211 0.07211 0.07515
W] 21.63403 21.56190 21.63399 21.63403 21.62462
Uy 1.87981 1.92788 1.87980 1.87980 1.83692
) +,70.00639 +,0.01058
S5 —4.27323 —4.54904 —4.27324 —4.27323 —4.64640
+/35.5487 +/35.2260 +j35.5487 +/35.5487 +735.2484
& 0.11935 0.12808 0.11935 0.11935 0.13069
W,y 35.80462 35.51851 35.80462 35.80462 35.55332
Uy, —3.54648 —3.72934 —3.54647 —3.54648 —3.55660
—j0.02734 —j0.02359
§1 —0.23374 —0.25055 -0.23374 -0.23374 —0.22154
+/21.9363 +j21.9321 +421.9363 +421.9363 +j21.9687
{1 0.01066 0.01142 0.01066 0.01066 0.01008
| 21.93750 21.93353 21.93750 21.93750 21.96982
Uy, 1.99008 2.01963 1.99008 1.99008 2.01550
) —j0.10852 —j0.17497 —j0.10852 —j0.10852 —j0.10784
Sy —1.80793 ~2.24729 —1.80793 -1.80793 —2.01896
+/35.2813 +j35.3364 +j35.2813 +/35.2813 +j35.2737
[} 0.05117 0.06347 0.05117 0.05117 0.05714
wy 35.32760 35.40779 35.32760 35.32760 35.33143
Usy —3.34316 —3.31824 —3.34316 —3.34316 —3.33370
—J0.29415 —j0.37061 —j0.29415 —j0.29415 —j0.36933

with m>(2n —1). Letting the sth column vector of G; be G,

we define a matrix g® as follows:

m_[lOO o] C_[ 75 —50]
“lo 15°°Tl-s50 50

[ 76915
= [— 14415

—14415]
14415

g9 =16 G ... GP]
Letting
e =[E(S Ef .. . E{
1 R, R} R
r=1 e
1 R, R} ... RZ
from equation (8) we have
g =er (18)

Therefore, the least square estimation of e*) may be obtained
as

€9 = g FT[FFT] 1
Moreover, from equation (13) we have

e =[U Uy(e’ = 1)/s3 . . . .. Uy Uy, (€207 = 1)/53,]

Up to an aribitrary multiplier, #; is the complex eigenvector
associated with s;.

5 Digital Simulations

The following digital simulations have been made to verify
the effectiveness of the above method for identifying modal
parameters. Two illustrative systems are used in the simula-
tions. Their differential equations of motion may be written as

mi+ci+kx=w(t)=[w (&) w, ()17
where for system 1,
10 o] ._[ 500 -100 _
’"‘[o 15]’0“[—100 100]”‘"150",

and for system 2,

Journal of Applied Mechanics

Although the two systems have similar natural frequencies, in
system 1 damping is proportional, or classical, so that system
1 has classical normal modes, i.e., its eigenvectors are real.
While in system 2 damping is non-proportional, so that system
2 has non-classical modeshapes, i.e., its eigenvectors are all
complex. The excitation, w(¢), is treated either as zero-
meaned ideal white noise in case 1, or as zero-meaned pseudo
random white noise in case 2. In each case, both single-point
excitation, i.e., w; #0 and w, =0, and multi-point excitation,
i.e., w; #0 and w, =0, are used.

Case 1 Ideal White Noise Excitation. In this case, ideal
white noise excitation is used in order to examine the iden-
tification program. Accurate correlation function matrices of
stationary random responses are obtained by modal analysis
method (Fang and Wang, 1985). Then, multivariate AR
models are determined based on the accurate time series data.
Finally, modal parameters are obtained. The results are
satisfactory and they are listed in Table 1. This simulation is
actually a deterministic one, because the correlation function
matrix obtained for response to ideal white noise excitation is
an auccurate one.

Case 2 Pseudo Random White Noise Excitation. To verify
the effectiveness of our approach in practice, the pseudo ran-
dom white noise is used to carry out the random simulations.
The excitation we used is a pseudo random sequence with
uniform spectrum, namely a time series, which is the IFFT of
a uniform spectrum with random phases. The w;(#) and
w, (t) are generated independently in the experiments. The
responses are obtained by numerical integration. In order to
ensure the numerical integration has sufficient accuracy, we
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resort to the conventional modal analysis method. However,
the responses are random due to the random nature of the ex-
citation. In every trial we use different random numbers to
generate different time-histories of pseudo random noise. Fur-
thermore, in every trial we discard the first few hundred of
sampled response data to ensure a stationary state (Caughey,
1963), and then use the succeeding 10001500 sampled data to
estimate the response correlation function matrix. The sam-
pling interval is taken as 0.02 s for system 1, and 0.04 s for
system 2. The results shown in Table 1 are based on the
average outcome of 20 trials. The experiments reveal that both
the eigenvalues and the eigenvectors can be estimated within
reasonable accuracy, no matter whether the system is single-
point excited or multi-point excited.

All the above experiments were conducted on the SIEMENS
7760 computer with a double precision algorithm, For brevity
the results listed in Table 1 are only shown to the fifth decimal
point.

6 Conclusions

A new approach for identifying modal parameters is
developed. The method has the following features:

1. It is based only on response data for white noise excita-
tion. Thus it is applicable even when precise excitation data
are unavailable, but the excitation is approximately white in
nature, e.g., in low-level ambient vibration tests of structures.

2. Since only a multivariate AR model for response data is
required to determine the Green function matrix, it saves com-
putational effort.

3. Not only eigenvalues, but also eigenvectors can be iden-
tified with reasonable accuracy.

32/Vol. 53, MARCH 1986

Digital simulations support this time domain identification
method.
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ERRATA

Errata on ‘‘Beams in Receding/Advancing Contact: Dunders Problems”” by T. P. Pawlak, N. J. Salamon,
and F. F. Mahmoud, published in the December 1985 issue of ASME JOURNAL OF APPLIED MECHANICS, Vol.
52, pp. 933-936.

On p. 934, line 2 of Table 1 should read as follows:

Moment of inertia = 1.041 x 107 m*

On p. 935, line 21 in the Results section should read as follows:

... where D is the center of deflection for P=2.224 x 10° N, In comparison . . .
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A Natural Modes Model and
Modal Identities for Damped

F. R. Vigneron

Research Scientist,
Communications Research Centre,
Ottawa, Canada, K2H 852

Linear Structures

A modal model is derived for a passive elastic structure with linear viscous damping,
Sfrom a first-order state variable arrangement of the physical parameters model. The

state variable form of the model is composed using the equations Kq — Kq = 0 and
Md + Cq + Kq = f. An attribute of the particular formulation is that it facilitates
a straightforward derivation of mass-properties-related modal identities for the
associated damped natural modes. Transfer functions and normalizations used in
experimental modal parameter estimation are also given special attention.

1.0

For currently developing modal test and analysis technology
that is based on curve-fit type of parameter estimation tech-
niques, such as the complex exponentials method, a modal
model corresponding to a passive linear elastic structure with
general linear viscous damping is of value and interest, and in
use to some extent. This type of model is also referred to as a
“‘damped natural modes model.”’

A derivation of the basic modal model for passive non-
gyroscopic systems from a first-order state variable arrange-
ment of the physical parameters model, in the spirit of the
classical normal modes analysis, was published by Foss (1958)
and is well known and extensively used (Meirovitch, 1967;
Ewins, 1984). An alternate modal derivation that involves
Laplace Transformation of the physical parameters model and
analysis of the resulting second-order algebraic matrix equa-
tion is also available (Richardson, 1974). Derivations using
state variable formulations different than Foss’s have also
been given (e.g., Béliveau, 1977, Brandon, 1984). Analyses of
modal properties applicable to active gyroscopic systems are
given by Nelson and Glasgow (1979) and Fawzy (1977). These
works are complementary and contribute a visibility into the
structure of the system that is needed, particularly for efficient
parameter estimation.

Foss’s (1956) state variable arrangement of the physical
parameters model, composed using Mg — Mq = 0 and Mq§ +
Cq + Kq = f, has parameter matrices that are not positive
definite. Consequently certain mass-related modal identities
cannot be established conveniently from the formulation. The
modal identities are the damped natural mode equivalents of
those recently documented by Hughes (1980) for the un-
damped case. The identities have significance to future
research in analytical and experimental techniques of assessing
mode set completeness and modal truncation procedures. In a
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formulation put forth for a more general category of modal
analysis by Meirovitch and Baruh (1981) and Vigneron (1981),
Kq — Kq = 0is used to compose the state variable form and
this results in the presence of a positive definite parameter
matrix. As a result it turns out to be evident that certain modal
vectors constitute a basis in a Euclidean inner product space,
and further that Bessel’s equations can be conveniently ob-
tained and used to establish the modal identities.

This paper first derives the modal model from the latter
state variable arrangement, with the intent of adding further
visibility into the structure of the passive linear damped case
and clarifying certain normalization factors and other rela-
tions used in parameter estimation. Then the appropriate form
of Bessel’s and Parseval’s equations are established, and the
modal identities obtained.

2.0 Model in Terms of Physical Variables

To obtain modal identities in the form to follow in Chapter
4, a physically-based definition of the structure and reference
coordinate system are needed. One appropriate for this pur-
pose, and for experimental modal parameter estimation, is
outlined in this Chapter.

The structure, depicted schematically in Fig. 1, is defined by
N points, relative to a coordinate system Oxyz. In parameter
identification, where a finite number of points are in-
strumented, N is finite. A mass, m', is associated with each
point. The coordinate system, 0xyz, is considered to be chosen
such that rigid body translations and rotations between it and
the structure are not possible due to physical restraints, or
have been mathematically eliminated. Define the deformation
matrices, of order N X 1, as

ul Ul Wl

U= V=] 1} W=1{ w |, -
and the corresponding position matrices of order N x 1 as
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POINT i, DEFORMED
POINT i, UNDEFORMED

A
(Ui, vi, wi)
{xi, yi, i)
0 -y

X

Fig. 1 Coordinates of the structure

xl yl Zl

x2 y2 z2
X=X Y=| 33 Z=1| z2 1. (2-2)

x'N y'N Z'N

The model for this structure has the form
MG+ Cq+Kq=f1, 2-3)

The order of equation (2-3) is 3N, and is further denoted
herein by n; C and K and M are each of order n X n. The 3N
% 1 column matrices, q and f, are

] -]

The structure is considered to be passive, non-gryoscopic and
with general linear viscous damping. Therefore, M, C, and K
are symmetric and positive definite.

For the above choice of deformation variables and coor-
dinates, M turns out to be diagonal and of the form

(2-4)

MNONO m102..
S

mN
2-3)
where the dimension of MY is N X N.

When N is taken to infinity the model is exactly
synonymous with the continuum representation of linear
elasticity theory. The mathematical formulation to follow in
Chapters 3 and part of 4 also applies for equations having the
form of equation (2-3) with M non-diagonal. To obtain the
form of the identities to follow in Chapter 4, the physical
coordinates (and thus the diagonal M of this particular
physical model) are employed.

3.0 Transformation to Damped Natural Modal

Variables

Structural Model in State Variable Form. Equation (2-3)
may be arranged in the first order state variable form,

AQ+BQ=F 3-1)
[d} {f} {M 0} [C K}
Q= , F= , A= , B=
q 0 0 K -K 0
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where Q and F are of order 2n X 1; A4 is of order 27 X 2#n and
rank 2n, and is positive definite and symmetric; B is order 2n
X 2n, and is the sum of a symmetric part involving C and a
skew symmetric part involving K. As noted in the Introduc-
tion, the above state variable form is different than the usual
one of Foss (1958).

* Figenproblem Analysis. The eigenproblem corresponding
to equation (3-1) is '

(M\A+BYT, =0. (3-2)
The eigenvalues A\, are solutions of
det(\;4 + B) =0. (3-3)

Since 4 and B are of dimension 2#, equation (3-3) is of degree
2n. The equation yields 2# eigenvalues which are real or com-
plex. Since the rank of B is also 2n, the eigenvalues are non-
zero. The complex eigenvalues occur in complex conjugate
pairs

)\k=—0'k+in (3'4)
The eigenvalues are assumed distinct. The N’s that are complex

can be converted to the conventional natural modal frequen-
cies and modal damping ratios, w and ¢ by the formula

N = —op—ivg.

Ge=0/ (P2 +03)1% wi=vi+ot. (3-5a)
The converse is
O =Gewps V=i (1-83). (3-5b)

A matrix column, T,, is calculated (and determinable to
within a complex scalar constant) by solving equation (3-3) for
a particular \,. Also a matrix row, I'T, can be calculated for a
particular A, from

I'T(\A+B)=0. (3-6)
Taking the transpose of equation (3-6) and recognizing that 4
= AT yields

(\,A+B7)I, =0. G-7)
T, and I';, are right and left eigenvectors of dimension 2n X 1,

and are complex in general.
Premultiply equation (3-2) by I'T:

MNITAYT, +T7TBY, =0. (3-8)
Post-multiply equation (3-6) by T,:
NTIAY, +TTBY, =0. 3-9
Subtract equation (3-9) from equation (3-8) to obtain,
A\ =\ )TTAT, =0. (3-10)
Therefore, for two non-equal eigenvalues A, and A,
ITAY, =0; TIBY,=0 7#k. (3-11)

It follows from equation (3-8), and from equation (3-7) after
multiplication T7, that

rJBr,  TIB'T,

rfAY,  TIAT,
M and Af are two distinct eigenvalues, and consequently
I'TAY, and I'}"BY, are equal to zero.

To demonstrate the structure of T;, consider the upper and
lower internal columns, T4 and T, each of order n x 1:

Ttl
Tk = [T;; ]

)\k=

3-12)

(3-13)

. Substitute equation (3-13) and the parameter values for 4 and

B into equation (3-2):

MM 0 (7 C KO (14
+ =0. (3-14)
0 MNK T —-K 0 T
~ Equation (3-14) reduces to
N MY+ CYY + KX, =0 (3-15a)
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MK, — KT =0. (3-15b)
From the latter equation, T4 = \,T}. Then equation (3-13)

becomes
_ M‘l’k]
Tk = I: q)k .

&, is complex in general, and of dimension n» X 1. Equations
(3-15) can be further arranged to obtain

MNM+M\C+K)®, =0. 3-17)
A similar parallel development where I'; is partitioned into
upper and lower parts and equation (3-7) is decomposed in a
similar manner yields T'¥ = —\, T} and \2M + M\, C+ K)TY =
0. Thus I, equals &, and

L
sz[ <I>kk k:l.

Vector Space Corresponding to Damped Natural Modes.
The quantities, T, and T}, kK = 1 to n, are a set of 2n distinct
column matrices (each of dimension 2n X 1). The set can be
shown to be linearly independent, and each eigenvector can be
shown to be unique in the sense that there is only one T, for
each A\, by proofs similar to one given in Wilkinson (1965).
Thus the quantities (¥, + ;) and i(T, — T}), k = Lton, are
also 2n linearly independent column matrices and are real-
valued, and define a vector basis of a real vector space of
dimension 2n. For any vector G (i.e., real-valued column
matrix of dimension 2n X 1) contained in the space,
GTAG =0 since A is positive definite. Thus GT AG, defines a
real inner product for two arbitrary vectors, G, and G,, con-
tained in the space. Thus the vector space is a real inner
product space (a Euclidean Space). The corresponding dual
basis consists of (I', + [')and i(T', — I'}), k = 1to n. A real-
valued vector, G, may be represented in terms of the basis vec-
tors by

(3-16)

(3-18)

G= ) @ (T +15)+ by (T, —17), (3-19)
k=1

where g, and b, are real-valued scalars. The above expression
rearranges to the form

n
G= ), (T +af Ty
k=1
where oy = a, + ib,. Thus one may regard the basis vectors
of real vector space as T, and T}, if at the same time ap-
propriate pairing of complex and complex conjugate quan-
tities is maintained to ensure that the total expression is real-
valued. It proves convenient to work directly with the complex
T’s and I'’s and the representation in the form of equation
(3-20) as oppposed to the real-valued basis vectors and the
form of equation (3-19).
System Model in Terms of Complex Modal Variables. The
real-valued column matrix, Q(¢), of equation (3-1), can thus
be represented as

(3-20)

Q) = Y Meoe (1) +TEpf (D], (3-21)
k=1
where p, (#) is a complex-valued scalar variable
pi (1) =&, () +in, (1), (3-22)

To transform the state variable differential equation, equation
(3-1), to be equivalent modal variable differential equation,
substitute equation (3-21) into equation (3-1), premultiply by
I'7, and use the orthogonality properties of equations (3-11)
and (3-12), to obtair

I7¥ (1)

— 3-2
TTAT, (3-23)

Pr—Nepr =

Journal of Applied Mechanics

The denominator, I'7 AT, can be reduced by substituting into
it A of equation (3-1) and T, and I'; of equations (3-16) and
(3-18), to obtain

—N®TM®P, +BTKD,. (3-24)

Multiplication of equation (3-17) by ®/ and combination with
the above gives the final result,

TTAY, = =\ 2\M+C)®,. (3-25)

Likewise, the numerator of equation (3-23) becomes I'/F =
—\®/f. Substitution of these results into equation (3-23)
gives

®TE (1)
b - t)= . 3-26
Or (1) = Nep (1) T (2N M+ O)®, ( a)
A similar procedure with T'}T as the premultiplier leads to
®r7E(2)
6 (1) =N pk(t) = . 3-26b
BEW) =N o (1) 8T (2N M+ C) B} ( )

Equation (3-26a) or (3-26b) is the differential equation of the
system in terms of complex modal variables.

Transfer Matrix and Residues. The transformation between
q and p may be deduced from equations (3-21), (3-1), and
(3-16) to be
n
()= Y (B (1) +B0F (D).
k=1
Equations (3-26) and (3-27) are next transformed by the
Laplace Transform. In this context the two-sided transform of
a complex variable is implied with q(¢) taken to be zero at ¢,
= —oo, Then p( — o) is zero. The transformed modal equa-
tion is

3-27)

®T1(s) 1
T 2NM+C)®,  (s—N\,)

Substitution of equation (3-28) into a transformed version of
equation (3-27) yields

- % o, 8] 1
q(s)= Z; { = .
S LBIONMA+OYB,  (s—N)

i (s) = (3-28)

. ordpT 1
BTN M+ OV (s—N))

From the above equation follows the definition of the residue
matrices, R, and R}, as

(3-29)

]f(s).

&, &7 b7
Rp=—er— ok Rp=—___k & , (3-30)
BTN M+ C) By BTN M+ C)d}
and the “transfer matrix’, H(s), as
] " r R, R}
H(s) = [——+—] 3-31
) kz::l SN | SN 3-31)

H(s) can be inverted to the time domain, to yield the unit im-
pulse response function, H(#):
n

H(1)= Y, (Ree™ + RreM).
k=1

(3-32)

R, and H(s) are complex-valued and of order n X n. H(¢) is
real-valued and of order n X n.

Normalization Constant. The normalization constant, Q,,
is consistent with experimental modal analysis conventions of
Brown (1984) and with Fawzy (1977) when defined as

1
Qk :?"—7 .
TeNM+ CY®,
Qy is a complex scalar. Its numerical value and units depend
on numerical value and units of the mode shape, or vice-versa.

(3-33)
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With this definition of normalization constant, the residues
assume the form,

Ri=Q % ®]; Rf=QF[;T, (3-34)
and H(s) takes the form
n
- Q¥ QFdrerT
H(s)= { + } .
SEPY S—he | S—Af (3-33)

k=1

Three of several possible ways of assigning the arbitrary cons-
tant associated with each mode shape, and hence Q,, follow.

(a) Choose the numerical scaling for each mode so that the
scalar element of the mode shape at the main exciter’s driving
point in a modal survey test is 1 + #0. This implies that Q,
equals the scalar value of the residue associated with the driv-
ing point. This choice of normalization is compatible with ex-
perimental modal analysis conventions (Brown (1984)).

(b) Choose the scaling for each mode so that
ST\ M+ C)®, equals 2\,. This degenerates to $JMP, = 1
when damping is zero, and is thus consistent with the unity
modal mass convention of finite element and experimental
modal engineering practice (Brown (1984)). For this choice,
Qk = I/ZXk

(c) Choose the numerical scaling of each mode so that T'7 AT,
equals 1 + /0. This then implies that Q, = —\,. This choice is
the most convenient one for theoretical work because it
simplifies algebra a great deal. Unfortunately, this normaliza-
tion has no counterpart in the classical undamped or
proportionally-damped modal theories, and consequently is
not compatible with current engineering practice and
developed software (e.g., SDRC (1985)).

Procedures for establishing the Q, and mode shape scale
factor from experiment-derived modal data (where M, C, K
are not known) are described in Brown (1984) and in Vigneron
(1985).

System Model in Terms of Real Modal Variables. The
system model can be expressed in terms of real-valued modal
variables, &, (¢) and 7, (), as an alternate to p(¢) and p* (¢).
Substitution of equation (3-22) into (3-27) results in

a(6) =2, (Red, £, (1) —ImB;on, (1) ). (3-36)

k=1

Substitution of equations (3-22) and (3-4) into equations
(3-26a) and (3-26b), and successive addition and subtraction
of the two equations leads to

Ex+ ok v =S]T (3-37a)
ik + oxne — vk = TEA, (3-37D)
where S] and T7 are the real and imaginary parts, respective-
ly, of ®1/{®[ (2N M + C)&,}. Equations (3-37) are two first-
order modal differential equations that are the damped-

natural-modes counterpart of the familiar single uncoupled
second order modal equation

Bi + 250, By + wip, =L (3-38)

of the proportional-damping theory. Of significance,
however, is the fact that equations (3-37) cannot be put into
the form of equation (3-38), except for the special cases of
proportional and zero damping. Because of this, the physical
concepts of ““modal mass,”” ‘‘modal damping,’’ and ‘‘modal

stiffness’’ are not rigorously-applicable in the damped natural

modes theory. The transformation of equations (3-37) from
variables (£, 1) to (74, D) by

T (D) === £ () 4 (0) (3-394)
k .
2 2

Pe(t) = Uk: & (), (3-395) |
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together with appropriate substitutions and use of equations
(3-5) lead to:

i . ST .
P+ 280Dy + kD = w —{(Jfkg —T,Z)H SIf. (3-40)

The above equation is different in structure from equation
(3-38) as noted above, because of the presence of the term in f.

Modal mass, modal stiffness and modal damping for the
damped natural modes model can be established from the pro-
perties T}TAY, = 0 and T'}7BYT, = 0. Additional informa-
tion on the real modal variables formulation is available in
Vigneron (1981) and Vigneron (1985).

4.0 Modal Identities

Bessel’s and Parseval’s Equations. Bessel’s and Parseval’s
equations offer a convenient means of establishing certain
modal identities that are useful for validating completeness of
mode sets and modal truncation. The form of the equations
that appear in standard references is not general enough for
the situation at hand. The desired forms are briefly outlined
below. :

A real-valued arbitrary vector G of the Euclidean inner
product space may be represented in the form

G= ) (o Ty +afTp).
k=1

@1)

The Fourier coefficients, «y, are obtained by multiplying
equation (4-1) by I'”A and use of the orthogonality relation-
ships, equations (3-11). Likewise an expression for «} is ob-
tained by multiplication by I'*7A. The following are
obtained.

3 r’AG ) . I'YTAG @2)
“TTrTAT, 0 T TrTAT
Similarly, G may be represented in terms of I'; as
n
G"= Y (BT +B;T7). @3)
k=1

The corresponding Fourier coefficients, derived by post-
multiplication by AT, and AT} as above, are
GTAY, . GTAT}
Be=—gm 3 Bi=ar
AT, rFrAT}

Consider the inner product,

n n
[GT— Y (B,T7+8;T27 }A {G— Y (aka+a,fT,f)}.
k=1 k=1

(4-4)

4-5)
The expression equals zero if the basis and dual, T, and T,
are complete. If they are incomplete, due to modal trucation
for example, then the inner product is real and greater than or
equal to zero, because A is positive definite and the right and
left multiplying vectors are equal and greater than zero (if
truncation is done, the dependence between the bases T, and
I, must be taken account of). The following result is achieved
by multiplying equation (4-5) out, and simplifying with the or-
thogonality relations and the relationship /AT, = Y]AI,:

GTAG= ) (PTAY )0y + (TR TATY o B2 )
k=1

(4-6)

The above is a form of Bessel’s inequality. If the bases are
complete, the equality holds and the relation is referred to as
Parseval’s Equation.

A second different arbitrary function G, may be further
defined by

G= Y (&M +a& 1), @7)
k=1
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E B IT+ BT, (4-8)

where &, &}, B, and B} are as per equation (4-4) with G
replaced by G. It may further be shown that

. 1 & _
GTAGz—Z— Y (TTAY, (B + i)
k=1

+TETAYE @B+t B)). 4-9)
Equation (4-9) is referred to as the general form of Bessel’s
Inequality.

Identitites Involving Modal Linear Momentum. ®, may be
expressed in terms of components:

& = 107,01 ,¥i1, (4-10)

where 6, ¢,, and ¥, are each N X 1 column matrices and cor-
respond to the U, V, and W coordinates of the displacement.
Then

T =[~NOT, ~ NedT, = NV L 0F 6T W] 4-11a)
7 = INOT N ST NYE 0T 0 T (4-11b)
TTAT, = =N\ /Oy (4-11¢)

Let the arbitrary G of equation (4-1) assume the value, J,,
where

= [ET’OT,OT’OT,OT,OT], (4'12)

each 0 is understood to be an N x 1 column matrix, and L is
an N X 1 column matrix,

ET=[1,1,1,...., 1] 4-13)

The Fourier coefficients for the above J,, obtained from equa-
tions (4-2), (4-4) and (4-11), are

o, = QO ETMNO, = Oy E mio;

i=1

n
af = QFETMNOE = QF Y mioy

i=1

Be=—QLTMNg, = — O, ), mi6i;
i=1

Bi = — QFLTMNoE = — Qi )y mioy'.

i=1

(4-14)

Likewise
N
JIAY,=L"MNE= ) mi=

i=1

(4-15)

where m equals the total mass of the structure. Substitution of
equations (4-14) and (4-15) into Bessel’s Inequality, equation
(4-6) results in

n
E (N QL (ETMNO)? + NFQRETMN0%)? ). (4-16)
Define the quantities, Py, Py, and P, by
N N

Py =LTMNO, = Y, mit}, P, =L"MN$, =Y, mi¢}

i=1 i=1 -

N i
Py =ZTMVy, = Y, mii. (4-17)

i=1

P, Py, and Py, are complex scalars and are the Ox, Oy and Oz
components of the modal linear momentum coefficient of the
k™ vibrational mode of the structure. Then equation (4-16)
may be written

Journal of Applied Mechanics

E IMNOQPYH +NEQEP Y = m. (4-18a)
k=1

Equation (4-18q) thus states that the sum of the squares of the
model linear momentum coefficients in the Ox direction
(multipled by scale factors) is bounded, and is less than the
total mass of the structure. In equations (4-14) to (4-17), MV
corresponds to the physical model of Chapter 2 and is
diagonal.

For the normalization option (b) of the previous chapter Q,
= 1/2N;, OF = 1/2N}, and equation (4-18a) becomes

3 1 2. %2
) S (Ph+ PRy =m.
k=1
For damping set equal to zero, P, = P}, in which case equa-

tion (4-19) compares to equation (25) of Hughes (1980).
A similar procedure with the general form of Bessel’s ine-

4-19)

quality (equation (4-9)), and G = J, and G = J, = [07, L7,
07, 07, 07, 07}7 leads to
Y0 ONQuPyPyic+ N QR PPy ) <O. (4-180)
k=1

With other combinations of J,, J,, and J,, and the ap-
propriate forms of Bessel’s Equation, the following may
likewise be obtained:

n

(N Qu P + NEQEP }Sm (4-18¢)
k=1
n
Y ONOPL AN QEPE Y s m (4-184)
k=1
n
Y (MOP P+ N QF PP} <0, (4-18¢)
k=1
n
E {NeOu Py Py + NEQEP P 1 <0, 4-18/)
k=1

The above six relations can be expressed in a single matrix
relation

i m 0 0
Y INQPPT+NFQPPEPETI< |0 m 0O
k=1 0 0 m

where P = {Py., Py, Py ). P has dimension 3 x 1, and is
complex in general.

} . (420)

Identities Involving Modal Angular Momentum. Further
appropriate assignments of the arbitrary G and G of Bessel’s
Inequalities lead to the following identities amongst modal
angular momentum coefficients and moments of inertia.

- T * ) ¥ * * T Ixx [xy Ixz
E MNOHH N QFHFHE ) < Iy /,v ‘;vz
k=1 Xz

(4-22)

where the components of H,, the modal angular momentum
coefficient vector, are

N
Hy= YTMNy — ZTMNy = Y, mi (Y —2/¢})

(4-23a)
i=1

H = ZTMNo —XTMNy, = E mi (0%~ xI) (4-23b)
i=1
N

Hy =XTMNg, — YTMNG, = Y, mi (xi¢), — y'0}) (4-23¢)

i=1
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etc, are the moments of inertia of structure, given

and I, I,,,
by
N
Lo=ZTMNZ+ YTMNY = Y, mi (y2 +z12) (4-240)
i=1
N
Ly=—XTMNY ==Y, mixiy (4-24b)

i=1
and so forth. In equations (4-23) and (4-24), M" corresponds
to the physical model of Chapter 2 and is diagonal, and H,,
H,, and H, are complex-valued scalars.

Identities Involving Modal Linear and Angular Momentum.
The following identities may also be established.

u 0 ¢ -c

Y NOHPT N QPR T <m [ ¢, G )"

k,:l C —C¢
(4-25)

In the above, the ¢’s are coordinates of the center of mass,

N N N
c= Y, mixi/m; c,= Emiyf/m; c,= Y, mizi/m  (4-26)

i=1 i=1 i=1

Discussion of Identities. The physical model of Chapter 2,
upon which the foregoing derivation is based, becomes the
familiar continuum mechanics model when N is taken to in-
finity. In the limiting case, P, and H, are defined by [®,dm
and {r X &,dm, respectively, where dm is an elemental mass
and r is its position. Thus the identities given in equations
(4-20), (4-22), and (4-25), when specialized to zero damping
and Q, = 1/2\, (#{M®, = 1) and generalized to N equal to
infinity, are exactly equal to equations D, E, and F of Hughes
(1980).

The identities in the form presented herein possess the at-
tractive features of having a physical interpretation, and of be-
ing a generalization of earlier published ones. This form of the
identities is applicable to results obtained by finite element or
substructure coupling models, if the results are put into the
form of the physical variables model, or through
mathematical transformation to diagonalize M.

The technique outlined in foregoing for derivation of iden-
tities (i.e., use of Bessels Inequalities, equations (4-6) and
(4-9), which are applicable for M non-diagonal), can be used
to derive equivalent identities directly for a general equation
of the form of equation (2-3), without reference to a physical
model and coordinates. The resulting algebraic forms turn out
to be more complicated and lack the physical interpretation.
The form presented herein seems to be more desirable.

6.0 Discussion and Conclusions

The foregoing has developed the natural modes and modal
model for an elastic structure with linear viscous damping, via

381 Vol. 53, MARCH 1986

a formulation that is comparable to that of the classical nor-
mal modes formulation of the undamped case. Transfer func-
tions and normalizations of use for experimental modal
parameter estimation are given special attention. Mass-
properties-related modal identities are obtained.

Complex numbers and variables are used herein in order to
be compatible with earlier obtained equations. However, it
should be noted that the formulation could be done in terms
of real-valued modal vectors and real-valued modal variables
(or stated another way, the appropriate vector space for this
case is a real-valued inner product space). The use of complex
quantities is a matter of convenience and not necessity.

The arrangement of the physical-variable equations in state
vector form employed herein offers two advantages: it leads
naturally to a relatively uncomplicated derivation of mass-
properties-related modal identities, and it can be easily
generalized further to include gyroscopic forces if desired.
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with rectangular cross-section is used as a basis of comparison for the Timoshenko
beam theory and a plane stress approximation which is developed herein. The
comparisons clearly show the range of applicability of the approximate solutions as
well as their accuracy. The choice of a best shear coefficient for use in the
Timoshenko beam theory is considered by evaluation of the shear coefficient that
would make the Timoshenko beam theory match the exact solution and the plane

stress solution. The plane stress solution is shown to provide excellent accuracy
within its range of applicability.

Introduction

In a recent paper by these authors [1] an exact solution for
the vibrations of a solid isotropic linearly elastic rectangular
parallelepiped with traction-free boundaries was developed.
The flexural vibrations of beams of rectangular cross-section
represents an important subset of that exact solution. The
exact solution is used in this paper to evaluate the accuracy
and range of applicability of the Timoshenko beam theory as
well as a plane stress approximation which is developed
herein.

The Timoshenko beam theory, in which shear and rotary
inertia effects are included, has been the subject of many
papers, with particular emphasis placed on evaluation of a
correct shear coefficient. A 1975 review paper by Kaneko [2]
lists some twenty different values of shear coefficients which
have been used by various authors for beams of rectangular
cross section. Kaneko concludes that for rectangular beams
the shear coefficient implied in Timoshenko’s 1922 paper [3]
gives the best match to the experimental results. That value of
shear coefficient is (5 + 5»)/(6 + 5v) where v is Poisson’s ratio.
In this paper that particular shear coefficient will be referred
to as Timoshenko’s shear coefficient, even though
Timoshenko himself used other values in his work. The
general shear coefficient in the Timoshenko beam equation
will simply be referred to as the shear coefficient.
Timoshenko’s shear coefficient was derived by matching with
the plane stress solution for long wavelengths. Another shear
coefficient which will be used for comparison is 7w2/12 derived
by Mindlin and Deresiewicz [4] in 1954. They derived their
shear coefficient by matching the three-dimensional equations
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for simple thickness-shear motions of infinite beams. In this
paper their shear coefficient will be referred to as Mindlin’s
shear coefficient.

In a 1981 paper [5] by the senior author an exact solution
for the vibrations of a traction-free solid isotropic linearly
elastic circular cylinder was used to evaluate both the
Timoshenko beam theory, for free-free beams with circular
cross section, and an approximate solution which was
developed by Pickett [6]. It was found that the Pickett for-
mulation led to highly accurate solutions in its range of ap-
plicability. In the Pickett solution the governing equations are
satisfied identically in the domain and the boundary con-
ditions on the lateral surfaces are also identially satisfied. The
boundary conditions on the ends are then approximated by
setting the resultant moment and shear to zero.

Because of the success of the Pickett solution for beams of
circular cross section a similar type of solution was attempted
for beams of rectangular cross section. For beams of rec-
tangular cross section it is not possible, in general, to combine
solution forms of the governing equations so as to satisfy
identically the traction-free boundary conditions on the
lateral surfaces of the beam. It was found to be possible,
however, to find a plane strain solution for which the
boundary conditions could be identically satisfied on the
upper and lower beam surfaces and then the end boundary
conditions could be satisfied as Pickett had done. The plane
strain solution is then converted to a plane stress solution by a
simple change in the elastic constants as suggested by
Timoshenko in his 1922 paper. The range of applicability of
this plane stress solution is shown to be the same as for the
Timoshenko beam theory, but its accuracy is greater.

A plane strain solution was previously evaluated by
Fromme and Leissa [7] in 1970. They compared the plane
strain solution to the Timoshenko beam solution using a
shear coefficient of 5/6. They found excellent correlation for
v=0 but for »=0.3 there was a discrepancy in the frequencies.
If they had converted their plane strain solution to plane stress
by a change of elastic constants and had used Timoshenko’s
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']Eable 1 Plane strain solution forms, The dimensionless wave numbers 3, 5,
B, and § and the frequency parameter « are related by 8%+ 82 =’
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Fig.1 Coordinates and dimensions of beam

shear coefficient they would have found the same excellent
correlation for »=0.3 as they found for »=0. The solution of
Fromme and Leissa can be viewed as an exact solution of the
plane strain problem; whereas, the solution we have proposed
herein only approximates the end boundary conditions. The
new method is, however, computationally simpler, is easily
modified to allow for arbitrary end boundary conditions, and
produces excellent results.

Solutions

The solution forms for the various analytic solutions
considered in this paper are discussed in this section. Both the
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elementary beam solution (i.e., the Euler-Bernoulli beam
solution) and the Timoshenko beam solution appear in many
references, for example, see [5]. For this reason their
derivations will not be given here. As pointed out in the in-
troduction a shear coefficient K, appears in the Timoshenko
beam equation and has been the subject of many papers. In
this paper the Timoshenko beam equation is solved to
determine the value K would have to obtain in order to cause
the Timoshenko beam solution to produce identical
frequencies as the exact solution and the plane stress solution.

The coordinates and dimensions for the beam are shown in
Fig. 1. The length direction is considered to be z. The
direction in which the transverse beam motion is taking place
is the y-direction. The length of the beam is thus 2c, the depth
is 2b, and the width is 2a. Choice of the centered origin allows
a convenient splitting of the problem into even and odd
functions of x, y, and z. Since we are considering only beam
motion we limit the solution to forms where v, the
displacement in the y direction, is an even function of both x
and y.

The exact solution is derived in detail in [1] but will be
briefly discussed.

Exact Solution. The exact solution is a series solution in
which each term of the series identically satisfies the linear
elasticity equations. There are four types of solution forms
which can be derived from the Helmholtz Displacement
Potential. These forms were tabulated in Table 1 of [1].

"Linear combinations of the four solution types were chosen in

three double series. Then by an appropriate choice of wave
numbers and constants the boundary conditions on the shear
stresses were identically satisifed. The boundary conditions on
the normal stresses were then satisfied by orthogonalization
on the boundary. This process leads to a matrix of coefficients

“whose determinant must be zero.. The coefficients are trans-

cendental functions of the natural frequency, and the order of
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the matrix is determined by the numer of terms retained in the
infinite series.

The convergence of the solution to known experimental
results, as more and more terms in the series were retained,
was demonstrated in [1]. The convergence was monotonic
from above. It was noted, however, that when the rectangular
parallelepiped was a cube the convergence was excellent, but
as one or two of the dimensions became large compared to the
other(s) the rate of convergence diminishes. That is, it takes
more terms, hence larger matrices, for equivalent accuracy, as
the rectangular parallelepiped becomes less cube-like. Since
all computations were performed on a minicomputer this
precluded evaluating the exact solutions for long beams. The
minicomputer solutions, however, were more than adequate
for the comparisons performed in this paper.

It should perhaps be noted here that in [1] Figs. 4 and 5
appear above the captions for Figs. 6 and 7 and vice versa.

Plane Stress Solution. A plane strain solution is first
formed from the two solution forms shown in Table 1. These
solution forms are taken from the solution forms listed in
columns 1 and 4 of Table 1 in [1] and can be seen to represent
the plane strain case for the y-z-plane. That is, u the
displacement in x-direction is zero and there is no functional
dependence on x. The symmetric and antisymmetric forms in
z are shown in braces with the symmetric (v as an even func-
tion of z) form on top. All values in Table 1 are dimen-
sionless. The displacements u, v, and w were made dimen-
sionless by dividing by the depth 2b. All lengths were made
dimensionless by dividing by the depth. All stress quantities
were made dimensionless by dividing by the shear modulus.
The wave numbers 3, 8, 8, § were made dimensionless by
multiplying by the depth. The frequency was made dimen-
sionless by multiplying by the depth and dividing by the shear
wave velocity. The solution is taken as the column 1 form
multiplied by A plus the column 2 form multiplied by B.

The boundary conditions on the top and bottom surface of
the beam are satisifed by letting §=§, which allows both
forms to have the same z dependence, and then setting

0y(£b,2)=0 )]
Ty (£ 5,2} =0 (2
This yields a2 X 2 set of homogeneous equations

D T R S

where
a = L/ 42 @
ap, = —2fsin (Bb) )
ay = 26°cos(8b) 6)
ap = —(B%—8")cos(Bb) (7

For a solution to exist the determinant of the coefficients in
equation (3) must be zero. As in Pickett’s solution it is found
that for values of w less than about 8.5 there are only two real
values of §%. A plot of the two values of §2 as a function of w
is shown in Fig. 2. This plot was for a specific Poisson’s ratio.
For other values of Poisson’s ratio the curves will shift
slightly but be similar to the plot shown. On finding the values
of & the ratio of Bto 4 can be expressed as

B/Z=—q, /ay 8

Using the two values of 82 allows satisfaction of the usual type
of beam boundary conditions. For the free-free beam the
boundary conditions are
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Satisfying these boundary conditions leads to the set of

equations
{bn bIZJ{Al} = {0} (11)
b2l by Aj = 0
where
. b B ) . 'b e
by = [262 sm;ﬁ ) (62 )smgi )]{Cozégc(gc)/é} 12)
2
by = {[ lw-—p +262][252 cos(B8b) — sm(Bb)]
cos(Bb)  sin(Bb) 7] { cos é¢
25 [P - R (55 1D

where j=1, 2. Upper and lower forms in braces are the
symmetric and antisymmetric forms respectively. Subscripts j
on the wave numbers and on the ratio B/A are implied. The
determinant of the coefficients of equation (11) must be zero
for a solution to exist.

So far the solution is a plane strain solution. To convert to a
plane stress solution a simple change is made in the elastic
constants as done by Timoshenko [3] in 1922. In this for-
mulation the shear modulus was used for the non-
dimensionalization. Since the shear modulus does not change
from plane strain to plane stress, the only elastic constant left
in our formulation is Poisson’s ratio. If an equivalent
Poisson’s ratio of

Vg =v/(1+7) (14)

is used to replace » in all previous formulas we have the plane
stress solution.

The solution process is to choose », w, and ¢, find the two
values of % from equation (3), find the two values of B/A4
from equation (8), then check if the determinant of the
coefficients in equation (11) is zero. If not a new value of
either w or ¢ is assumed and the process repeated.

The solution process also can be applied to beams with
arbitrary boundary conditions. The only difference is in the
coefficients in equation (11). For the free-free beam, use was
made of the fact that the solution separated into symmetric
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a/b

Fig.3 Exact frequency versus the width-to-depth ratio a/b for the three
lowest symmetric modes, v=.3andc/b=4

0 l { { 1 |
1 3 3 4 5 6

alb

Fig. 4 Exact frequency versus the width-to-depth ratio a/b for the
three lowest antisymmetric modes, »=.3 andc/b=4

and antisymmetric parts which lead to equation (11) being a 2
X 2 system of equations. In more general cases (e.g., a
cantilever beam) equation (11) will be replaced with a 4 x 4
system of equations. In setting up and solving these
equations, however, the same procedure as outlined above is
followed.

In the case of clamped boundary conditions a certain ar-
bitrariness exists. This arbitrariness is the same as noted by
Timoshenko and Goodier [8] for the polynomial solution of
the static plane stress problem of an end loaded cantilever
beam. In both cases it is not possible to identically satisfy the
clamped boundary conditions. Timoshenko and Goodier
restricted the rigid body displacement by fixing the
displacement at the neutral axis at the clamped end. Then they
considered several possibilities for restricting the rigid body
rotation. One was to fix the slope of the neutral axis by set-
ting,

v,(0,0)=0" (15)

where the comma subscript denotes differentiation, and, as
before, v is the transverse displacement as a function of y and

42/ Vol. 53, MARCH 1986

z, respectively. Another possibility considered was to fix the
slope of the cross section at the neutral axis by setting

W,(0,6)=0 (16)

A third possibility was to set the axial displacement at the
beam corner to zero

w(b,c)=0 an

By investigating Fig. 27 of [8] it is obvious that for the static
problem the boundary condition expressed in equation (15)
will produce displacements which are too small while those
expressed in (16) will produce displacements which are too
large. The boundary condition expressed in equation (17)
represents a compromise between the two extremes but will
still result in a displacement which is too small.

In the vibrating beam problem the result of applying either
equations (15) or (17) is to over constrain the beam leading to
high estimates of the natural frequencies. The result of ap-
plying equation (16) is to under constrain the beam leading to
low estimates of the natural frequencies. Another better
compromise is to choose some weighted average of the axial
displacement as zero such as

b
J ywor.0dr=0

The Timoshenko beam theory does not contain this am-
biguity. The cross-sectional slope in the Timoshenko beam
theory is actually an average slope. Thus, setting that average
slope (along with the transverse displacement) to zero
represents a correct clamped boundary condition.

In a recent paper by Levinson [9] a new beam formulation
of the same order as the Timoshenko formulation was
developed. Levinson’s formulation, however, has several
drawbacks. One of the drawbacks is that an equivalent shear
coefficient of 5/6 automatically results. While 5/6 is not a
bad choice for a shear coefficient there are slightly better
values which can be used as shown in both [2] and [5] as well
as in this paper. A more serious drawback to Levinson’s
theory, however, is that his cross-sectional slope term is the
cross-sectional slope at the neutral axis. In applying clamped
boundary conditions Levinson sets the cross-sectional slope at
the neutral axis to zero. He shows that his solution is identical
to the above mentioned Timoshenko and Goodier solution
using the boundary condition expressed in equation (16).
Therefore, for any beam problem involving clamped con-
ditions the Levinson theory will result in deflections which are
too large in static problems, and frequencies which are too
low in vibration problems. The same drawbacks arise in
Levinson’s plate theory [10]. Thus, while fundamentally
correct the Levinson beam and plate theories do not represent
improvements on the Timoshenko beam and Mindlin plate
theories.

Results

Figures 3 and 4 are plots of the three lowest natural
frequencies for symmetric. and antisymmetric beam type
modes respectively. These plots show the exact solutions for
the free rectangular:parallelepiped. The variation of the
natural frequencies with the: ratio of width-to-depth of the
beam is considered. for a: constant length-to-depth ratio of
four. It can: be seen that for small width-to-depth ratios the
frequencies. are virtually independent of the width-to-depth
ratio. If the fundamental frequency in Fig. 3 is considered, for
instance, it is:seen to have a constant value near .5 until the
width-to-depth ratio is almost four. The width-to-depth ratio
of four in these plots corresponds to a square plate. For
a/b<4 the fundamental- frequency corresponds to the fun-
damental beam frequency. At the knee of that curve where
a/b=4 the fundamental frequency corresponds to the fun-
damental frequency of a square plate. For a/b>4 the fun-

(18)
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Fig. 5 Frequency versus depth-to-length ratio b/c for the three lowest
symmetric modes for a square cross sectionalb=1and r=.3

E: elementary beam solution
P: plane stress solution
exact solution

b/c

Fig. 6 Frequency versus depth-to-length ratio b/c for the three lowest
antisymmetric modes for a square cross-sectiona/b=1and»=.3

_E: elementary beam solution
___P: plane stress solution
exact solution

damental frequency again corresponds to a fundamental
beam frequency, but not to a beam of width 2¢ and length 2¢
but rather to a beam of length 2a and width 2¢. For instance,
the lowest frequency of the beam when a/b equals 6
corresponds to the fundamental frequency of a beam whose
length is six times its depth. A similar observation can be
made for all the curves in Figs. 3 and 4. That is, just to the
right of the knee in each curve the negative sloping lines
correspond to the fundamental beam frequency for a beam of
length-to-depth ratio of @/b. Thus it may be concluded that
the frequencies found in applying either the Timoshenko
beam theory or the plane stress theory are limited to
frequencies which are less than the fundamental frequency of
a beam whose length is 2a (i.e., a beam whose length is the
width dimension of the beam under consideration).

Figures 5 and 6 show the frequency variation with the
depth-to-length ratio for a square beam and contrast the exact
solution with the elementary beam solution and the plane
stress solution. The elementary beam solution is shown to
hold only over a very limited region; whereas, the plane stress
solution is good over a much greater region. The Timoshenko
beam solution is not shown on this plot because it is prac-
tically indistinguishable from the plane stress solution.

Figures 7 and 8 show the shear coefficient which would
have to be used in the Timoshenko beam equation if identical
matching with the exact solution or plane stress solution were
required. These curves are for a beam of square cross section.
It can be seen that as b/c approaches zero the plane stress
solution approaches exactly Timoshenko’s shear coefficient.
This is also true for other values of Poisson’s ratio. The exact
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Fig. 7 Shear coefficient K versus the depth-to-length ratio b/c for the
three lowest symmetric modes, »=.3, alb=1, __ exact solution; _ _ _
plane stress solution. Numbers refer to beam mode. T and M mark
Timoshenko’s and Mindlin’s shear coefficient respectively.

0.9

b/c
Fig. 8 Shear coefficient K versus the depth-to-length ratio bic for the

three lowest antisymmetric modes, »=.3, alb=1, exact sofution;
_ _ _plane stress solution. Numbers refer to beam mode. T and M mark
Timoshenko’s and Mindlin’s shear coefticient respectively.

solution was not carried out for small b/c for two reasons.
First, as b/c gets smaller more terms are required in the
solution for equivalent accuracy, and second, as b/c gets
smaller greater accuracy is required in the frequencies in order
to compute the shear coefficient. Computation was therefore
limited to the values shown because of practical limitations of
the minicomputer which mass used. The plane stress solution,
however, does an excellent job of handling the solution in the
region where the exact solution is not practical. For thinner
beams, for example, a beam with a/b=.5, the exact curves,
particularly for the first mode, are much closer to the plane
stress curves than those shown in Figs. 7 and 8.

Figures 7 and 8 also show that use of the Timoshenko shear
coefficient in the Timoshenko beam theory will give excellent
results for long wave lengths. A rule-of-thumb can be seen to
be that if the wave length is greater than twice the beam depth
the Timoshenko shear coefficient, (5+ 5»)/(6 + 5v), will give
good results. For shorter wave lengths, however, a smaller
shear coefficient would have to be used to produce good
matching with the exact solution.

Figures 9 and 10 show the frequency variation with depth-
to-length ratio for a beam whose width is twice its depth. A
comparison of Fig. 5 with Fig. 9 and Fig. 6 with Fig. 10 shows
that they are identical for w<1.6. A plateau is reached on the
curves in Figs. 9 and 10 near w=1.7 and the entire spectrum
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Fig.9 Exact frequency versus the depth-to-length ratio for the lowest
three symmetric modes foralb=2and y=.3
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Fig. 10 Exact frequency versus the depth-to-length ratio for the lowest
three antisymmetric modes fora/b=2and v=.3

shifts at that value. From Fig. 5 the fundamental frequency of
a beam with b/c=0.5 has a frequency of 1.7. The spectrum
shift in Figs. 9 and 10 therefore occur at a frequency
corresponding to the fundamental mode of vibration where
the width direction is taken as the beam length. This supports
the previous conclusion on the limit of high order beam
theories. Similar curves were also generated for the case where
a/b=1/2. These curves were very close to the plane stress
solution shown in Figs. 5 and 6 and so are not shown here.

It has been noted that the near coalescence and subsequent
divergence of the curves in Figs. 3, 4, 5, 6, 9, and 10 is a
function of Poisson’s ratio. For a Poisson’s ratio of zero the
coupling is absent and an actual coalescence is found with the
lines simply crossing instead of veering away. Since Poisson’s
ratio is seldom zero this observation is primarily of academic
interest.

Figure 11 shows the variation of the shear coefficient with
Poisson’s ratio. The values corresponding to Timoshenko’s
and Mindlin’s shear coefficients can be compared to those of
two specific cases found using the exact solution and the plane
stress solution. The specific cases were chosen by looking for
a case near the Timoshenko coefficient value in Fig. 7 and a
case near the Mindlin coefficient value in Fig. 8. It can be seen
that for the first mode for b/c=0.5 the Timoshenko coef-
ficient best represents the variation; whereas, for the second

mode for b/c=0.8 the Mindlin coefficient best represents the .

variation. Kaneko [2] concluded that the Timoshenko
coefficient was best on the basis of experimental results;
however, all the experiments reported were for the fun-
damental frequency and a depth-to-length ratio less than 1/2,
aregion in which Timoshenko’s-coefficient does prove best.

44/ Vol. 53, MARCH 1986
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Fig. 11 Shear coefficient K versus Poisson’s ratio for a square cross-
section beam.

__.. Timoshenko’s and Mindlin’s shear coefficients
exact and plane stress solutions

1: first mode exactblc =.5

1P: first mode plane stressb/c=.5

2: second mode exact bic =.8

2P: second mode plane stress b/c=.8

Conclusions

® The plane stress and Timoshenko beam solution produce
similar results with the same range of applicability.

e The plane stress solution gives greater accuracy than the
Timoshenko beam theory but is slightly more difficult
computationally.

e The plane stress and Timoshenko beam solutions are
applicable for frequencies less than the fundamental
frequency found by treating the width of the beam as the
length dimension.

® For wavelengths longer than twice the beam depth a
constant shear coefficient of (5+5»)/(6+5») gives good
matching with experiment as well as the plane stress and exact
solutions.
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Free Vibration of a Rectangular
Parallelepiped Using the Theory of

M. B. Rubin
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a Cosserat Point

Free vibration of a rectangular parallelepiped composed of a homogeneous linear
elastic isotropic material is studied. The parallelepiped is modeled as an isotropic

Cosserat point and simple formulas are developed to predict the lowest frequencies
of vibration. Within the context of the theory, extensional and shear vibrations are
uncoupled. The lowest extensional frequency predicted by the Cosserat theory is
compared with available exact solutions and with predictions of thin rod theory.
Finally, by introducing a simple modification of the director inertia coefficient it is
shown that the Cosserat predictions of the extensional frequencies are correct.

Introduction

Recently the theory of a Cosserat point (Rubin, 1985a) has
been developed to model the deformation of a body which is
essentially a material point surrounded by some small volume.
The development of this theory parallels the developments of
the theory of a Cosserat surface (Naghdi, 1972), which models
a shell-like body, and that of a Cosserat curve (Green et al.,
1974 a, b), which models a rod-like body.

An important feature of the theory of a Cosserat point is
that it can be used as a basis for developing numerical solution
procedures for continuum problems. In particular, we men-
tion that the theory has been successfully used to formulate
the numerical solution of one-dimensional continuum prob-
lems (Rubin, 1985b).

In this paper, we consider the three-dimensional problem of
linear vibration of a free rectangular parallelepiped composed
of a homogeneous linear elastic isotropic material. In its
reference configuration, the parallelepiped has dimensions L,
L, and L, (see Fig. 1). As an example, it was shown in (Rubin,
1985a) that such a parallelepiped could be modeled as an
isotropic Cosserat point. The equations describing motions of
the parallelepiped were developed, but not solved. Here, we
specialize the equations to describe free vibration of the
parallelepiped and solve them for the natural frequencies.

This difficult problem has been considered by many
researchers. Most recently, Hutchinson and Zillmer (1983)
have developed a series solution which has been compared
with elementary solutions and the experiments of Spinner et
al. (1960). Here, we use the Cosserat theory to predict simple
formulas for the lowest frequencies of vibration associated
with particular modes. Specifically, it will be shown that the
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simple! theory of a Cosserat point predicts extensional and
shear vibration that are uncoupled. Furthermore, we note that
the deformation associated with the simple theory corresponds
to a three-dimensional state of homogeneous strain so tor-
sional and bending modes of the parallelepiped are not
admitted.

In the following sections we develop the basic equations and
solve for the frequencies of extensional and shear vibrations.
The lowest extensional frequency is compared with available
exact solutions for a square bar (Appendix A), a cube and with
that predicted by thin rod theory. The comparison in each of
these cases is good. We close by introducing a simple
modification of the director inertia coefficient which
significantly improves the prediction of each of these
frequencies.

Basic Equations

In this section, we summarize the basic equations of the
theory of a Cosserat point which was developed in (Rubin,
1985a). In the present configuration at time ¢, the Cosserat
point occupies a region R of Euclidean 3-space bounded by the
closed surface dR which consists of a finite set of sections dR g
(K=1,2,...,M). Furthermore, with respect to the present
configuration, a Cosserat point is defined by its location r(¢),
relative to the origin of a fixed coordinate system, and by three
directors @, (¢) (i= 1, 2, 3). The position vector r and direc-
tors d; are each a three-dimensional vector function of time
only which in the reference configuration acquire the values r
= R and d;, = D;. A motion of the Cosserat point is defined
by

r=r(t), d;=d,(¢), [d,,d,,d;]>0 (1a,b,c)

where the condition (l¢) ensures that the directors form a
right-handed set of linearly independent vectors.
The vector functions r and d; in (1) are assumed to be suffi-

Twe use the word simple to describe the theory which admits only three
directors.
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ciently smooth in the sense that they are differentiable with
respect to time ¢ as many times as required. Let v and w;
denote, respectively, the velocity of the Cosserat point and the
director velocities at time f. Then

v=F, w;=d; (2a,b)

where a superposed dot denotes time differentiation.

For later convenience, we introduce the reciprocal vectors df
(i = 1, 2, 3) of the directors d; and record the kinematical
definitions

hy=d;ed;, d;od =8/, hi=dld/ (3a,b,c)
where 8/ is the Kronecker delta symbol. Furthermore, we in-

troduce the strain vy, relative to the reference configuration
through the expression

’Y,‘jzl/l(hij_Hij) @)

where H; is the reference value of A;;.

We now turn to a statement of the conservation and balance
laws of the theory and, with reference to the present con-
figuration, define the following quantities: the mass m(¢) of
the point; the contact force ng (f) and contact director couples
m,/ (¢) applied to the section dR of the boundary dR; the ex-
ternal body force f(¢) and external body director couples
1/ (¢); the intrinsic director couples k’ (f), which make no con-
tribution to the supply of angular momentum, and the con-
stant inertia coefficients y’ and y¥, with y¥ being a symmetric
tensor. With the above definitions, and with reference to the
present configuration, the balance and conservation laws may
be written in the forms?:

m=0, (5a)
. M
m(V+yw)=f+ Y, ng, (5b)
K=1
M
MmN+ i) =1+ Y mgf— K, (5¢)
K=1
d, xki =0, (5d)

Equation (5q) represents conservation of mass, (5b) represents
the balance of linear momentum, (5¢) represents the balance
of director momentum, and (5d) represents the reduced form
of the balance of angular momentum.

For the linearized theory we assume that in its reference
configuration the Cosserat point is in its natural state and is
free of body forces and director couples, contact forces and
director couples, and intrinsic director couples. Let u(r) be
the displacement of the Cosserat point and §;(f) be the
displacements of the directors relative to the reference con-
figuration, so that .

2Throughout this paper we use the usual summation convention over
repeated indicies.
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l'=R+u, di:Di+6_i (6a)b)
where u and §; are considered to be small relative to R and D;,
respectively. Neglecting quadratic terms in u and §; the equa-
tions of motion (5b,c,d) may be written in the component
forms

M
mE+¥8) =f1+ Y, ng, (Ta)
K=1
. M
mE 4 yn8I ) =10+ Y ml ki, (7b)
K=1
K =k, )
where
u=u'D;=u,D', 5,=5/D,=5;D/ (8a,b)
f=/D;, ng=ngD; 8c,d)
m/ =mD;, k' =kUD; (8e, /)

and where the components §; and &, of the displacements §;
should not be confused with the va(ues of 8/ and &, of the
Kronecker delta symbol. Also, D' are the reference values of
d'.

It was shown in (Rubin, 1985a) that a one-to-one cor-
respondence exists between the theory of a Cosserat point and
the three-dimensional theory when we assume that the posi-
tion vector p of an arbitrary material point, within the
Cosserat point, admits the representation

p=p(0",0) =r(?) +0'd; (?) ®

where 8 (i = 1, 2, 3) are convected coordinates identifying
the material point. For the linear theory the three-dimensional
displacement u*(#',f) may be represented by

w*(0,1) =u () + 65, (10

To determine the vibration of the parallelepiped shown in
Fig. 1it is convenient to specify the reference values D; of the
directors in the forms

D,=Le;, Dy=L,e,, D;=1L,e, (11a,b,c)

where e; are base vectors of a fixed rectangular Cartesian

coordinate system with coordinates x; and where L, L, and

L, are the lengths of the sides of the parallelepiped. Further-
more, we specify the convected coordinates 6 by

01 - Xy 02= X X3

Ll ’ L2 ’ L3

In the above, we have identified the midpoint of the

parallelepiped as the location of the Cosserat point so the

region of space occupied by the Cosserat point is defined by

01151, 102150, 18215 H (13a,b,0)

From (Rubin, 1985a), we recall that for a parallelepiped
that is composed of a homogeneous, linear elastic material
that has a uniform mass density p,* in the reference configura-
tion, and is three-dimensionally isotropic, the constitutive
equations for the mass m, inertia quantities y and y¥, and the
intrinsic director couple k¥ become?

9 = (12a,b,c)

m=py*LL,L,, y'=0, (14a,b)
1 "
yll :_—y22 _—:y33 :Tz_’ all other yU = O, (14C,d)
ke = él( mn’y'"" )Hlj + 262Himfljn7mn’ (146)
1 1 1
el el o aggh
all other HV =0, (14i)

“3See additional remarks in the closing section regarding the specification of
i
.
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where HY are the reference values of AY and (l4e) is a
generalized form of Hooke’s law. For later reference (see the
conclusions) we note that the constitutive constants ¢; and ¢,
were determined in terms of Young’s modulus £ and
Poisson’s ratio v of the three-dimensional material by compar-
ing Cosserat solutions with exact solutions of certain simple
static problems. Also, the condition (14d) states that the direc-
tors D; are parallel to the principal axes of inertia.

For free vibration of the parallelepiped the body force f and
director couples I, and contact forces ny and director couples
m,/ all vanish. Then with the help of (14) the equations of mo-
tion (7a,b) reduce to

w=0, myns,) =—kv.

» (14),k)

(15a,b)

Using (7¢) and (14¢,d) equation (15b) may be rewritten in the
equivalent form

m g m = m =z
T A e R A
b= e, P = kB, = -k, (166d)

§2=5,1, §3=8,1, 6,5 =62. (17a,b,c)

Equation (15a) implies that the velocity of the center of mass
of the Cosserat point is constant and equations (17) imply that
the angular momentum about the center of mass is constant.

Now the strain components vy; can be determined in terms
of the components of the displacements &, by substituting (65)
into the definition (4) and neglecting quadratic terms in §; to
obtain

'yijz‘/z(gij+6_ﬁ). (18)
Using the transformation relations
§/=H"S,,, (19)
equations (17) may be written in the form
o by b &y by by
= , = R = . (20a,b,
L7 L2 L L2 L7 L} (20a,b,c)
It follows from (18)-(20) that
Fu=Li?8,', §22 = L2652, 433 = L3265 (21a,b,¢)
L2+L32\ L2+L32\ =
fo=(Z)82 4= (T S0)E el
2
. L2+L32N ¢
Yoz = (%) 5, (219

Thus, with the help of the constitutive equations (14), the
results (21) and the definition of the physical components of
strain ¥,

Fi1 = Y11 O b R :—13—3———, (22a,b,c)
i1 le » 122 1.2 » V33 L32
- Y12 - Y13 - Y23
= , = , = , 22d,e,
T2 L.L, =7 L, Y23 L,L, ( )

the equations of motion (16) may be rewritten in the form

LAY 25 2 25
p—z Y +e* ¥y (€ — 26" )Y
1

+(c)? = 20,2743, =0, (23a)
1.
(}‘)“{) Yo + (e =202 + €2
P
+{c? =293 =0, (23b)
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1. _ _
<p—2) Ya3+ (€2 =262 71 +(¢? —26,°) 7
3

+e* 733 =0, (23¢)
and
Y12 + 202+ 0712 =0, (24a)
Fi3 + 202 +p3?) 713 =0, (24b)
Y3 + 2 (D2 +P3?)¥23 =0, (240)

where ¢, and ¢, are the dilitational and equi-voluminal wave
speeds, respectively, defined by
E(1- E
¢ =#——, =, (25a,b)
o (1 +v)(1—2v) 2p*(14»)
and p,, p, and p, are constants which are related to wave
numbers and are defined by

, 12 , 12 , 12
p= L]2 y P27 = L22 » Py = L32 '

It is interesting to note that, within the context of the theory of
a Cosserat point, equations (23), which describe extensional
vibration, are uncoupled from equations (24), which describe
shear vibration. Each of these types of vibration are described
in the following sections.

(26a,b,c)

Extensional Vibration

To determine the natural frequencies of extensional vibra-
tion of the parallelepiped we may assume a solution of the
form

27a,b,c)
where the constants a; and w are, respectively, the mode shape

and frequency, each to be determined. Now, with the help of
(27) the system of equations (23) may be reduced to

Y11 =@ Sinwt, §op =a,sinwt, Y33 =a;sinwt,

(Kj—o?M;)a;=0 (28)

where the symmetric tensors K;; and M; are defined by
Ky =Kp=Ky=c?, (29a)
K=Ky =K;3=K3 =Ky =Ky =(c,"—2¢,7), (290)
M, :;71?—’ My, :é’ M, :#’ (29¢,d.e)
all other M; =0. 299

Following usual procedures, the characteristic equation of the
system (28) may be determined by setting the determinant of
the tensor (K; — w?Mj;) equal to zero. After some algebraic
manipulation, this characteristic equation may be written in
the form

G(w,p1,p2,03)=0, (30a)
G=wb—c2(p 2 +p? + Pt

+4(c? — D2 p? + piPpi® + Dt )e?

=43¢ —4cP)ey' pPp,t st (300)

Given the dimensions of the parallelepiped L, L,, L; and
the constitutive properties of the material in terms of the wave
speeds ¢, and c,, the characteristic equation (30az) may be
solved for three natural frequencies of extensional vibration.
The mode shape associated with each of these frequencies can
then be determined by solving (28) for a; using the appropriate
value of w. It is expected that the lowest of these frequencies
should provide a good approximation to the lowest frequency
of vibration of the parallelepiped associated with the par-
ticular mode shape considered.

A few special cases of interest may be analyzed simply if we
consider a parallelepiped which has a square cross section. For
such a parallelepiped
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Ly=L,, py=p;, (31a,b)

and the solution of (304) may be written in the form

b—1b2 —dcl% 2 A,
=26 p 2, o = [b c] e b+ [b* — 4c]
2 2
(32a,b,¢).
b=2(c* —cp 2 +c’pi?, (32d)
c=2(3c)* ~ 46,16’ p vy’ (32¢)

In the limit that the parallelepiped becomes a cube, i.e.,

Ly=Ly=Lj3, py=p,=D;3 (33a,b)
the solution (32) takes the form
W?=202p 2, W?=20p%, w?=QGc?~4c,h)pl. (34a,b,c)

This result compares well with the exact solution presented in
(Hutchinson and Zillmer, 1983).% In particular, the exact solu-
tion for a cube of length L, and Poisson’s ratio » = 0.3
predicts that the lowest two frequencies are equal and take the
value w* = 4.44 ¢,/L,. Comparing this value with the one
predicted by (34a,b) we observe that w/w* = 1.103. Thus, the
Cosserat theory predicts a value about 10 percent higher than
the exact value. However, the value of the highest frequency
(34c) which is expected to be in error, is about twice the exact
value.

To further examine the accuracy of the natural frequencies
predicted by the theory of a Cosserat point, we consider the
limiting cases when the parallelepiped becomes a thin rod or a
thin plate, each with square cross section. Although one might
expect the theory of a Cosserat point to be limited to the
description of a body whose length dimensions are com-
parable, we will show that the Cosserat theory predicts good
results for both of these limiting cases.

For the limiting case of a bar which is long in the e, direc-
tion we have p; << p,; and the solution (32) becomes

(e, —det)ey?
= WMZ =c,’pys

2 2_
w?=202p%, w?=2(ct-cHp?,

w?=w,?

(35a)

35b,0)

where w), is the lowest frequency of the bar and where ¢, =
(E/pg*)* is the bar wave speed. The expression (35a) for the
lowest frequency has the same form as that predicted by
elementary thin rod theory except that the wave number p; is
replaced by a different value p;*. More specifically, we recall
from (Graff, 1975, p. 87)° that the frequency w,* and wave
number py* associated with the lowest extensional mode of
vibration of the thin rod are given by

(0 =, (p3*)?, Pyt :%r_. (36a,b)
3
It follows from (26¢), (354) and (36) that
Wy (12)% _
o =1.103, 37

which states that the theory of a Cosserat point predicts a
natural frequency that has the same functional dependence on
the length L, of the bar as that predicted by thin rod theory,
but has a value increased by about 10 percent.

For the limiting case of a plate which is thin in the e, direc-
tion we have p; >> p; and the solution (32) becomes

2(3¢;” —de?)ey?

2= S 2, (38a,b)

w?=w,?=20,"p, w -
1

w?=cpyl. (38¢)

‘In a personal correspondence, Professor Hutchinson clarified that the
printers placed the plots for Figs. 4 and 5 above the captions for Figs. 6 and 7,
and vice versa.

50ur notation cp, wp ¥, p3* correspond to ¢y, wy, and @/1, respectively, in
(Graff, 1975).
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Fig. 2 Lowest extensional frequency » for a square bar normalized by
the variable bar frequency w{,‘ and the constant plate frequency w,

The expression (38a) has the same form as the exact solution
(Appendix A) except that the wave number p, is replaced by a
different value p, *. More specifically, we recall from Appen-
dix A that the frequency w,* and wave number p,* associated
with the lowest extensional mode of vibration of the plate is
given by

(@, =260, *)%, py* =Ll. (39a,b)
1
It follows from (264a), (38a) and (39) that
23
o D7 03, (40)
O.)p T

which states that the theory of a Cosserat point predicts a
natural frequency that has the same functional dependence on
the width dimension L, of the bar as the exact solution but has
a value increased by about 10 percent. Here, it is worth em-
phasizing that the plate frequency w, (given by (384)) is a
natural frequency of vibration of a bar of square cross section
for any length to width ratio L,/L; (see (324)). This result is
consistent with the exact solution in Appendix A.

To investigate the detailed character of the lowest frequency
of vibration we consider a parallelepiped with unit dimensions
(L, = L, = 1) and with Poisson’s ratio » = 0.3. Specifically,
we are interested in the transitional character as the length to
width ratio L4/L; varies from that associated with a cube
(L;/L, = 1) to that associated with thin rod (L,/L, — ).

Figure 2 exhibits the transitional character of the lowest ex-
tensional frequency w associated with a square bar (L, varies
with L, held constant}. The values of w plotted in Fig. 2 are
obtained using the expression (32) and the value » = 0.3 for
Poisson’s ratio. One curve in Fig. 2 shows the value of w nor-
malized by the variable frequency w,* (given by (36a))
predicted by thin rod theory. The other curve shows the value
of w normalized by the constant frequency w, (given by (384))
predicted by the Cosserat theory for a bar with constant
square cross-section. The curve for w/w, has the same
character as that associated with the exact solution presented
in the actual’ Fig. 4 in (Hutchinson and Zillmer, 1983).

The curve w/w,* in Fig. 2 shows that the frequency very
rapidly approaches the value w, (given by (354)) predicted by
the Cosserat theory for a thin rod. This result suggests that the
exact lowest frequency should be very closely approximated by
the value w,* predicted by thin rod theory even when the

6See the comment at the end of Appendix A.
7See footnote number 4.
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length to width ratio L;/L, is at low as about three. In this
regard, it is not too surprising that the extensional
(longitudinal) frequencies of vibration measured in the ex-
periments of (Spinner et al., 1960) for the rectangular bar
specimens are accurately predicted by elementary thin rod
theory.

The transitional character of the lowest extensional frequen-
cy as the length to width ratio L;/L; varies from that
associated with a cube (L,/L, = 1) to that associated with a
thin plate (L;/L; — 0) was also investigated. Again the solu-
tion (32) was evaluated using the value » = 0.3 for Poisson’s
ratio. It was found that the plate frequency w), (given by (384))
was the lowest frequency for the whole range of Ly/L; (0 <
Ly/L; = 1).

Shear Vibration

Equations (24) which describe shear vibration of the
parallelepiped are uncoupled so that shear vibration can occur
in the e, — e, plane, the e, — e; plane and the e, — e, plane,
independently. The natural frequencies associated with shear
vibration in each of these planes may be recorded in the form:

w? =c?(p2+p,?) for e —e, plane, (41a)
w?=c,2(p2 +ps?) for e —e; plane, (41b)
w? = (py? +py?) for e, —e, plane, (41c)

At present, it does not appear that an exact solution exists with
which these results can be compared.

Conclusions

A rectangular parallelepiped composed of a homogeneous
linear elastic isotropic material has been modeled as an
isotropic Cosserat point. For linear motions of a free
parallelepiped the twelve equations of motion of the theory of
a Cosserat point separate into four groups of three equations
each. One group of equations states that the velocity of the
center of mass vanishes while another group states that the
angular momentum about the center of mass is constant. The
remaining two groups describe, individually, extensional
vibration and shear vibration.

The characteristic equation determining the three fun-
damental frequencies of extensional vibration was obtained
for a parallelepiped with arbitrary major dimensions L,, L,,
L; (see Fig. 1). The lowest natural frequency was analyzed in
detail for the special case of a bar with square cross-section
(L, = L,). Both the limiting cases of a thin rod (L,/L, — )
and a thin plate (L;/L, — 0) were analyzed. It was shown that
in the limit of a thin rod the Cosserat theory predicts a fre-
quency with the same functional dependence on the length
dimension L as that predicted by thin rod theory but with a
value increased by about 10 percent ((12)”2/x). Similarly, in
the limit of a thin plate the Cosserat theory predicts a fre-
quency with the same functional dependence on the width
dimension L, as the exact solution but with a value increased
by about 10 percent ((12)" /7). Also, the value for the lowest
frequency of a cube was shown to be about 10 percent (1.103)
higher than the exact value.

The transitional character of the lowest extensional fre-
quency was investigated as the length to width ratio L,/L,
varied (with L, constant). It was found that the lowest fre-
quency rapidly approached the limiting value associated with a
thin rod as the ratio L;/L, varied from that associafed with a
cube (L;/L; = 1) to that associated with a thin rod (L,/L, —
o). This transitional character would suggest that the lowest
extensional frequency is closely approximated by the value
predicted by elementary thin rod theory even when the length
to width ratio L;/L, is as low as about three. Furthermore,
the lowest extensional frequency was shown to be constant
when the ratio L;/L, varied (with L, constant) from that
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associated with a cube (L;/L, = 1) to that associated with a
thin plate (L3/L, — 0).

The lowest frequencies associated with shear vibration in
the ¢; — e, plane, the e; — e; plane and the e, — e, plane
were also determined using the Cosserat theory.

It is very interesting to note that the values predicted by the
Cosserat theory for the lowest extensional frequency of vibra-
tion of a thin plate, a cube, and a thin rod are all increased by
the same factor ((12)”/7 = 1.103). This suggests that it is
possible to modify the Cosserat theory to obtain correct values
for each of these limiting cases. In particular, we note that
within the framework of the Cosserat theory the inertia quan-
tities m, /, ¥ in (5) are not a priori determined but rather
must be determined by constitutive equations. Such con-
stitutive equations can be obtained by comparing with exact
solutions or experiments. The values (14a-d) for these quan-
tities were obtained by integrating expressions relating these
quantites to three-dimensional quantities. Here, we retain the
specifications (14a,b,d), and assume that the quantities y'!,
y?, y33 are equal, but we determine their value by comparing
with a known solution. This is equivalent to specifying the
wave numbers p,, p,, p; by

1 1
2 2 _ 2
pl y“le > p2 y”Lzz ] p3

1
S (4aabo
instead of by equations (26a,b,c). The value of y!! is deter-
mined by requiring the Cosserat prediction of the frequency
(35a) for the limiting case of a thin rod to be accurate. Thus,
from (35q), (36) and (42¢) we obtain

yll =J/.22 =y33 ZLZ‘ (43)
e
Now, using the specifications (42) and (43) it is easy to show
that the Cosserat theory also predicts the correct extensional
frequency for the limiting cases of a thin plate and a cube.
Furthermore, with the help of (42), (43), the Cosserat predic-
tion of the lowest shear frequency (41) is modified.

Finally, we note that the above procedure should be con-
trasted with the one suggested by Mindlin (1951). Specifically,
Mindlin suggests that one of the material constants
characterizing the strength of the material be modified instead
of the inertia properties of the material. Within the context of
the Cosserat theory this could be done by replacing ¢, and ¢,
in (14/,k) by values which are scaled by the same factor. This
scale factor could be determined by matching the frequency
predicted in the limit of a thin rod. However, such a procedure
would have the undesirable effect of causing errors in the
predictions of the static problems of simple shear and simple
tension. For this reason, we prefer to modify the specification
of the director inertia instead of the material constants ¢, and
c,.
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APPENDIX A

In this appendix we record a simple exact solution for exten-
sional vibration of a parallelepiped with square cross-section
(L, = L,), which initially occupies the region of space

L,

L L,
Ix,1 S > Ix21<71, lx3l§—2—,

(Ala,b,c)

The three-dimensional equations of motion of the linearized
theory in the absence of body force are

po*l'.jl*:tlj,j’ t‘lztl" (A2a,b)

where py* is the mass density, u;* is the displacement, ¢; is the

stress, and where a comma denotes partial differentiation with

respect to the coordinates x;. The constitutive equations of a

linear elastic isotropic material and the strain-displacement
relations may be written in the forms

By =N €ppdyt+2ue (A3a,b)

(43b)

where 8;; is the Kronecker delta symbol. Furthermore, for free
vibration of the parallelepiped, we impose the boundary
conditions

i
ey = "2+ u;h),

L,
til (i ) E] x2’ X3, t> =Oa (A4a)
L,
Iy (xn 5o X3 f) =0, (A4b)
L,
s (Xn X E t) =0, (A4c)

To describe extensional vibration in the e, — e, plane the
displacements u;* are specified by

u* =a,*sin w*t sin p,*x,cos p,*x,, (A5a)
Uy* = ~a,*sin w*f cos p; *x;sin p, *x, (A5b)
u3* :O, (ASC)
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by = =1y =2p a;*p,*sin w*t cos p;*x;C08 P, *x,,

where a,*, w*, p,* are constants. These displacements
characterize extensional vibration because u,*, u,* are odd
functions of x,, x, and even functions of x,, x,, respectively.
Substituting (A45) into (A3b) the expressions for the stress
become

(A6a)
all other ;; = 0. (46b)

Now, with the help of (45) and (46), the equations of motion
(A2a) yield the dispersion relation (394) and the boundary
conditions (A4) determine the wave number p,* through the
equations

n'Ly _@n-Ux "
2 L,

It follows that the lowest frequency w* = w,* (associated with
n = 1) may be written in the form (394) with p,* given by
(39b). Although w,* in (39a) is the lowest extensional fre-
quency of the type (45) it is not necessarily the lowest exten-
sional frequency of the square bar. For example, in the limit
that the bar becomes a thin rod (L;/L; >> 1) the lowest ex-
tensional frequency is the bar frequency w,* given by (36a).
On the other hand, in the limit that the bar becomes a thin
plate (L;/L; << 1) the lowest extensional frequency is the
plate frequency w,* given by (39).

cos 0, p,* =1,2,... (A7a,b)

ADDENDUM

The author has recently learned of some related work by
other authors. Cohen (1981) developed the theory of pseudo-
rigid bodies by a direct approach for bodies with a fixed point.
Similar equations were developed by Muncaster (1984) as
special solutions of the three-dimensional equations. Both of
these approaches are different from that presented by Rubin
(19854a). Also, Cohen and Muncaster (1984) have considered
small strain-free vibrations of a symmetric body which are less
general than those considered in this paper.
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Assumed Strain Methods

So-called assumed strain methods are based on the a-priori assumption of an inter-
polation for the discrete gradient operator, not necessarily derivable from the
displacement interpolation. It is shown that this class of methods falls within the
class of variational methods based on the Hu-Washizu principle. The essential point
of this equivalence lies in the statement of the appropriate stress recovery procedure
compatible with this variational structure. It is noted that most currently existing
assumed strain methods fail to perform the stress recovery in a manner consistent

with the variational structure discussed herein. Application is made to recently pro-
posed methods such as mode decomposition techniques.

1 Introduction

The denomination ‘assumed strain methods’’ is intended to
encompass a variety of finite element procedures, often pro-
posed on an ad-hoc basis, which are typically characterized by
an interpolation of the discrete gradient operator assumed a-
priori, independently of the interpolation adopted for the
displacement field. The often referred to ‘‘B-bar procedure’’,
proposed by Hughes [I], offers an example of an assumed
strain method which has proven successful in a variety of
situations, including widely used structural elements [3]. For
the finite strain incompressible problem, this method has
recently been precisely reformulated by Simo et al. [6] within
the context of the Hu-Washizu principle. The so-called mode
decomposition technique, proposed by Belytschko and co-
workers (e.g., [1, 7]), furnishes another example of a B-bar
type of method that leads to the formulation of successful
structural elements.

The purpose of this paper is to show that assumed strain
methods can be systematically formulated within the varia-
tional framework furnished by the Hu-Washizu principle. A
crucial point in this development concerns the role played by
the stress field, now entering the formulation as a Lagrange
multiplier, and its recovery within the proposed variational
structure.

It is first noted that the Lagrange multipliers drop out from
the formulation leading to a generalized displacement model,
provided a certain orthogonality condition on the assumed
strain field is satisfied. In addition, as a result of the varia-
tional structure, the admissible stress field (Lagrange
multipliers) is constrained by an orthogonality condition aris-
ing from the Hu-Washizu principle as an Euler-Lagrange
equation. These orthogonality conditions result in a single

lFormerly post-doctoral research engineer at U.C. Berkeley.
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constraint that, for a given form of assumed strain field,
restricts the form of admissible stress fields. Therefore, once
an assumed strain method has been formulated, the stress
recovery becomes the central issue. It is interesting to observe
that almost all of the stress recovery procedures employed in
the assumed strain methods we are aware of fail to meet this
condition, thus rendering the resulting method ‘‘nonvaria-
tional.”’

It should also be emphasized that the generality afforded by
the Hu-Washizu principle is essential for the variational
characterization of assumed strain methods discussed below.
In this sense, the Hellinger-Reissner principle provides too
narrow a variational framework in which this class of methods
generally do not fit. In fact within this framework, in a recent
paper [7], Stolarski and Belytschko conclude that the mode
decomposition technique, a particular instance of a B-bar pro-
cedure, generally lacks a variational justification. However, as
a particular example, we show below how to obtain this class
of methods within the variational framework outlined here, by
appropriately recovering the stress field.

For the sake of concreteness, we shall adopt the bending of
a Mindlin plate as a model problem in the context of which
our discussion is presented. The same ideas apply without
modification to other problems such as three-dimensional
elasticity.

2 Mindlin Plate Problem. Basic Notation.

Consider a Mindlin plate with mid-plane spanning @ C IR?
and thickness 4. Denote by x€Q a typical point of the mid-
plane. Define the set of generalized displacements by

d(x)
XEQ—u(x):= €IR? 1)
w(x)
Here, ¢ (x) is the (infinitesimal) rotation of a line (director),
perpendicular to Q through x, and w(x) the vertical deflection
at x€Q. Introduce the following differential operators
MARCH 1986, Vol. 53/ 51
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S _
— 0 0
ax!
d
Ly:= 0 e o ,
B ax?
9 0
ax? ax! J
1 0 0
- ol
Lg:= ax , 2
0o -1 2
ax?

so that the curvature, «(x) and shear strain, y(x) at x€Q are
given by

k:=Lgu, vy:=Lgu &)}
We assume an uncoupled bending/shear stored energy func-
tion of the form

¥ (k,y) =¥ (c}+¥5(y), @
so that the bending moment m and shear force s are given by
v v
_ §(K) s 5
K dy

We note that for the developments that follow it is not
necessary to assume that contitutive equations (5) are linear.

3 Variational Structure. Hu-Washizu Principle.

Consider the following partial Hu-Washizu principle?
T(u75): = || ¥ (Lg) + ¥ () + 52 (Lot =)0+ gy

(6)
where Ilgyr is the total potential energy of the external
loading. The space of kinematically admissible variations
(generalized displacements) V may be defined as

vi=fa= @meE @P1 | =0l @

u

where H'(Q) denotes the usual Sobolev space of functions.
possessing finite energy, and 49, is that part of the boundary
where the generalized displacements are prescribed. In addi-
tion, admissible shear strain and shear stress fields are defined

according to
= {y:Q—IR?| Y€[L2(D)]?}
= (s:0—IR?| se[L2(Q)]*)

where L2(Q) denotes the usual Hilbert space of square in-
tegrable functions. By taking variations in the standard man-
ner, we obtain the following Euler-Lagrange equations

- (22

G (uy): = SQ 7e[Lsu—yldQ=0 (strain-displacement) (9)

®)

Lpn +S-LS7]) dQ—Ggxr =0
(equilibrium)

0¥ (y)

]dﬂ=0
dy

G (y,8):= SQ €° [—-s—i—

(constitutive equation)

2 Independent stress and strain fields are only assumed for the transverse shear -

strain and stress fields. This presupposes no real loss of generality and is suffi-
cient for the applications of interest [3].
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The above equations hold for arbitrary variations 7€V, ¢€l’,
and 7€S.

Approximation. Introduce a standard finite element
discretization @ = UZ_, Q,, and the finite dimensional approx-
imating subspace

Ne
V":=[u"e[cf>(9)]2| uh =EN’(x)u,ENeqe} (10)
Q =1

e

Here, ¢, = {u;};-1n, is the complete set of degrees of
freedom of Q,. The discrete curvature and shear strain field
correspondmg to (10) are given by

an

Lgut
% g

=Bpq,, and Lgu" ) =Bgq,
e

e

Then, the discrete approximation to the weak forms (9) are

v
Gli=p U [BT 5 («| )+BIs ]dﬂ}—c
e e a, B Ak ., N 9, EXT Q
2. — o .
G Sne T 0, [Bsqe ¥ 0, ]dQ (12)
3': @] S Q
Gs: gﬂeeﬂe | |, +5 e)]d

where G! = LE_ . Consider now an assumed local strain
field generated by a gtven B-bar operator, x — " !n (x) =
Bg(x)q,. That is, we assume (discontinuous) approx1mat10ns
for the strain field of the form

M= (Y elL2(@P v (x) =" | (%)

e
= Bg(x)q,, where q,€IRNe} (13)

Let us denote by S# C[L?(Q)]? the space of discrete admiss-
ible stress fields T". Notice that in general T # S, In fact, as
shown below and further elaborated upon in Section 4, this is
the essential point in the variational stress recovery. By
substitution of (13) into (12),, we obtain

v

ctmne([, 81, + o)
for arbitrary variations e |, = Bgp,eI. It will be shown
next that the stress field s* ddes not enter explicitly in the for-
mulation provided certain orthogonality conditions are
satisfied.

Orthogonality Constraints on the Stress Field. First, we
observe that by making use of the identity By = Bg + [Bs —
Bg] along with variational equation (14), the second term in
the weak form of the momentum balance (12.1); may be
rewritten for arbitrary variations " = N,p,€V*", as

. BIgsh Q) = ,S BT
Pe Sne 5§ ned Pe 9, °

(14)

"ydQ

dQ,

(4

+pee | Bs— BT | (1s)

Now assume that the second term in (15) vanishes. This condi-
tion along with the weak form (12),, yields the following two
orthogonality relations

Ge: = {Sn ™ Q

e

-[BS——BS]dQ}qe=0 for any 7eS*

e

dQ=0 for any 4" =N_p,eV*

e

e Sne (Bs—Bsl"s" |

(16)
where use has been made of (13). Note that for given Bj, con-
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ditions (16) place a restriction on the choice of admissible
shear stress fields 7" (x). In the next section, however, it is
shown that stress fields satisfying conditions (16) can always
be constructed. Substitution of (15) into (12), yields, on ac-
count of (16),, the following generalized displacement model

G,

=Pefe— CGexr Q

e

52 (1) |d) ~ G

oV .
=pee (|, [B8 52 ey BE
2 Ok

where k! = Bgg, and v* = Bgg,. In addition, it readily
follows from (17) that the element tangent stiffness matrix, K,
is given by

DG! su=p,*K,q,

oo, I

Therefore, the resulting discrete equations (17) and (18) are ex-
pressed exclusively in terms of By and Bg.

0 ¥y (Kg )
ox?

*v h
By +BF — 51 (2% )
dy

Remark 3.1. The assumed local strain field defined by By is
arbitrary. Formally, equations analogous to (17) and (18)
would also arise in the context of the procedure proposed by
Hughes [2] and are often referred to as the B-bar method. The
present development furnishes the appropriate variational
framework.

Remark 3.2. Note that the Lagrange multipliers drop out
completely from the formulation, provided conditions (16)
hold. This fact was also noted in Simo, Taylor and Pister [6] in
the context of the fully nonlinear incompressible problem. For
this problem, an identical formulation in the context of the
Hu-Washizu principle can be carried out.

Now let us reverse our viewpoint. Assume we start with (17)
and (18) (i.e., the B-bar method). The finite element
discretization is considered defined by these equations in-
dependently of the way in which stresses are to be computed.
Is this seemingly ad-hoc method variationally consistent? The
exposition preceding (17) and (18) makes the answer manifest:
It is variationally consistent if the stress field is constructed so
that conditions (16) are satisfied. Thus, the method of stress
calculation, or recovery, is the central issue. This is dealt with
in the following section,

4 Variational Stress Recovery

An equivalent characterization of the admissible stress
fields 7" satisfying orthogonality conditions (16) is the follow-
ing: For simplicity in the notation, the superscript # will be
dropped. Let E be the set of discrete strain fields generated by
By; i.e.,

E=fymer2@P1 ye=v|

~Bsa.]  19)

e

In addition, introduce the notation

Ey= [’yb (X)€[L2 (D)2

., =1Bs=Bsla.] @0

Y5, =7s I
Conditions (16) then, may be re-stated simply as
(T,yb)L2:= SQ 7v,dQ2=0, for any 7¢S", and v,€E, 21)

Therefore, an assumed strain method is variational provided
the space of admissible stress fields S” is contained in the or-

Journal of Applied Mechanics

Qe

thogonal complement to the space E,, relative to usual L, in-
ner product.

_An Explicit Construction of S, We now show that given
By, a space of admissible stress fields S" satisfying (21) may

17)

always be explicitly constructed as follows. For simplicity,
assume linear constitutive equations so that

(18)

Bs]dﬂ>qe

_ P¥s(y)

y?
Now consider the orthogonal complement EZ*™ of the space
E,, relative to the inner product induced by D, that is

Dy: = const. 22)

EYT:= (v () €L (D] <w,,, v35 > =01, (23)
where we have set
v agr>i= | w | D] do 24)
e e e

Then, we define admissible stress fields as the stresses
associated with the projection of the strain fields £ onto Eg**,
that is
=Dy
e
Clearly, by virtue of (23) the local stress field 7 obtained in this
way satisfies constraint (21). The explicit form of the inter-
polation for 7€S* may be obtained by constructing a basis for
Eg**, This can always be accomplished by orthogonalizing the
columns of By against the columns of By — Bginthe <., .>
inner product, according to the following generalized Gram-
Schmidt procedure.

7€S" if and only if 7 , where ¢ eEgrth 25)

Q

Stress Interpolation. Suppose that EZ™ has dimension dim
E9" = N, = N,. Then, the number of independent columns
of [Bg — Bglis N,. Let b}, (I = 1, . . . ,N,) denote the col-
umn vectors of the matrix [By — Bg]l. Without loss of
generality, assume that the first NV, columns are the indepen-
dent column vectors. We introduce the notation

B,:=[b)B2 . .. BY'], where Bg— B =[byb} . . . bie]  (26)
Associated with the independent column vectors B, we define
the Gram-Schmidt matrix H, according to

Hy:= SQ (B,)"DgB,dQ 27

Note that by construction H, is regular, We now define a
modified stress interpolation operator Bg such that, for a
given set of generalized displacements g,€[R™e, the admissible
stress fields 7€S" are defined in terms of By as

)
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To see that (28) furnishes the appropriate stress interpolation,
simply observe that any v,€E, may be expressed as v, = [Bs
—~ Bglp, = B,p.. Here, p, denote the nodal degrees of

freedom corresponding to the N, independent columns of [Bg
— Bg]. From (28) it follows at once that

()2 =per (| (B5)™DsByd0}q =0
[:4

Thus, the stress fields constructed according to (28) satisfies
the key orthogonality condition (21).

(29)

Remark 4.1. It should be noted that stress fields of the form
=Dsésqe (30)
e

often used in applications, do not satisfy condition (21) in
general, thus rendering the method nonvariational.

N
Q

Remark 4.2. The crucial role played by the Hu-Washizu
principle should be noted. In the more restrictive variational
framework furnished by the Hellinger-Reissner principle, once
the strains are assumed as v = Bgq,, the only possible choice
for the stress field is (30). By contrast, within the framework
outlined above, the stress field may be chosen as the or-
thogonal complement of E, in L,.

Remark 4.3, The developments discussed so far yield no in-
formation regarding the structure of Bg. The stress recovery
(28) merely ensures that for a given B the method is varia-
tionally consistent. However, variational consistency is by no
means a guarantee of success. Issues concerning stability and
convergence of the method depend crucially on the form of Bg
and ultimately, as any mixed method, on a discrete LBB con-
dition (e.g., [SD).

An Example: Mode Decomposition Technique. As a par-
ticular example, consider the mode decomposition proposed
by Belytschko and co-workers. The idea is to introduce a pro-
jection on the nodal displacements g, so that

q.=Ppq, +Psq, 31D
where P and Pg are projection operators which, accordingly,
satisfy
Py +Pg=1, PyoPg=Pp, PsoPs=Pg, PyoPs=PsoP;=0
(32)

Then, the procedure is based upon selecting a discrete gradient
operator By of the form

Bg: = BsoPyg 33)

The methodology for constructing Pg is based on the concept
of a so-called equivalent Kirchhoff configuration, see, e.g.,
[1]. The essential purpose of the method is to eliminate the so-
called parasitic shear strains. Clearly, the procedure falls
within the class of B-bar methods. Hence, the structure out-
lined in Section 3 entirely applies. In particular, the shear
strains are computed according to
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Y Q ZBSqezBSOPSQe’ (34)

Yb =Bs0Pyq,,
e QE
The shear stresses must be obtained so that condition (21) is

satisfied. For this purpose, the procedure leading to (28) is

applied.

Remark 4.4. It should be noted that the stress recovery in
the mode decomposition approach is usually performed ac-
cording to expression (31) which renders in general nonad-
missible stress fields violating orthogonality condition (21),
see, e.g., [7] and references therein. Other structural elements
employing a B-bar type of approach, e.g., [3], have also
employed this stress recovery.

Remark 4.5. Zienkiewicz and Nakazawa [8], generalizing
results of Malkus and Hughes [4], have considered the
equivalence between numerically integrated displacement for-
mulations and mixed formulations based upon the Hu-
Washizu principle. They also consider the issue of a consistent
variational recovery of strain and stress fields, within the con-
text of smooth (continuous) interpolations for these fields. It
should be noted that numerically integrated displacement
methods and B-bar type of methods represent different classes
of generalized displacement methods, although in some in-
stances they may overlap. Thus, the results in [8] and those
reported herein may be considered complementary.
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Invariance Considerations in Large
Strain Elasto-Plasticity

This paper addresses a number of issues in the ongoing debate over the relevance
and/or appropriateness of the rotational invariance requirement which is generally
associated with the intermediate unstressed configuration. In particular, it is argued
that the principle of material frame invariance has been ‘‘misapplied’’ by the pro-
ponents of full rotational invariance. Insistence on a strictly ‘‘kinematic” interpreta-
tion of the deformation gradient (F=F F,) constituents F, and F,, justifies eliming-
tion of the plastic rotational component R, (F, =R U,) based on the principle of
determinism for stress—not invariance of frame. However, simple physical con-
siderations, including a physical example involving a ‘‘structurally anisotropic”
crystal, suggest that a more intricate definition of the gradient constituents is re-
quired in order to adequately account for microstructural characteristics. These con-
siderations suggest alternative definitions for the gradient constituents ¥, and F,,

P. A. Dashner

Department of Mechanical Engineering,
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with associated constitutive invariance requirements.

Introduction

In recent years a number of articles concerning the ad-
missibility of certain invariance requirements relating to the
deformation gradient decomposition

F=F.F, 1

have appeared. This debate centers on the question of whether
a specific requirement of invariance under the transformation
(FvFe!Fp)'_' (F’FeQ,QTFp) (2)1
for the full orthogonal group is
(i) required in order to obtain ‘‘admissible’’ constitutive
laws, or
(ii) over-restrictive and leads to a general theory which is
something less than ‘‘general.”
Those who argue for (2) assert that constitutive equations
for the symmetric Piola-Kirchhoff stress and (Helmholtz) free
energy of the form

S=SEF,«); y=y(EF,.), (3)
must be independent of the rotational component of ¥, and

therefore equivalent to equations having the Green-Naghdi [1]
form

S=SEE,«); ¢=y(EE,\), 4)
expressed in terms of the total and plastic strain
2E=C-1I; C=FTF
2E,=C,~-L; C,=F,F,. )

I'This invariance requirement is in addition to the frame invariance (isotropy
of space) requirement. associated with the transformation (F,F,,F )
(QF,QF,F ).
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The case for this position has been stated most recently by
Casey and Naghdi [2, 3] while proposition (i) has had recent
support from a number of authors including Mandel [4],
Lubliner [5], Lubarda and Lee [6], and Lee [7}. Here,
arguments in support of this latter group are presented.
Through simple microstructural considerations, I intend to
demonstrate that the imposition of this additional invariance
requirement severely compromises our ability to model
materials which possess a ‘‘persistent’’ anisotropic lattice
structure (e.g., single crystals). This conclusion follows from
the fact that it effectively allows for one and only one lattice
orientation in each plastically deformed rest configuration,
regardless of the complexity of the plastic deformation path.
This restrictive property ascribes a path-independent
characteristic to the plastic deformation mechanism which is
not supported by available evidence. Relating to this latter
point, and in lieu of evidence which suggests that the ac-
cumulated plastic strain has any relevance to the determina-
tion of a deformed element’s mechanical state, I will also sug-
gest a move to alternative constitutive formalisms which do
not rely on the identification of plastic strain as a ‘‘primitive”’
variable.

The basic assumptions which underpin this line of argument
are not new, Those familiar with the body of literature
authored by Havner, Hill, Kocks, Rice, and others? dealing
with the plastic deformation of crystalline metals will
recognize, and no doubt feel comfortable with, the underlying
phenomenology. The intent here is to bring this line of reason-
ing to bear on the present and ongoing debate over invariance
criteria and to cast this sort of theory in a form which may be
more familiar to those accustomed to the formalisms of Lee
and/or Green and Naghdi.

2The recent review article by Havner [8] seems to give a thorough accounting
of this line of research.
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The present considerations nevertheless lead to a general
constitutive formalism [9] which, although fully consistent
with that elucidated by Havner [8], has a number of note-
worthy features. Apart from the elimination of explicit
dependence on the accumulated plastic strain the most striking
feature of this alternative format is that it is set in an Eulerian,
or spatial, context with the present deformed configuration
adopted as the instantaneous reference. This approach is
based on the assumption that an inelastic element’s present
state is wholly determined by

(i) its present geometric configuration,

(if) the instantaneous geometry and orientation of the
characteristic material lattice structure,
(ifii) an “‘adequate’’ characterization of the instan-

taneous dislocation structure.

In this formulation the inherent path dependent nature of the
inelastic deformation mechanisms is recognized through the
explicit non-reliance on a fixed-material reference configura-
tion (as distinct from a fixed-lattice reference) and the elimina-
tion of all measures of the accumulated plastic strain. These
considerations, which draw upon all previously cited for-
malisms, offer a resolution to the present debate over in-
variance criteria and establish a suitable theoretical structure
for the development of realistic, large-strain, inelastic material
models.

The Difficulty
In order for the Cauchy (true) stress response equation
o=0(F,F,,x) (6)

to be concordant with the principle of determinism for stress,
and thereby establish a theoretically valid point of departure
for inelastic modeling, it is necessary that ¥, like F, be deter-
mined from the history of the local material motion relative to
some specified reference. This is explicitly acknowledged by
Lee in [10] when he states that ‘. . . the plastic deformation
F, is a functional which represents the past history of plastic
flow that has already occurred, . . . >’ The fallacy of the cur-
rent debate is that an argument has been joined over the in-
variance requirements which apply to a quantity which has not
been properly defined in this causal sense. There is no debate
over the meaning of the stretch component

U,=VF,’F, ™)

of F, as it is understood to represent the unique positive
definite square root of the Green plastic deformation tensor

C,=F,7F, ®8)
The existence of U, as a functional of past deformation
history follows from the assumption that each material ele-
ment, at each instant, possesses a unique relaxed or unstressed
geometry. A similar causal definition of the rotational compo-
nent R, =F,U, ! has never been fixed. In this regard, the
demonstrated ‘‘non-uniqueness’> of the gradient de-
composition

F=FF,=F,F,"
F,"=F,Q )
F,”=Q7F,~R,” =Q"R,,

in terms of an arbitrary proper orthogonal Q, can be taken as
proof of the fact that purely kinematic considerations alone
do not, and cannot, establish the causal functional nature of
R,.
Proponents of the contested invariance requirement seize on
this non-uniqueness of the gradient decomposition and state,
in effect, that the instantaneous response cannot possibly de-
pend on how one orients the unstressed element. Thus, they
invoke invariance under the transformation

(FF, F,)— (FFQQ'F,) (10
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for the full proper orthogonal group, while suggesting that
this represents a logical extension of the principle of in-
variance of frame. I submit that while their conclusion is for-
mally correct, given their characterization of the primitive
variables as having only kinematic significance, it is not ap-
propriate to appeal to the principle of invariance of frame.
Moreover, by choosing to ignore the essential microstructural
aspects of solids, they arrive at a general theory which is an-
tithetical to the nature of crystalline or polycrystalline solids
which exhibit material anisotropy.

First of all, the constitutive hypotheses of deferminism and
invariance of frame seem to have a natural ordering in which
the former precedes the latter. Indeed, they are based on com-
pletely independent philosophical principles. The principle of
determinism for stress, i.e.,

The instantaneous stress response of a material element at
time >0 is a functional of the history of the element defor-
mation proceeding from a ‘‘well-characterized”’ reference
state at £=0, i.e.,

a(y =R, [F(s5):0<s=1], (an

is based on an intuitive understanding of the nature of time
and the supposition that causes necessarily precede effects.
This principle underpins and, in some sense, justifies all scien-
tific investigation. The hypotheses of invariance of frame, as it
applies here, i.e.,

The instantaneous stress response of a material element at
time >0 depends on the history of element orientation only
as a function of its current value, and only insofar as it
‘‘orients’’ the resultant stress, i.e.,

Qo (1)Q7 =R, [QF(1);C(s):0<s=<1];
C=FTF; (12)

is based on the notion of isotropy of space. Since this
hypothesis freely incorporates the idealization of Galilean
relativity, among other things, it is clearly subordinate to the
more fundamental assertion of determinism. In fact, the
specific wording given above presupposes stress determinism
through (11).

In view of these considerations it is difficult to justify the
imposition of frame invariance on a constitutive form which
already stands in violation of the principle of determinism.
Within the context of the present debate, an explicit definition
of R,, and thus of F,, in terms of prior deformation history
must precede the consideration of additional invariance re-
quirements. Put differently, the existence of a constitutive
relation

for all proper orthogonal Q

R, (1) =9, [F(s):0<s<1] (13)

must be established before additional restrictions can be
meaningfully imposed. If no such physically relevant defini-
tion of R, exits, then it must be excluded from (6), leaving the
form

o=0(F,U,,x), 14

as a consequence of the principle of determinism for stress,
not invariance of frame. On the other hand, if a physically
relevant, causal definition of R, can be formulated, then the
validity of any additional invariance requirement can be
assessed only in light of this definition. It should also be clear
that no such definition of R, is possible without the introduc-
tion of microstructural, in addition to purely kinematic, con-
siderations, To exclude consideration of microstructure in
modeling the behavior of solids is to ignore the inherent
physical nature of this class of materials.

Additional Considerations

Within the context of a general theory, it is clearly necessary
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to allow for material anisotropy. While this is recognized by
all parties there is not yet agreement on how this should be
done. In fact, this issue seems to provide the focus for the
ongoing debate. In view of the considerations of the previous
Section, I believe that it is crucial to develop a ““meaningful®’
causal definition of R, which bears some relationship to
anisotropic characteristics through material microstructure.
For this purpose I have adopted the phenomenology
elucidated by Rice [11; Sec. 3.2], in incremental form by
Asaro and Rice [12; Sec. 2], and most recently in the review ar-
ticle by Havner [8; Sec. 3.2 & 4.1] in connection with the slip-
shear deformation of single crystals.

In an effort to cast this discussion in a somewhat more
general context I shall begin by dividing all anisotropic
characteristics into two mutually exclusive categories.
Specifically, any directional characteristic which is present and
recognizable in all unstressed elements of a given material will
be referred to as a structurally anisotropic characteristic. All
others, i.e., those which may or may not be present depending
on prior deformation history, will be referred to as induced
anisotropic characteristics. Structural anisotropy will most
likely be associated with chemical composition and the cor-
responding crystallographic, or cell, structure of the material
while induced anisotropy is most likely to result from the local
density and distribution of dislocations within the
crystallites.?

Once the existence of structurally anisotropic materials is
admitted (the paradigm example being the single crystal), then
a causal definition of R, of obvious physical relevance
becomes apparent. In order to assign a particular value to F,,
and therefore to its rotational component R, it is first
necessary to select and set aside a particular ““virgin’’ element
of this material which exhibits only the characteristic struc-
tural anisotropy. This element shall henceforth serve as a
reference map for the underlying material bond structure and
is to be regarded as an integral part of any constitutive rela-
tion, Having established such an element, the so called
reference cell, as a standard for comparison, the value of F,
assigned to any other element of this material is taken as that
which ““places”’ the corresponding relaxed or unstressed ele-
ment with structural orientation identical to that of the
reference cell. Based on this definition of F, and the gradient
decomposition (1), it is evident that F, can then be regarded as
the linear map which fixes the current ‘‘lattice configuration”’
by ‘“‘placing”’ the characteristic structure of the reference cell
in the deformed material element. This makes it possible to
visualize the total element deformation as a two step process
consisting of an initial ‘‘plastic’’ deformation characterized by
a spatially fixed cell structure, followed by an “‘elastic’’ defor-
mation in which the characteristic cell structure is ‘‘dragged
along’’ with the material. For reasons of convenience I choose
to regard F and F, as primative, with F placing the material
relative to a chosen material reference and F, providing the
essential outline for the description of lattice or material bond
structure (instantaneous elastic distortion and ‘‘structural’’
orientation) by placing the preselected reference cell in the
deformed material element.

In the event of full structural anisotropy (orthotropy), this
definition assigns unique values to the gradient constituents of
each material element based entirely on local deformation
history. On the other hand, if the material exhibits no struc-
tural anisotropy then, based on the above definition of F,,
proper orthogonal R, would clearly be indeterminant. Thus,
adoption of the above definitions establishes the invariance re-
quirement (2) as a consequence of structural isotropy. Based
on these considerations it can be argued that the contested in-

3Based on statistical averaging, most annealed polycrystalline metals should
probably be regarded as structurally isotropic,
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variance requirement should rightfully be replaced by a re-
quirement of invariance under the transformation

(F,F,F,)~(FF,QQ"F,); foreach QeG (15)

where G represents the orthogonal symmetry group for the
virgin reference cell.

The above discussion would seem to suggest that the theory
of Green and Naghdi is incapable of modeling structurally
anisotropic materials, as the imposition of invariance under
(2) would appear to deny the influence of structural orienta-
tion. This, however, is not necessarily the case since elimina-
tion of R, from (3), and subsequent reduction to (4), would
also result from the explicit assumption that

R, =R, (F,U,,x). (16)

Since elastic unloading to F=U, would presumably not fur-
ther alter the structural orientation (relative to the material) in
the relaxed element, (16) is seen to imply a simpler relationship
of the form :

R, =R, (U,,x). a7

The obvious implication of (17) is that there is one and only
one cell orientation corresponding to each state of plastic
strain at a given hardness. In other words, it implies that the
evolution of lattice orientation, relative to the material, is in-
dependent of the plastic deformation path and thereby fixed
by the accumulated plastic strain. There is, however, no
evidence to suggest that this is characteristic of inelastic defor-
mation in metals. In fact, it is a simple excercise to construct a
physical counterexample (see Appendix) by demonstrating the
existence of a closed plastic deformation path in a non-
hardening crystal, consisting of a sequence of four single shear
deformations along a pair of perpendicular slip systems,
which results in a net rotation of the underlying crystal lattice
relative to the material. Such examples, although highly
idealized, serve to suggest that the above ‘‘path independent”’
characteristic is not a property which is generic to metal
inelasticity.

This apparent deficiency in the Green-Naghdi format sug-
gests one which is even more fundamental in nature. This
relates to the selection of the accumulated plastic strain as a
“‘primitive’’ state variable. As demonstrated above, func-
tional dependence on accumulated plastic strain (as opposed
to the entire history of plastic strain) appears to assign in-
herent path independent characteristics to the plastic deforma-
tion mechanism which are not borne out by available
evidence. In effect, the plastic deformation mechanism
disassociates ‘‘material distribution’’ from bond structure,
with F, giving the current accounting of this relationship.
Havner [8; Sec. 3.1] expresses this by noting that, ‘‘The single
most important phenomenological aspect of gross inelastic
behavior in metal crystals (indeed, distinguishing them by
kinematics alone from polymers and soils) is the movement of
the macroscopic material relative to the underlying crystalline
structure.”’ The key assumption which underlies all theoretical
development based on the above phenomenology is that the
mechanical state of a deformed material element is determined
by the instantaneous spatial bond distribution (lattice place-
ment plus dislocation distribution), independent of the
material distribution. This assumption shall be formalized in
the concluding Section through the introduction of a new in-
variance requirement which may be referred to as replacement
invariance. Further, due to the fundamentally path dependent
nature of the plastic deformation mechanism, I consider it im-
probable that accumulated plastic deformation has any
relevance to the characterization of bond structure. To iden-
tify plastic strain as a primitive state variable is to suggest
otherwise. As shall be demonstrated in the concluding Section,
the requirement that all constitutive forms be invariant with
respect to material element replacement provides a justifica-
tion for the elimination of plastic strain as a primitive variable
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and establishes a needed connection between the different for-
malisms employed by the contending parties.

An Alternative Formalism

The fundamental premise which guides the following
development is that the instantaneous lattice placement and
dislocation structure fix the mechanical state of deformed
material elements. That is, any two deformation paths,
regardless of final material placement, which result in iden-
tical lattice placements and spatial dislocation distributions
should produce mechanically indistinguishable elements.
Although these assertions would support a direct statement of
the attendant constitutive forms, a more formal approach is
adopted wherein the appropriate response forms are deduced
through a systematic application of invariance requirements to
a more general (and less controversial) form. For convenience,
the response equations are first cast in the form

[Ua\p]:(R(F)Fe’n), (18)

in terms of the Cauchy (true) stress ¢, the (Helmholtz) free
energy density ¢, the familiar total and elastic deformation
gradients F and F,, and a set of frame invariant, Eulerian*
tensor state variables = {q;}. These additional variables will
likely describe certain geometric aspects of the instantaneous
dislocation distribution and are introduced in order to model
the dislocation induced variation in mechanical properties.
The conjecture of the previous Section is that these variables
are inherently history dependent and that there is little
likelihood that they will exhibit explicit dependence on ac-
cumulated plastic strain.

The first invariance requirement that must be imposed on
(18) is that of material frame invariance. Since F and F,,
respectively, ‘‘place’” the material element and the
characteristic cell lattice in the current configuration, it is
clearly necessary and sufficient to require that

[QeQ7 ¥]1=R(QF,QF,,Tyn), (19)

for all proper orthogonal Q corresponding to post-
deformation rotation of the material element. Here, T,
represents the rotational group transformation operator
associated with the set of tensor state variables . Structural
symmetries in the characteristic lattice are accounted for by
demanding invariance under (15). This insensitivity to certain

4Bulerian in the sense that they are defined and interpreted relative to the cur-
rent element configuration,

in unaltered

Element
mechanical characteristics

Fig. 1 “replacement” resulting
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prerotations of the reference cell gives rise to the formal re-
quirement that

[o.¥]=@®(¥F F,Q,y; forallorthogonalQe g. (20)

Replacement invariance, as described above, takes the form of
invariance of response under the transformation

(F,Fe,Fp,ﬂ)—'[FF,Fe,(Fe_lFFe)Fp,ﬂ] 21

for all possible non-singular replacements F (see Fig. 1).
“Replacement’’ of a deformed material element (placed by F)
can be visualized as one or a series of perfectly plastic shear-
slip deformations which do not effect the geometry or orienta-
tion of the underlying lattice structure.” With the substitution

F*=F~'FF; F=FF*F~!, (22)
this transformation is seen to be equivalent to
(F,F,F,,n)— (FF*,F,F,F*n). (23)
Thus, replacement invariance is assured if and only if
[o.¥]=REFF* F,,n), (24)

for all possible nonsingular F*. If dilitation is regarded as a
purely elastic phenomenon (as it usually is), then the set of
allowable replacements would be restricted by the determinant
constraint

det(F)=det(F*)=1, (25)
Due to (25), (24) would render arbitrary only the unimodular

component of F and hence it is more convenient to impose
these invariance requirements on the equivalent response form

[o.¥] = R(F,,F.,1) (26)

expressed in terms of ¥, =F,~ IF, With the adoption of (26) it
is clear that the invariance requirements (19, 20, 24) are re-
placed by

Frame invariance
[QeQ" .y = R(F,,QF,, Tym);

for each proper orthogonal Q, 27)
Lattice orthotropy
[o¥]= &(QTFP,FGQ,n); for each orthogonal QeG, (28)
Replacement invariant
[o,¥] = R(F,F*F,,q]; for each unimodular F*. (29)

Now, since F,, would also be subject to the unimodular con-
straint (25), invariance under (29) would render its value ar-
bitrary and thereby force its removal from the list of
arguments in the response equation (26).°

Thus, imposition of replacement invariance leads to a new
formalism for the modeling of inelastic solids based on
response functions of the form

[o.¥] = R(F,m). (30

SIf the material being modeled supports such deformations, then element
replacement could be achieved through this mechanism. More generally,
however, replacement invariance should be regarded as nothing more nor less
than a mathematical statement of the assertion made in the second sentence of
this Section.

tis a simple matter to verify that the form
§=8(C,Cp,0)
is constrained by the requirement that
F* IS(F‘ - 1)T= S(F* TCF‘,F‘ TCpF‘,K); for all unimodular ¥*,
under the imposition of replacement invariance, Since this guarantees invariance
under all element prerotations, it must be concluded that this particular
theoretical form cannot incorporate replacement invariance without being
restricted to materials which have isotropic structure. An invariance require-

ment of this type was employed in [13] in the modeling of a special class of
isotropic elastic-plastic solids having invariant elastic properties.
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This form is further restricted by the usual frame invariance
requirement
[QoQ7,¥]=®R (QF,,Tyn); for each proper orthogonal Q,
' (31)
and, the lattice orthotropy constraint
[0,¥] = R(F.Q,); 32)
In view of (32), full structural isotropy would make it possible
to rewrite (30) in either of the alternative forms
lo,¥]=f(b,n) =g (c,m), (33)
in terms of the positive definite, symmetric, elastic deforma-
tion measures

for each orthogonal Q€gG.

b=F,F,7
c=b~'=(F,~H)TF,~ 1.
These reduced forms are subject to frame invariance through
[QeQ7 Y] =F(QbQ”, Tym) =g(QeQ”, Tom,  (35)

but satisfy (32) identically.

The considerations of this Section underlie, and establish
the point of departure for, the alternative constitutive for-
malism detailed in [9]. This format, which is fully compatible
with the previously cited theoretical formulations of Havner,
Hill, Rice, et. al., is not burdened with the physically over-
restrictive invariance requirement (2) and deemphasizes the
mechanical significance of accumulated plastic strain. This is
accomplished by assigning full responsibility for the modeling
of plastically induced mechanical effects on a collection of
history dependent internal variables consisting of the ‘‘cell
placement”’ tensor F, and a set of (as yet unspecified) state
variables y= {q;}. The history dependence of these variables is
explicitly incorporated into this general theory by postulating
the existence of frame invariant, causal, evolution equations
which take the form

[QF, (1), Ton(H)]=G,IQF (1}; C(5): 0<s=1];
for all proper orthogonal Q,

34

(36)

when referenced to some ‘‘well-characterized’’ state at 1=0,
Havner [8] traces the development of incremental evolution
laws for F, (using the symbol J in place of F,) under the cir-
cumstance wherein slip-shear is the dominant plastic deforma-
tion mechanism.
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APPENDIX

An Interesting Example

For this example consider a unit cell of a perfect single
crystal having horizontal and vertical families of slip planes.
This element shall be subjected to a sequence of perfect single
slip-shear deformations which alternately activate the horizon-
tal and vertical slip systems. As is well-known, a perfect slip-
shear deformation (see Fig. 2) is characterized by a displace-
ment field of the form

u(ry=u, +y(s@n)r 37
and deformation gradient
F,=1+vy(s®@n) (38)

in terms of the normal n to the active slip planes, the shearing
or glide direction s, and a positive shear strain parameter +.
Moreover, it is clear that such a deformation changes the
material geometry without altering the cell size [det(F,)=1],
or the local geometry or spatial orientation of the underlying
crystallographic structure.

Now, let i and j represent the horizontal and vertical direc-
tions, respectively, and consider the four step slip-shear
deformation

F=F,F,F,F,
=[I+v0@DI~ v, (i@N+ v GRDII - v, ({®))]

v 1—712
{F)xyz=
Y2(L=71) +,

(39

= [12{1 =2 +7] J
(1 =7172)* = 72?

expressed in terms of the shearing parameters v, and v,. The
immediate objective is to show that v, and +y, can be chosen so
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that the accumulated effect, as measured by F, amounts to a
counterclockwise rigid material rotation (see Fig. 3) by an
angle 8=20, for any angle 6 satisfying — 7/2 <0< /2, that is

[ L-v,? “.[72(1—712)"'71]
(=1 +m (A =v72)* —7? ]
cos20 —sin26
B [sin29 cosZO} '
Note that this is accomplished by satisfying any two of the
three equations

(40)

Foo=1—~2=cos26
Fyy=(1=7,7,)* —v,2=cos2§ (41

Fye==Fy=7,(1=7*) +7, =sin20

by virtue of the fact that F identically satisfies the determinant
constraint det(F)=1. Simultaneous solution of the first and
third equations yields the result

v, =V2sind
v, =V2sinf/(1 + v2cosf). 42)

With reference to Fig. 3, it therefore follows that for any
choice of 8¢(—n/2,7/2), the five step deformation process

F*=QF =QF,F,F,F,, (43)
which terminates with a clockwise rigid rotation Q through an

60/ Vol. 53, MARCH 1986

angle 20, describes a closed deformation cycle (F* =1I) which
results in a net rotation of the underlying lattice structure,
Having assumed an initial absence of dislocations (perfect
crystal), no hardening can occur during the perfect slip-shear
deformations. Consequently, it is clear that the initial and
final states of this element are characterized by

(E=E,k),={E=F,x),. (44)

Thus, the particular version of the Green and Naghdi theory in
which the primitive variable E’ is associated with the plastic
strain E, is not able to distinguish between these obviously
distinct (provided of course that proper orthogonal Q does not
belong to the lattice symmetry group) mechanical states.

The lesson of this example is inescapable insofar as it clearly
demonstrates that the evolution of material characteristics
associated with ‘‘structural’’ anisotropy depends in a com-
plicated manner on the entire plastic deformation history. In-
asmuch as the Green and Naghdi formulation depends on a
“realistic’’ description of the anisotropic characteristics of
subsequent unstressed elements in terms of the accumulated
plastic strain and hardness (and perhaps a number of fixed
material tensors associated with the initial anisotropic
reference configuration) it must be regarded as overrestrictive.
It is noteworthy that these conclusions follow from the con-
sideration of a highly specialized example in which only struc-
tural anisotropic characteristics (i.e., those associated with lat-
tice structure) are relevant. One can only speculate on how
much stronger a plastic path dependence is exhibited by the in-
duced anisotropic characteristics which arise from the genera-
tion and interaction of lattice dislocations.
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Determination of Dynamic Forces

J. E. Michaels'
o From Wave Motion Measurements
Yih-Hsing Pao
Fellow ASME An experimental method has been developed for generating obligue forces with

known orientations and time histories. Recorded signals from several forces were
analyzed by an iterative deconvolution method to determine their orientations and
time histories. The recovered values agree closely with the exact ones for these con-
trolled sources. These experiments are a valuable test of source characterization
methods that may be applied to seismic data from earthquake sources or to signals
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Cornell University,
Ithaca, NY 14853

recorded from the acoustic emission of cracks.

1 Introduction

A time-dependent concentrated force with fixed orientation
that is applied to a structure generates wave motion which may
be recorded on the surface. If the location, time history, and
orientation of the force are known, the displacement response
can be calculated for simple structures for which the Green’s
functions are known. To record the response to either a
known or unknown source, a transducer can be mounted on
the surface of the structure. In this paper a method is de-
scribed and demonstrated to experimentally determine the
orientation and time history of an oblique force applied to the
surface of an elastic plate. )

A closely related problem is determining the time history of
a concentrated force of known orientation. Goodier et al.
[1959] solved an integral equation to calculate the time history
of a vertical force applied to a half-space from the far-field
response. Hsu et al. [1977] and Michaels et al. [1981] discre-
tized and inverted a time convolution integral to determine the
time history of a vertical force applied to a plate from the
near-field response. An important factor in the success of their
work was the availability of an artificial source, which is
generated by fracturing a glass capillary against the structure
surface. As was first noted by Breckenridge et al. [1967], this
source is a concentrated vertical force that has the time-
dependence of a step-like unloading function.

The response of a structure to a force of known orientation
is given by a convolution in time of a source function with a
single Green’s function. Thus, the problem of determining the
source function from the response may be solved by decon-
volution. However, for a force of unknown orientation, the
response is given by a convolution of the source time function
with a linear combination of Green’s functions, where the
unknown coefficient of each Green’s function is proportional
to a direction cosine of the force. Therefore, methods for
deconvolution with a single Green’s function cannot be direct-
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Iy applied to determine both the source time function and the
direction cosines. In this paper, a deconvolution method
recently developed by Michaels and Pao [1985] for multiple
Green’s functions is applied to experimental data.

2 Theory

Before the orientation and time history of an oblique force
can be determined from the measured wave motion, it must be
understood how the response depends upon the source, the
medium, and the receiver. It is assumed here that the medium
is an infinite elastic plate and that the receivers are piezoelec-
tric transducers sensitive to normal motion.

Displacement Response in a Plate. Consider the plate
geometry shown in Fig. 1. In cylindrical coordinates (r, 8, z),
the source is located at x° = (0, 0, 0) and a typical receiver is at
x=(r, 8, h), where h is the plate thickness. It is assumed that
the horizontal dimensions of the plate are large enough so that
it can be modeled as infinite in extent.

The Green’s displacement tensor, G;(x, £; x°), is defined to
be the displacement response in the ith direction at x and ¢ due
to an impulsive concentrated force of unit magnitude in the jth
direction at x° and f=0. Thus, for a point force F;(x°, #)
acting at x° that is zero for <0, the resulting displacement is,

4

3
ux, H = Z So drGy(x, t—1; X )F;(x°, 7)
j=1

(6]

1l

3
Y Gylx, 5 x0)%F(x°, 1)
Ji=1
In this and subsequent equations, an asterisk denotes a con-
volution integral in the time variable.
It is assumed here that the orientation of the oblique force
F; does not change with time, It then may be expressed as,
. F(x°, =f;(x°)s(?) 2
The function s(¢) is the time history of the force, which is the
same for all three components of F;. The vector fi(x) is the
time-independent orientation. This decomposition in equation

(2) is not unique because it is defined only to within a scale
factor.
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Fig. 1 Source and receiver geometry for an infinite elastic plate

Since the plate is axially symmetric and the source is located
on the x; (or z) axis, the normal displacement u(r, 9, A, ) may
be evaluated from the Green’s functions at x=(r, 0, A) by
rotating the components of the force f,

3
uslr, 0,1, 0= 3 Gy, 0, 1, 50 Jxst) )
j=1
The components f;’ are,
fi’ = ficosf+ fysinfd
fo! = —fisinf+ f,cos “
fi' =/

Equation (3) may be simplified by noting that G, (7, 0, A, £; 0)
vanishes identically because of the axial symmetry of the plate
(Ceranoglu and Pao, 1981).

us(r, 0, h, 1)y = {(fcos + f,5in)G;,(r, 0, h, t; 0)
+£3G33(r, 0, 1, £50) ) *5(2) )
Thus, if the Green’s functions are known, the normal

displacement response to a known obligue force may be
calculated.

Deconvolution with Multiple Green’s Functions. To
determine fj, f5, f3 and s(?) from the measured normal
displacement 4, we must consider the problem of deconvolu-
tion where the kernel is a sum of Green’s functions with
unknown coefficients. The method used is described in detail
by Michaels [1984] and Michaels and Pao [1985] and is only
briefly reviewed here.

Equation (5) for displacement is of the form,

u(t) = { f} c,,,G,,,(t)} *5(0)

(O]
m=1
where we identify,

u(t) = us(r,0,h, 0
M=2
¢; = ficosf+f,sind

G,\(t) = G3,(r,0,h,t0) a
¢ = Jfy

Gy(t) = Gys(r,0,h, 1 0)
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In general, there are several receivers, and equation (6) is valid
for each receiver but with different ¢, and G,,(?).

The first step is to calculate ¢,, ¢, and s(f) at each receiver
location by an iterative deconvolution procedure. The coeffi-
cients ¢, and ¢, are first set to non-zero initial values. Using
these values, the source time function s(?) is estimated by least
squares deconvolution. Then, improved estimates of ¢, and c,
are calculated from the estimate of s(f), again by least squares.
This procedure of alternately calculating ¢,, and s(f) is con-
tinued until they converge to stable values.

The final estimate of s(¢) is obtained by averaging the signals
obtained by deconvolution at all of the receivers. Similarly, f;
is obtained by averaging the coefficient c,. However, the
iterative deconvolution procedure does not recover f; and f,
directly. They are imbedded in the coefficient ¢, as shown in
equation (7). Thus, to calculate f; and f,, there must be at
least two receivers located at different angular positions. For
more receivers, a least squares minimization is performed to
obtain f; and f, from the coefficients ¢, at all of the receivers.

Thus, the iterative deconvolution method yields f and §(¢),
estiamtes of f and s(¢), the parameters of the oblique force.
As discussed previously, f and §(¢) may be mulitiplied and
divided, respectively, by an arbitrary scale factor. Here we use
the convention that f is a unit vector, and thus scale §(#) such

that
3 -~
Y fr=1
i=1

Since f and f are both unit vectors, the angle between them is
given by,

®)

A¢=cos~1(f-f)

This angle is a measure of the error in determining the orienta-
tion of the oblique force.

Transducer Characterization. The piezoelectric trans-
ducers used in the work reported here are primarily sensitive to
normal velocity. They are also small in size such that a point
receiver model is appropriate. Thus, we assume that the out-
put of the amplifier a(¢) can be expressed as,

dus(x, .
=T % LD = 1)y (10)
In this equation, 7(¢) is the transfer function for the
transducer. It characterizes not only the transducer but the

coupling of the transducer to the structure and the recording
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Transducers

equation (10) then yields
a. (=T *v.(2) (13)

Since a,(?) is measured and v.(¢) is known from calculation of
the Green’s function G,;, the transfer function 7(¢) can be
evaluated by deconvolution. ‘

Now let a(f) be the measured signal from the unknown
source. From this signal, the iterative deconvolution pro-
cedure recovers a source time function S(#). This S(¢) is the
convolution of (), the derivative of the source time function,
with the transducer transfer function 7(¢).

SO=T®*s(® 14)

Since both S(¢) and T(¢) are known, s(f) can be calculated by
deconvolution. It must be numerically integrated to obtain the
source time function s(#). Therefore, the source time function
can be recovered using a transducer that is not a displacement
sensor, but that is sensitive to vertical velocity.

If the transfer function is band-limited, those frequency
components of s(f) not present in 7(¢) cannot be recovered by
deconvolution. For example, if the transducer is not sensitive
to high frequencies, the recovered s(f) will be missing high fre-
quency information and fast rise times cannot be accurately
recovered.

3 Experimental Methods

Experiments were performed by generating oblique forces
with step-like time functions on the surface of a glass plate.

Journal of Applied Mechanics

40 dB Ch. |
¥ Preamp 10 bit
Trigger | 20 Mhz
40 dB Ch.2 Digitizer
v Preamp ‘ |
’ IEEE To
BUS Computer
| 40 dB Ch.1 )
\ PI’EGITID . 10 bit
Trigger 20 Mhz
40dB ch.2 | Digitizer
¥ Preamp
60 dB
v Preamp F'J
Fig. 2 Data acquisition equipment for oblique force measurements
equipment (cabling, amplifiers, transient recorders). It is fur- Static
ther assumed that 7(¢) is of finite duration. Load
The first step in the characterization procedure is to deter-
mine the transfer function 7(¢) for each transducer. This is JL
done by measuring the response to the fracture of a glass
capillary. This dynamic source is initiated by slowly pressing
vertically against a capillary tube until it fractures. As shown Dynamic
by Breckenridge et al. [19671, this source is a concentrated ver- Load
tical force that has the time dependency of a step-like
unloading function. If the finite rise time is neglected, the time z
dependence of the source is represented by a step function % 4
H(¢), and we have, ;2
fo e, Glass ¢
(1) Plate apillar
st) = H() X, RY pillary 1‘
The resulting normal velocity at x=(r, 4, /) is, 2 8 h
' d
v = "E{Gw(x’ t; 0)x H(p)} y . /A 1
= —Guy(x, 50) 12) \/
. . . Transducers
If a.(¢) denotes the signal generated by breaking the capillary, '

X3
Fig. 3 Experimental setup for generating oblique forces

Signals were recorded and analyzed to determine the orienta-
tion and time dependence of several forces.

Specimens and Equipment. A single glass plate was used
for all experimental measurements. The plate was approx-
imately 150 mm X 150 mm in extent, and was 18.46 mm thick
(h=18.46 mm). The longitudinal and shear wave speeds were
measured with a pulse-overlap technique, and were 5.81
mm/us and 3.46 mm/us, respectively.

The transducers used to record the wave motion in the plate
contained circular piezoelectric crystals 1.35 mm in diameter.
The frequency response of these transducers had an upper
limit of approximately 1 Mhz. Since the high frequency
response of the transducers was negligible, rise times faster
than about 1 us could not be accurately recovered.

The transducer voltage signals were amplified with a gain of
40 dB and then digitized and stored. An additional transducer
was used to trigger the digitizers for each channel, as shown in
the equipment diagram in Fig. 2. The sampling frequency was
20 Mhz (Ar=0.05 ps), and the data were digitized with a
resolution of 10 bits. Each recorded signal consisted of 201
points, which corresponds to a time window of 10 us. This was
the longest possible time window that could be recorded with
no reflections from the edge of the plate.
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TableI Coordinates of transducers for measurements at dif-
ferent radii

Transducer r . 0 z
Number
i 1.03h 0° 1h
2 2.31h 117° 1h
3 3.10h 180° lh
4 2.06h 256° 1h
0.4 Gs,
S Lol
= 00 } r— A == —
s f
< -0.2%-
s o4 [ G33
5
©
o
ool ! : A ! —
-0.2 1 1 H 1 i
43 6.3 8.3 10.3 12.3 14.3
Time (usec)
Fig.4(a) Green’s functions G4 and Ggg at x(r, 0, z) = (1.03 h, 0, h) fora

source at x° =(0, 0, 0)
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Fig. 4(b) Green’s functions G3y and Ga; at x(r,6,2) = (2.3t h, 0, h)tora
source at x° = (0, 0, 0)
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Fig. 4(c) Green’s functions G34 and G33 at x{r, §,2) = (3.10 h, 0, h) fora
source at x° =(0, 0, 0)
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Fig.4(d) Green’s functions G3; and Ga3 at x(r, 6,2) = (2.06 h, 0, h) fora
source at x°=(0, 0, 0)

Oblique Force Generation. The experimental setup for
generating oblique forces on the top surface of the plate is
shown in Fig. 3. Note that the transducers are located on the
bottom surface of the glass plate. The vertical rod, which was
3.18 mm in diameter and had a taper angle at the tip of about
33 degrees, was statically located onto the top plate surface. A
glass capillary tube with 0.08 mm o.d. and 0.05 mm i.d. was
placed in the corner between the rod tip and the plate along the
x, axis. A second rod, which was 2.38 mm in diameter and had
a taper angle of about 21 degrees, was held at an angle ¢ such
that its tip was in contact with the capillary. This rod was
slowly loaded along its axis until the capillary fractured.
Therefore, the time dependence of this source is a step-like
function, and the orientation of the force is along the axis of
the second rod but in the opposite direction of the applied
force, since the fracture of the capillary unloads the plate.

f = —cosge, —singe,

s = H(Q)
Since the capillary is physically very small, it is quite dif-
ficult to position the tip of the second rod exactly on the apex
of the capillary. Therefore, the measured angle ¢ may differ

from the exact angle of the oblique force by as much as 5 to 10
degrees.

as)

4 Results

Experiments were performed with four transducers that
were located at different radial and angular locations. The
coordinates of the transducers are listed in Table 1. Since the
radii are different for each transducer, the Green’s functions
G, and Gs; are also different. These Green’s functions are
shown in Figures 4(a)-(d). The ordinate is relative displace-
ment, and is consistent for the four functions.

The Green’s functions were calculated by numerically dif-
ferentiating the displacement responses to forces with the time
dependence of a Heaviside unit step function. Therefore, G5,
and G,, are not truly the impulse responses, but the responses
to a rectangular pulse of unit amplitude and width A¢r=0.05
us. Since the width of the pulse is the same as the sampling in-
terval, G;; and G3; may be treated as though they were im-
pulse responses.

The step function responses were calculated by a computer

‘program developed at Cornell University by R. Gajewski and

A. Ceranoglu. The program is based upon the generalized ray
theory (Pao and Gajewski, 1977), which obtains the transient
displacement signals for a given time in the form of a finite
series of integrals. Each integral corresponds to a particular
ray path in the plate, and is evaluated numerically by

" Cagniard’s method. The displacement signals obtained by this

program are very accurate, and have been experimentally

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.0 o —+ /\/\'/\’\f\’\ o
-osl
0.4 6=117°
w 00 } } f -+ ]
2 \V“\\f\v\/
>
-0.41
3 03 5:=180°
2
& oop=——t \//-\/\\/ B
-0.3L
0.8~ §=256°
0.0 = ‘ﬁ://\]/;{‘/\/}/\/\'
-0.8 ! il ! I ]
0 2 4 6 8 10
Time (psec)
Fig. 5 Recorded waveforms from calibration source
I 8:0
o] — t t =+ !
-4l
I 8=I17°
O T "r H 1 [{
(<]
o
2
a
E il
o I 8=180°
£ 0 : : : : =
©
hd
-4l
I-68=256°
o 1 ‘l’ i | —
-4 i 1
0.0 0.3 0.6 0.9 1.2 1.5
Time (usec)

Fig. 6 Transducer transfer functions

verified for vertical forces (Sachse and Ceranoglu, 1979, and
Procter et al., 1983).

The four transducers were characterized by velocity transfer
functions according to equation (10). A glass capillary 0.08
mm o.d. and 0.05 mm i.d. was broken at x° = (0,0,0), and the
resulting voltage signals for each transducer were digitized and
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Fig. 7 Recorded waveforms for oblique force at 55 deg
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Fig. 8 Convolved functions S(t)=s{t)y»T(t) recovered from 55 deg
oblique force data

stored. The average of three signals for each transducer is
shown in Fig. 5. These signals were deconvolved to obtain
transfer functions for each transducer, which are shown in
Fig. 6. These functions are negative in sign because of an in-
verting amplifier.
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Fig. 10 Averaged function $(t) and source time function s(t) recovered
from 55 deg oblique force data

Oblique Force at 55 Deg. The first oblique force was
generated at a nominal angle of ¢ =55 deg. This corresponds
to an orientation of,

£=(0, —0.5736, 0.8192) (16)

The measured signals from each of the transducers are shown
in Fig. 7.

These signals were analyzed according to the iterative
deconvolution procedure described in Section 2. The
recovered time functions are the convolution of the differen-
tiated source time function s(f) with the transfer functions
T(9), and are shown in Fig. 8. The functions s(#) at the four
transducer locations were determined by deconvolution, and
are shown in Fig. 9. The final estimate of §(#) was found by
first averaging the signals at the four locations, and then
rescaling to correct for the normalization of f. It is shown in
Fig. 10 along with s(r), which was obtained by numerical in-
tegration. The recovered s(¢) is a step-like function with a rise
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Fig. 12 Recorded waveforms for oblique force at 32 deg

time of approximately 0.3 ps. The actual rise time could be less
because of the limited high frequency response of the
transducers. The amplitude scale is not absolute but is relative
to the magnitude of the calibration source.
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Fig. 13 Ditferentiated source time functions s(f) recovered from 32 deg
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The recovered orientation vector f after normalization to a
unit vector is,

f=(~0.0501, —0.5658, —0.8230) an

The angular error between f and f, as calculated by equation
(9), is 2.87 deg. R

To evaluate how well the recovered f and s(¥) model the
data, they were used to calculate fitted transducer signals by
convolution according to equations (5) and (10). These
calculated signals are shown in Fig. 11. They may be com-
pared to the measured signals in Fig. 7, which are shown as
light lines in Fig. 11 for comparison. The calculated signals
closely match the measured data except for some high fre-
quency information that is not modeled by the recovered
parameters,

Oblique Force at 32 Deg. The second oblique force was
generated at an angle of ¢ =32 deg such that,

f=(0, —0.8480, —0.5299) (18)

The measured signals are shown in Fig. 12. Note that the
signal at 180 deg is quite small in amplitude and somewhat
noisy compared to the other three signals. This is because the
transducer for this signal is located at a null in the radiation
field for the horizontal component, and it is also at the largest
distance from the source (r=3.10 h).

These signals were analyzed to obtain s(f) at each
transducer, with results shown in Fig. 13. These s(r) are all
quite similar except for the one obtained at 180 deg, which is
very noisy and bears little resemblance to the others. This is
because the measured signal at 180 deg is small in amplitude
and has a lower signal-to-noise ratio than the other three.
Thus, the final estimate of $§(¢) is the average of the signals
from the first, second and fourth transducers only, and is
shown in Fig. 14. Also shown in Fig. 14 is s(f), which was ob-
tained by numerical integration. It is a step-like function with
a rise time of about 0.5 us, and is very similar to the source
time function obtained for the 55 deg force.

Journal of Applied Mechanics

s ()

0,00 =~ | A
o005l

0.8~ s(f)

Relative Amplitude

0.4

0.0 L ! 1 ! J
0.0 03 06 0.9 1.2 1.5

Time (psec)

Fig. 14 Averaged function s(t) and source time function s(f) recovered
from 32 deg oblique force data

The recovered orientation vector f after normalization to a
unit vector is,

f=(—0.0555, —0.8923, 0.4480)
The angular error between f and f is 6.25 deg.

(19)

5 Summary and Conclusions

In this paper we have presented results that experimentally
confirm an inverse method for determining the orientation
and time history of dynamic oblique forces. In previous work,
time histories of forces with known orientation have been
determined by deconvolution techniques. Here, we have
solved the problem of simultaneously determining the orienta-
tion as well as the time history of an oblique force. The re-
quired data are signals recorded at a minimum of two receivers
that are sensitive to normal motion.

An important part of the successful demonstration of this
inverse method was the development of an experimental pro-
cedure to generate controlled oblique forces. The procedure
consists of fracturing a glass capillary with a load slowly ap-
plied at a known angle to the specimen surface. The resulting
dynamic unloading force has a step-like time function and
controlled orientation.

The key step in the inversion method is the determination of
a source time function s(¢) and coefficients c,, of a linear com-
bination of Green’s functions, as represented by equation (6).
This procedure is not limited to the characterization of oblique
forces, but can be applied to many dynamic sources that are
separable in time and space. The particular problem that
motivated this study is that of characterizing cracks or earth-
quakes from recorded transient signals. The parameters to be
determined for these sources are the time history and moment
tensor components of the crack or earthquake. Another
problem to which this method can be applied is that of
recovering the spatial distribution of a separable extended
source of known orientation, as was done by Chung and
Sachse [1985] for synthetic data.
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Introduction

The boundary element method is based upon classical in-
tegral equation formulations of boundary value problems.
Although such formulations were originally thought to be
primarily of theoretical interest, the contributions of energetic
researchers together with the explosive advance of computers
have developed the method to the extent that it is today a
powerful general purpose procedure for obtaining numerical
solutions to many practical problems in science and engineer-
ing. In the field of solid mechanics, starting with applications
in torsion (Jawson and Ponter, 1963) and then linear elasticity
(Rizzo, 1967, Cruse, 1969), the method has been applied to a
wide range of problems with material nonlinearities (see, for
example, Mukherjee, 1982) and recently, even to elastic-
viscoplastic problems with both material and geometrical
nonlinearities (Mukherjee and Chandra, 1984). The BEM, to-
day, is a strong competitor to the more widely used finite ele-
ment method (FEM). Some user friendly commercial codes
capable of solving general linear elastic and other problems,
based on the BEM, are now available in the market.

As mentioned in the last paragraph, Rizzo (1967) and Cruse
(1969) were the first researchers to solve linear elasticity
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problems by the BEM. Rizzo obtained numerical solutions to
two-dimensional and Cruse to three-dimensional problems.
Their original BEM formulation for linear elasticity, which is
now a standard approach, is based on the equation

u)=|, 10,0.0mQ-T,0.0u@lds, ()

where the displacement and traction components are u; and 7;,
respectively, with p a source and g a field point (with upper
case letters denoting points on the surface dB of a body B and
lower case letters denoting points in the interior). Further, the
kernels Uj; and T};, which are obtained from Kelvin’s singular
solutions due to point loads in elastic bodies of infinite extent,
are singular two point functions. These are available in many
references (e.g., Mukherjee (1982)) for both three-dimensional
as well as planar (plane strain and plane stress) problems. It
should be mentioned here that body forces are assumed to be
absent in equation (1), but these can be easily included in the
formulation. Also, equation (1) is valid for simply as well as
multiply connected domains B. The surface 0B must, of
course, include the outer as well as inner boundaries of B in
the latter case.

Equation (1) contains both the boundary tractions and
boundary displacements over the entire surface dB. Only half
of these are prescribed in a well posed problem of linear
elasticity. Boundary integral equations for the rest can be ob-
tained by taking the limit of equation (1) as an internal point p
approaches a boundary point P. This gives
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Fig. 1

Cy(PyuP)= SaB WUP,Q7(Q — Ty(P,QuDldsy (2

The new coefficients C;; depend on the local geometry of 4B
at P. It simply equals (1/2)6; (wherre §; is the Kronecker
delta) if the boundary is locally smooth at P. Otherwise, it can
be obtained in closed form for two dimensional problems (see,
for example, Mukherjee, 1982)! but direct evaluation of Cy
appears difficult in three-dimensional situations. A convenient
indirect approach, however, is possible in such cases.

In the interest of what is to follow, the explicit forms of the
kernels, for plane strain problems, (with i/,j=1,2) are given
below:

U, :m[e —4n)lnré; —r,r, )] ©))
T = 1 [{(1 20)8,; +2r,;r or
Y 41— vr VoA g
— (1 =20)(r,n; _rajni] @

In the above, G is the shear modulus and » is the Poisson’s
ratio. Also, r is the Euclidean distance between p and g and a
comma denotes a derivative with respect to the corresponding
coordinate of a field point. Finally, the components of a unit
outward normal to B, at a point on it, are denoted by »; and
dr/dn is the derivative of r with respect to the normal at a field
point.

The above formulation for linear elasticity, as mentioned
before, is a standard one and forms the basis for many BEM
analyses and computer programs. The singularity of the kernel
T;~ 1/r for two-dimensional and 1/r? for three-dimensional
problems — is, however, strong. Also, using (Fig. 1)

] i) ]
Fr) E;Cl_'*'nl'éz &)
it can be demonstrated that, at any point P on 4B,
ar
r,jni—r,inj=e,-j7 (6)

where the boundary B of a two-dimensional simply con-
nected body is considered for the moment. This boundary, as
shown in Fig. 1, has a unit outward normal n with components
n; at a point on it and s is the distance, increasing in the
counterclockwise direction, measured along 0B from some fix-

quuation (5.10), p. 52 in Mukherjee (1982) should read ¢y =¢y; =
sin2ysing
4n(l-»)
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ed point on it. Further, the range of indices in equation (5) is
1,2and e, = €5 = 0, €15 = —¢y =1.

The tangential derivative of lnr is mathematically ill behav-
ed as r—0. The strong singularity in T};, coupled with the
presence of the tangential derivative of lnr in it, is known to
cause some numerical problems in the standard formulation.
Perhaps the most serious of these is the rapid degeneration in
numerical accuracy of the stress and strain components, as
one samples these quantities at an internal point very close to
the boundary. This phenomenon is sometimes called the
““boundary layer’’ effect.

It is the main purpose of this paper, then, to reformulate the
elasticity problem so that the cumbersome kernel 7; is replac-
ed by a kernel with a weaker singularity. This kernel, called
W, has the same singularity as U;. The new formulation has
tractions and tangential derivatives of the displacements, 7;
and du;/0ds, as primary variables. It is shown that this new for-
mulation completely eliminates the ‘‘boundary layer’’ effect in
some numerical examples, and is expected to do so in general,
Also, it is expected that numerical results based upon the new
formulation will, in general, be more accurate than those ob-
tained from the standard one. Only two-dimensional plane
strain problems are considered in the rest of the paper and the
range of indices in subsequent equations, unless otherwise
specified, is 1,2. It is possible to carry through these ideas into
three-dimensional formulations but the calculations there
become more involved.

New BEM Formulation

Simply Connected Region. The plane strain problem of
linear elasticity is considered here. The cross-section of the
solid has the boundary 9B in the (x,,x,) plane. Given a source
point, a corresponding reference point is defined to be an ar-
bitrary point P on 8B. To be specific, for an internal source
point p, P is here chosen to be the point of intersection of 9B
with the line parallel to the global x,-axis through p. In case
there is more than one point of intersection, the point which is
farthest from p is chosen as P. If, instead of an internal source
point p, a boundary source point P is considered, the cor-
responding reference point P, for the sake of simplicity, is
chosen to coincide with P. The angle ¢ is the angle between the

“global x,-axis and the line joining the source and the field

points (Fig, 1). It is important to note that ¢ has a discontinu-
ity across P with a jump of 27.

Referring to Fig. 1, it can be shown that

1 or  {¢§,—x) (¢ —xy)
roon  r? ot r?

n M

and
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Fig. 2

—-X
taneg = RS ®)
£ —x
Differentiating equation (8) with respect to s and obtaining
the expression for d¢/ds, it is revealed that

1 or 99
— = ©)
r onm as
Further, noting that r,, = cos¢ and r,, = sing one can obtain
1 or af,,@
- il = 10
r on il 3s (19)
where
¢  sin2¢ —C0s2¢ ¢ sin2¢
Ju ='_2“+T§ S=ra ==y S =5 "2

Using equations (9), (10) and (6) in the expression for T}
(equation (4)), one finds

d
Ty=—=R; (11
where
- 1
R,-j Zm[z(l - V)(I)5U +'E €T el

+(1— 2v)eijlnr]
Therefore, by partial integration,

d _
&an Tyu;ds = fﬁ)aB Zv—(R,j)ujds-—- [Ryu 143"

ou;
-—(§) R; —L ds
B as
Defining
) €;;
W,=—R;——i
Y Y 8r(l-v)
this gives

~ ou;
&as Tijuyds = _ui(P)+€S‘>aB Wy 7’9?1 as

Therefore, the standard BEM formulation, equation (1),
can be recast as

3 du;
w@ -1 =$ [U,0.0m@-W,0.0 5L ©]dso

(12)
where the new kernel

W= [2(1 — )8y + €jFsirse + (1= 20)eglnr]  (13)

Y 4a(l—v)

Journal of Applied Mechanics

It is important to note that W;; has a discontinuity across P
Also, W;; has the singularity lar, as has U; and the primary
variables in equation (12) are the traction components 7; and
the trangential derivatives of displacement components,
du,/0s.

A boundary integral equation for the new formulation can
be obtained by treating equation (2) of the standard formula-
tion in the same manner as above (Appendix 1). The resulting
boundary integral equation is

du.
$,, VPO @dsg=§ WP L@ds (1)

As proved in Appendix 1, the above equation is valid even
for a point P lying at a corner of dB.

Some potential advantages of the new formulation will be
noted here. First, the boundary tensor C; is absent here.
Second, and perhaps more important, a consequence of
u;(p) —u,;(P) appearing on the left hand side of equation (12)
suggests that this difference would be obtained very accurately
from this formulation. This should be particularly important
in obtaining very accurate displacements at a point p when it is
an internal point very close to P. This issue is discussed further
in the section on numerical results which is presented later in
the paper. :

Multiply Connected Region. The plane strain problemin a
multiply connected region is considered next. The situation is
depicted in Fig. 2. The cross-section, of course, can have an
arbitrary number of cutouts. Only one, with boundary B, is
shown here. The outer boundary is dB,. The reference point P
is always chosen to lie on dB,.

The convention used here is that a unit normal must always
point away from the body B. Also, the direction of integration
is chosen in such a way that the body always lies on the left,
i.e, it is counterclockwise on 9B, and clockwise on each dB;.
Thus, s increases in a counterclockwise direction on dB, and
in a clockwise direction on each dB;.

S =F, +$
aB B, 3B;

Using the above convention, it is easy to show that
T;=d/ds(R;), as before, at every point on dB.

The derivation of an equation for an internal point p pro-
ceeds as before. The result is

u(p)— ui(ﬁ) = &as [Uij(p’Q)TJ'(Q)
o,
- W,y(p,Q)%(Q)] ds,, for peB (15)
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The situation, however, is different for the two cases —one
in which P e 9B, and another where P ¢ dB,. The resulting
equations are

0= (§>aB [UU(P’Q)TJ'(Q) (p Q) Y (Q)] ds, for P € 3B,

(16)
where P on dB, is chosen to coincide with P, and
wP-uB=$_|U,P0m

(PO 2L 2540 | dsq for P e 3B, an

where P is as in Fig. 2.

Equations (16) and (17) are valid even if P lies at a corner of
0B, or dB;. The derivation of equation (17) is given in Appen-
dix 2. Equations (15) and (16) can be derived in an analogous
manner.

At first glance, the boundary integral equations (16) and
(17) for the multiply connected region problem appear
underdetermined since displacements at boundary points ap-
pear in these equations in addition to 7; and du;/ds on dB. One
must, however, not lose sight of constraint equations of the
type

)~ = | s

between two points P; and P, lying on the same outer or inner
boundary. Inclusion of such constraint equations allow a well
posed problem to be solved.

Another interesting observation pertains to rigid body
modes. It is well known that if all the tractions over 4B are
prescribed, the standard formulation (equations (1), (2))
delivers a displacement field which is unique only within rigid
body translations and rotations. Similarly, the pure traction
problem for the new formulation delivers a tangential
derivative of the displacement field to within a rigid body rota-
tion. Rigid body translations for the pure traction problem do
not affect the values of the tangential derivatives of the
displacement components, hence the appearance of displace-
ment differences in equations (12}, (15) and (17) of the new
formulation. Therefore, the new formulation has an advan-
tage in that it has less indeterminancy relative to the standard
one.

Strains and Stresses. The strain field throughout the body
must be obtained by differentiating the displacement field. A
convenient approach is to analytically differentiate equation
(15) at an internal source point p in order to obtain the
displacement gradient there. This gives

wi0=§ (010070~ W 0.0 k0] asy (8)

An upper case letter following a comma in the above equa-
tion denotes differentiation with respect to a source point.
Using the identity

rhy=—ry

the differentiated kernels can be written in terms of field point
derivatives as follows

1
Ujr=—Uj =m[—rn5ﬂ—rq5li
+ (3 —4v)r, 0y +2r,r,i1y] 19)
-1
Wir=—Wji= 4_(_1—-7[2(1 9,5,
=25yt it (L= 200,065 + €3, (ry 8y + 1,,81)] (20)
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X3

Fig. 3 Geometry of the cylinder problem

The stress at an internal point can then be easily obtained
using Hooke’s law.

The fact that equation (18) only involves kernels with
singularity of the type 1/r results in very accurate numerical
determination of displacement gradients—even when the
point p lies very close to the boundary dB. Thus, the so called
“‘boundary layer’’ essentially vanishes if this new formulation
is used. This aspect is discussed further in a later section with
numerical results for some sample problems.

The stress components at a boundary point where dB is
locally smooth can be most conveniently determined from the
boundary data, i.e., 7; and du;/ds at that point, together with
Hooke’s law. This approach is essentially the same as that
described by Rizzo and Shippy (1968) except that there is no
longer the need for the numerical evaluation of du;/ds. Since
numerical differentiation is intrinsically an unstable procedure
and generates large round-off errors, the new formulation has
an enormous advantage over the standard one in this respect.
In actual computations with the standard approach, shape
functions for displacements are differentiated with respect to
s. This results in lower order shape functions for du;/ds and
reduces accuracy. Thus, in any case, it is of great advantage to
obtain du;/ds directly.

An IlNustrative Analytical Example

The analytical example considered next is the plane strain
problem for a long cylinder, of internal radius ¢ and external
radius b, subjected to internal and external pressures p; and
D,, respectively.

The cross-section of the cylinder is shown in Fig. 3. The
location of a general field point is given by polar coordinates
(0,8). Due to axisymmetry and plane strain, it is sufficient to
locate the source point at (R,0). The displacement vector is

written as
u=ezup(R)=epu(R) (21)

A unit load is applied at p in the x, direction as shown in
Fig. 3. The integral formula, equation (15), for an internal

point p, becomes
u(R) —u(b)= §)’cy]inder (Ulpr + s up) ds
p=a
Wi
+ &;Yiir;der (Ulpr __p_ up)ds
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Table 1 Integrals for cylinder problem

27
10 | " rora
p>R p=R p<R
ol TR B —mp
cosflar - T R
(pcosf — R)(p — Rcost) — 7R — TP
-
r? 0 R
. 7R —p
¢sind 27 +— -
) R

On the outer circle, p =b, 8/3s5=(1/p)(8/96), du/ds = (ey/p)u,,
and W,;(du;/ds)=(W4/p)u,. But on the inner circle, p=a,
0/0s=(—1/p)(3/360) so that W,;(0u;/0s)=(—W/p)u,.
Therefore, the signs on the second terms are different in the
two integrals in equation (22).

Now, on the outer circle s=5bf but on the inner circle
s=a(2w —0). The limits on s are 0 to 2bw on the outer circle
and 0 to 2aw on the inner circle. Using these, equation (22)
becomes

27
u(R)—u(b) = apiS U, (R; a, 0)db
27
- bp, S Uy, (R; b, 0)db
2
+ u(a)S W,,(R; a, 0)do
27
— u(b) E W,o(R; b, 6)db 23)
where °
-1
Ulp(R;p’e) = W [(3 —4p)coslnr
_ (ocosf — Rr)z(p — Rcosf) 4)
and
1 .
Wy(R;p,0) = m[— 2(1 — v)¢psind
—R)(p— Rcosf)
+ (1 - 2)cosdinr — L% Rr)z(" cos )] @5)

with r2 = p? + R? — 2pRcosb.

In order to solve for u(R), equation (23) is first used with
R =g and then with R = b. The required integrals are shown in
Table 1. The resulting equations are

bu(a) — au(b) =—§g—(p,. —p,) 26)

1-2
au@) - bu(t) = (— =), ~ a*p) @7

These equations are solved for u{a) and u(b), and then the
boundary displacements are used in equation (23) for an inter-
nal points, with <R <b. This yields the well known Lame
solution (Timoshenko and Goodier, 1970)

u(Ry=AR+B/R 28)
where A=(1-2»)(b2p,—a*p;)/2G(a*-b?) and B=
a*b*(p, —p;)/2G(a* — b*).

Numerical Results

Numerical implementation of equations (15)-(17) is carried
out in standard fashion. The boundary dB must be discretized

Journal of Applied Mechanics
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Fig. 4 Square plate with elliptical cutout

into boundary elements. Suitable shape functions must now be
chosen for the variation of tractions and tangential derivatives
of displacements on the boundary elements. The numerical
results presented next are obtained by using straight boundary
elements with piecewise linear representations of 7; and du;/ds
on these elements. Also, the kernels, for both the standard and
new formulations, are integrated in closed form over boun-
dary elements.

One way to model jumps in normals at corners of dB in the
standard formulation is to put double nodes at corners (see,
for example Mukherjee, 1982). This procedure cannot be used
in the new formulation as it would lead to singular matrices in
the system of algebraic equations obtained by discretization of
equation (16). The corner problem, however, can be casily
taken care of by placing sampling points away from a corner
itself in the boundary elements that meet at a corner.

Numerical results for a sample plane strain problem of a
square cross-section with an elliptical hole (Fig. 4) have been
obtained by the standard and new BEM formulations. The
loading is tensile in the x, direction with stress o,. Using
quarter symmetry, a quarter of the region is modeled here so
that the region involved becomes a simply connected one. The
boundary mesh used herc is very similar to that shown in Fig.
5.8 of Mukherjee (1982). The same mesh has been used for
both formulations. Piecewise linear representations for u; and
7; (for the standard formulation) and du,;/3s and 7; (for the
new formulation) have been employed here.

The calculated variations of dimensionless displacement u,
and stress o,, along the line AB, for various values of a/b, ob-
tained from the two methods, are shown in Figs. (5-8). In
these examples, L/a =10 and » =0.3. The results from the two
formulations agree well. Both formulations model the stress
concentrations at A4, for the various cases, adequately. The
new formulation requires about 23 percent more computer
time than the standard one.

It has been mentioned earlier that since W}, in equation
(20) is only 1/r singular, while T, in the standard formulation
has a 1/r? singularity, it is expected that the new formulation
should be able to overcome the so-called ‘‘boundary layer ef-
fect’” and deliver accurate stresses at an internal point very
close-to the point C, with coordinates (10,2), in Fig. 4. The
results are summarized in Table 2. It is seen, in dramatic
fashion, that the boundary layer effect vanishes in the new
formulation. In fact, the point with x,/a=10—5x10"12,
x,/a=2, for the case a/b =1 has been tested also and the new
formulation yields 0,,/0,, =0.95303. It should be noted that
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New formulation
----- Standard formulation
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_ Euy
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© 5l
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x,;/a
Fig. 5 Displacement variation along AB from two BEM formulations;
alh=4
3.5 '0
". New formulation New formulation
30 I Standard formulation N I Standard formulation
25
6 —
22
G 20 22
S0
4
1.5
1O 2 L
05 1 1 i 1
o 2 4 6 8 10 o ! ) 1 [
x,/a 0 2 4 6 8 10
Fig. 6 Stress variation along AB from two BEM formulations; a/b =1 x;/a
Fig. 8 Same situation as in Fig. 6; a/b=4
Table2 Stresses near point Cin Fig. 4 from two
6 BEM formulations
New formulation x\/a Xy/a 022/00 03/00
5L Stondard formulation (New f/obrmllxlatlon) (Standard formulation)
a/b =
9.95 2.0 0.95303 0.97411
9.995 2.0 0.95303 0.96831
4 9.9995 2.0 0.95303 0.96278
9.99995 2.0 0.95303 0.95728
9.999995 2.0 0.95303 0.1037 x 106
i 3l 9.9999995 2.0 0.95303 0.1037 x 107
Ow a/b=2
9.95 2.0 0.95953 0.98369
9.995 2.0 0.95953 0.97951
2 9.9995 2.0 0.95953 0.97552
9.99995 2.0 0.95953 0.97155
9.999995 2.0 0.95953 0.1009 x 106
Tk 9.9999995 2.0 . 0.95953 0.1009 x 107
a/b=4
9.95 2.0 0.95662 0.98875
| L . ) 9.995 2.0 0.95662 0.982237
Y > 4 o s o 99995 2.0 0.95662 0.98541
o y . 9.99995 2.0 0.95662 0.98223
x,/a 9.999995 2.0 0.95662 0.99364 x 10°
Fig. 7 Same situation as in Fig. 6; a/b =2 9.9999995 2.0 0.95662 0.9937 x 10°
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the boundary layer effect in the standard formulation occur-
red despite the fact that the kernels were integrated analytical-
ly over boundary elements.

Conclusions

The new BEM formulation, presented in this paper, has
several potential advantages relative to the standard one.
Some of these are: .

(@) The strongly singular kernel T}; is avoided here so that
both kernels are only logarithmic singular. Since Tj; is a
strongly singular kernel, the resulting integral

[, TiP.ow s,

is a singular integral in the sense of Calderon-Zygmund
(1952), where it is assumed that the Cauchy principal value of
the integral is taken. Since, in the numerical implementation,
it is common to take nonuniform subdivisions of the boun-
dary, the value obtained is generally different from the
Cauchy principal value and this could result in substantial er-
rors. The boundary integral equation (14) involves only in-
tegrable kernels and this problem does not arise.

(b) It should be noted that the kernel Uj; is such that if
some 7;(P) is unknown, the corresponding row in the coeffi-
cient matrix for the BEM, although not being diagonally
dominant, has the property that the diagonal term is large, (in
absolute value), relative to other terms in that row. Such,
however, is not true for the kernel 7};, where the presence of
the strong singulary in 1/r 0r/ds causes some off-diagonal
elements to blow up as the mesh size goes to zero. This
undesirable property of T}; can negate any advantage derived
from the presence of a free term in the standard formulation,
In contrast, the kernel Wi like Uy;, only produces bounded
elements in the BEM coefficient matrix, although, the
presence of ¢; shifts the largest terms off the main diagonal.
Thus, although neither BEM formulation produces a
diagonally dominant coefficient matrix, it is expected that the
new formulation will produce a more well-conditioned coeffi-
cient matrix relative to the standard one.

(¢) Another important consequence of the above is that the
kernels for stresses are only 1/r singular. This fact is
demonstrated, in an illustrative numerical example, to over-
come the ‘‘boundary layer problem’ and deliver the stresses
accurately at internal points that are extremely close to the
boundary of a body. It is expected that the new formulation
will be able to overcome the ‘‘boundary layer problem’’ in all
cases,

3

(d) The tractions 7; and displacement derivatives du;/ds are
the primary variables in the new formulation. Choice of a par-
ticular shape function for du,/ds is essentially equivalent to
using a higher order shape function for u; at no extra cost.

(e} The corner tensor Cj; is absent in the new formulation
and need not be calculated.

The new formulation, like the standard one, can be easily
extended to solve problems with material nonlinearities. In
fact, since all that is involved here is partial integration of the
term T,;u;, the domain integrals associated with plasticity
(Mukherjee, 1982) remain unaltered. The new formulation
can also be extended to three-dimensional problems. The
calculations for the three-dimensional case, however, become
more involved.
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APPENDIX 1
Proof of Equation (14)

Referring to Fig. 9 and considering P at a corner of the outer
boundary 0B, (the angles 5 and vy are defined in Mukherjee
(1982) p. 52),

oB

Fig. 9
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The boundary term is

P -1
[R'f“f]p = -

p=y+w~f/2
For i =1, the above expression becomes ’

P B cos2ysing
[R'f”f]p = "[_2?+ 47r(1—-1/)]u1(P)
in2ysing
oy P = ~ P (P)
— Cp(P)uy(P) 4)
Similarly, fori=2
P B sin2ysinf 3 i
[RZjuj]P - 47(1 —v) “(P) [27r
cos2ysinf _
s | = - o
~ Cyn(P)uy(P)

— Cy(P)u;(P) and T,(P,Q)u;(Q)dsg
aB

C,PuP) + <§>3B W,(P,Q)3u;/35(Q)ds
This equation, together with equation (2), immediately gives
equation (14). .

P
Thus, [R GU J]

APPENDIX 2

Proof of Equation (17)

Referring to Fig. 2 and considering P at a corner of the
cutout dB;,

76/ Vol. 53, MARCH 1986

li

§) Tyuds+ (§>a Tyu;ds

- [Rm]” [ri], -, 7

§ R /I
9By V" as s

The boundary terms are

(§BB Tyuyds

Ry ds

r b =27

ro, = (R, =

r P 1 g ¢=y—mw+p/2
R,juj] = ’“m[z(l_V)¢ui+€jkr»ir’kuj]¢=7+7r_ﬁ/2

This time, for i=1, 2 (see Appendix 1)

r P -
_le”j]P = u,;(P) = Cy 1 (P)u (P) — Cip(P)uy(P)
P
[sz“f] » =~ CauPus(P) = Cpp(Phuy(P) + uy(P)
P
so that [R,juj] = 6,u;(P)— Cyu;(P)

Thus,

d; J(P) +6,u,(P) ~

a J
_§>BBRU as ds

This equation, together with equation (2), gives equation (17).

<§>6B Tyu;ds = Cyit;(P)
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An Analysis of Large Strain
Viscoplasticity Problems Including
the Effects of Induced Material
Anisotropy

This paper examines the modeling of large shearing of solids that exhibit induced
anisotropy during inelastic deformation. The ‘‘traditional’’ approach uses integra-
tion of material rates of certain tensors which are obtained from Jaumann rates of
these tensors delivered by a material constitutive model. This leads to erroneous
results (spurious oscillations) in a simple shear example. Several previous authors
have suggested resolutions to this dilemma based on modification of the constitutive
model — usually based upon changing the interpretation of the tensor rates
delivered by a constitutive model. This paper draws attention to another aspect of
the modeling process — that of obtaining the components of tensors such as the
Cauchy stress in a global, space-fixed basis, from the objective rates of these tensors
as delivered by the material constitutive model. In essence, it is suggested here that
the elastic rotation rather than the spin should be used to achieve the above objec-
tive. The rotation idea is first discussed in the context of a simple shear example.
This philosophy is then incorporated in a general purpose two-dimer. onal boun-
dary element method (BEM) formulation and computer program. Numerical
results for the simple shear problem, using the rotation idea, are obtained both by

direct integration and from the general BEM computer program.

Introduction

The subject of this paper is a close examination of the pro-
per way of generalizing conventional small strain inelastic con-
stitutive models for materials exhibiting induced anisotropy,
to cases where large strains and rotations are present. It is
clear that the rates of certain tensors, such as that of the back
stress in a small strain, small rotation kinematically hardening
plasticity constitutive model, must be interpreted as suitable
objective rates in a generalized large-strain, large-rotation ver-
sion of that material model. This is necessary in order to main-
tain rotational frame indifference of the generalized model.

The ‘“‘traditional’”” approach, for such problems, has been
the idgntification of such an objective rate as the Jaumann
rate (T;) of the corresponding tensor 7};. The next step has
been to obtain the material rate from the Jaumann rate by tak-
ing account of the rotations, i.e., from the equation

. *
TU= T,-j—Tikwkj +wikaj (1)
where the material rate
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In the above, x; are the coordinates of a material point in

the current configuration; v, are its velocity components and

wy=(1/2)(v; j—v;p) 3
is the spin of a differential material element containing the
point.

The final step in the ‘‘traditional’’ approach involves the in-
tegration of the material rate T; with time, in order to deter-
mine the evolution of the tensor 7; in a global, spatially fixed
coordinate frame.

In a recent paper, Nagteegal and de Jong (1982) used the
above approach to numerically analyze a very simple boun-
dary value problem — the case of simple shear for large plastic
deformations using a Mises-type kinematic hardening con-
stitutive model. Their calculations lead to the surprising result
that use of a kinematic hardening rule of the Prager-Ziegler
(1959) type results in the prediction of an oscillatory shearing
stress in response to a monotonically increasing shearing
strain. In fact, in an earlier paper, Dienes (1979) had observed
the same phenomenon using a hypo-elastic material model
where T}; in equations (1) and (2) was the Cauchy stress rather
than the back stress.

Several researchers such as Lee et al. (1983), Defalias
(1983), Dienes (1979), Atluri (1984) and Johnson and Bam-
man (1984) have examined the above situation, A recent
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Fig. 1 Simpie shear in the x direction

ASME publication (Willam, 1984), which contains papers on
this subject by several of these and other authors, summarizes
the current debate in excellent fashion. In essence, in the sim-
ple shear example (Fig. 1), while the angular velocity of a line
of material points depends only on its current orientation
angle 6 (see Fig. 1) and is given by

6= —ksin?g “)

(with v, = kX;), the spin tensor w; has constant nonzero
components

wp=k/2and wy, = ~ k/2. )

As noted by Lee et al. (1983), £/2 is the magnitude of the
angular velocity of the material lines at # = #/4 and §=3%/4
which instantaneously coincide with the principal directions of
the deformation rate tensor d;. This is also the average of the
angular velocities over all directions in the current
configuration.

The oscillations in stresses, according to Lee et al, (1983),
arise since the constant spin terms in equation (1) (with 7}; =
@, the back stress), generate a tensor e which rotates with an
angular velocity of £/2 and consequently causes the com-
ponents of the stress tensor to oscillate with angular frequency
k. Thus, while the maximum possible rotation of any material
line in the simple shear example (Fig. 1) is =, the ‘“traditional”’
approach allows unlimited rotation of the back stress tensor
(by virtue of equations (1) and (5)). This phenomenon, which
is clearly physically unacceptable, is of concern, of course, not
only in simple shear but whenever large shearing strains occur
in a material exhibiting induced anisotropy.

The solution to this problem, suggested by Dienes (1979),
Lee, et al. (1983) and Dafalias (1983), involves modification of
the rate equation (1) by replacing w; by some other &;. Lee et
al. (1983) demonstrate that using the actual angular vefocity of
a line of material points (from equation (4)) eliminates the
oscillatory stresses in the simple shear example. For more
general cases, they suggest a modified Jaumann derivative
associated with a spin tensor &; based on the spin of lines of
material elements carrying the major influence of the back
stress «. Dafalias (1983) and Dienes (1979), on the other hand,
suggest using the spin associated with the antisymmetric tensor
R-R7 (where R is the rotation matrix from the polar decom-
position of the deformation gradient F = R.U).

Atluri (1984), while still suggesting modification of the con-
stitutive models involved, takes a somewhat different ap-
proach. He starts with a lengthy hypo-elastic constitutive
model, initially leaving open the exact choice of an objective
stress rate. Later, based on ideas of a “‘complete’’ Aypo-elastic
law, he modifies the rate of the back stress equation for the
case of a rigid — kinematic hardening plastic model. The
relevance of elasticity considerations, to the modeling of rigid-
plastic behavior, is not clear from this paper.

The authors of this present paper feel that while there is
considerable merit in the ideas of the researchers cited above,
the present situation falls far short of a complete resolution of
the above problem, and further investigation is necessary.
Proper understanding of finite plastic strains and rotations in
the presence of anisotropy will require careful experimenta-

78/Vol. 53, MARCH 1986

tion and possible development of appropriate micro-
mechanical models before a satisfactory phenomenological
model is obtained. Clearly, mathematical formalism should
not dictate the mechanics concepts, but, rather, a
mathematical model should be sought which most clearly ex-
presses the mechanics involved.

"It is not the purpose of this paper, then, to offer a complete
resolution of the dilemma discussed in the preceding
paragraphs. Instead, attention is being drawn here to another
aspect of the modeling process which is very important but has
not received much attention so far. This aspect relates to the
process of proceeding from the intrinsic objective rate of ten-
sors as delivered by the constitutive model to the desired goal
of obtaining the components of the Cauchy stress at a moving
material point in a spatially fixed coordinate frame. The sug-
gestion here is to reexamine the usual process of converting the
objective tensor rates obtained from the constitutive model to
a material rate through the use of an appropriate spin &, and
then integration of these rates in a spatially fixed basis. The
essential idea here is to use the elastic rotation instead of the
spin in order to attain the above goal. This is motivated by the
observation that, in the simple shear problem, integration of
the constant angular velocity leads to unbounded rotation,
while, as mentioned previously, the actual maximum rotation
of a material line is bounded.

If material behavior is Aypo-elastic, the elastic rotation R®
is equal to the total rotation R. In this case, the new approach
suggested here is equivalent to use of the Dienes (1979) rate
(also called the Green-Naghdi rate by Johnson and Bamman
(1984)). Also, under certain restrictive conditions, the new
algorithm becomes equivalent to the formulation of Rolph
and Bathe (Willam, 1984) using the logarithmic or Hencky
strain. Thus, careful examination of the proposed idea, for the
case of a simple hypoelastic material, provides a great deal of
insight.

The elastic-plastic case is considered next. This is followed
by a very brief discussion of a state variable type constitutive
model which includes induced anisotropy and presentation of
numerical results for the simple shear problem obtained by
direct integration, from the ‘‘traditional”’ (Nagtegaal and de-
Jong, 1982) as well as the present point of view. It is further
realized that since this issue is not limited, of course, to the
problem of simple shear alone, it is important to demonstrate
the implementation of the rotation idea in a general computa-
tional context. The rotation idea is implemented in a general
purpose two-dimensional BEM computer program (Chandra
and Mukherjee, 1983, 1985) and the same simple shear exam-
ple is solved using this program.

A Hypoelastic Example
Hooke’s law for isotropic linear elasticity is of the form
a=¢(e) = N(tr )l + 2Ge 6)

where ¢ is the Cauchy stress, e the strain, A and p = G are
Lame constants and ¢r denotes the trace of the corresponding
tensor. A simple hypoelastic generalization of the above equa-
tion can be written as

G= (D) =\(tr D) +2GD o)

o . - N
where o is an, as yet, unspecified but objective rate of the
stress and D is the deformation rate whose components have
the form

di=Q1/2)(v; ;+v;,) 8

The proposal here is to proceed from ¢(D) to the Cauchy
stress in a desired global spatially fixed basis by using the
equation

o(t) = R()o,RT(H)
+ RO ;R T(T)(D)R(7)dTIRT (1) 9
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where F = dx/0X = R.U; g, is the value of the Cauchy stress
at time zero and R7 denotes the transpose of R. The symbols
in the above equation are matrices corresponding to the ap-
propriate tensors.

The rationale behind this proposal is to observe that the ex-
pression RT¢(D)R delivers the components of ¢(D) in a local
basis which is rotating with respect to the fixed global basis
with R the measure of this rotation. Integration is then carried
out with respect to an observer in the rotating basis. Finally,
premultiplication by R and postmultiplication by R7, at any
time, delivers the Cauchy stress components in the desired
global basis.

Relationship With the Dienes Rate (Dienes, 1979). Defining
the Cauchy stress g in the rotating basis as (Johnson and Bam-
man, 1984) and using equation (9)

3=RToR=0,+ RT$(D)Rdr 10)

Proceeding in a manner similar to Dienes (1979), one dif-
ferentiates equation (10) with respect to time. Comparing
these expressions and taking note of equation (7) results in the
equation

$(D)=6=6—00+ 02 (1)

so that g‘, for this hypoelastic model, is the Dienes rate of the
Cauchy stress, with @ = RRT.

Thus, equation (9) can be regarded as an integral form of
equation (7) and helps to clarify the physical interpretation of
the Dienes rate. It has recently been brought to the authors’ at-
tention that Goddard and Miller (1966) have presented an
equation similar to (9) for the inverse of the Jaumann
derivative.

Relationship With Rolph and Bathe (Willam, 1984).
Starting from the relationship
2D =F+F-1 +F-T.F7 12)
and using polar decomposition of F, it is easy to show that
2D=R«(U-U-'+U-!.U)-RT. 13)

This time a special situation is considered in which the direc-
tions of principal stretches remain fixed in the body during
deformation. Thus, one may decompose U = Q A(f) Q7,
where A(f) is diagonal and Q is orthogonal but independent of
time. In this case, one can show that

D
RTDR=— 14
D7 (inU) (14)
where InU = QInAQ7, so that, from equation (7)
D
RT$(D)R = Br [\tr(inU)I +2GinU] 15

From equation (10), the left hand side of the above equation
equals . Hence,

o=NtrE) +2GE (16)

where E = R [InU RT is the logarithmic or Hencky Strain. The
above equation is the model of Rolph and Bathe (Willam,
1984). Thus, it has been shown that for an isotropic linear
hypoelastic material, for deformations in which the directions
of principal stretches remain fixed in the body, equations (7),
(9) and- (16), are all equivalent. Equations (7) and (9), of
course, are equivalent under more general conditions as shown
before.

Flasto-Plasticity With Finite Rotations

Elasto-plastic problems in materials exhibiting induced
anisotropy typically involve tensors such as the back stress a.
A typical evolution equation for small-strain small rotation
elasto-plasticity might be of the form (Lee, et al., 1983)

d=g[éP1e® a7n

Journal of Applied Mechanics

where é® is the plastic strain rate and é®) is a suitable in-
variant of éP. Large strain generalizations of equation (17)
usually involve replacing é& with a suitable objective rate of «
and é® with D@, the plastic part of the rate of deformation
tensor. Thus, the evolution of such tensors must be considered
in addition to that of the stress. Also, in general, the function
¢(D) in the hypoelastic law (7) might involve the stress as well.

It is proposed that for such problems, a modified form of
equation (9) with elastic rotations R®@ be adopted. Thus, for a
small time step Af, one may write

T1+At = T, + [R‘e)THR(e)],At (18)
Tioar= [R® TR(e)T]HAr (19)

where the tensor T can be the Cauchy stress, the back stress or
some other suitable tensor internal variable and H is a func-
tion such that for small strain small rotation problems T = H.

The function H must be suitably interpreted by replacing é©
by D® etc. Also, At is a small time increment. The above
equations are, strictly speaking, correct in the limit At — 0.
Operationally, of course, one must use small, finite time in-
crements Af. Also, these equations must be used in a march
forward time integration procedure.

The need for the use of elastic rotations arises from the
nature of elastic and plastic deformations. As with elastic
strains, elastic rotations with respect to a virgin configuration
are remembered by the solid. It is common to assume that for
plasticity analysis it is not necessary to use variables involving
the virgin configuration of the material prior to plastic flow
(Lee, et al., 1983).

Recently, researchers such as Dafalias (Willam, 1984) and
Aifantis (1984) have been looking into constitutive descrip-
tions for plastic and elastic rotations. This research is still at
an early stage. Thus, for the purpose of the rest of this work, it
is assumed that R = R¢,

Inelastic Constitutive Model

The first constitutive assumption made here is that the
deformation rate tensor can be linearly decomposed into an
elastic and a nonelastic part

dy=d® +dp (20)

A hypoelastic law, similar to equation (7), is here assumed
to relate the stress rate to the elastic part of the rate of defor-
mation tensor

&3 =NdQs,; +2Gd®

where the new symbol §;; is the Kronecker delta.

The nonelastic strain rates dg') must be specified in terms of
the Cauchy stress, and possibly other variables, through ap-
propriate inelastic constitutive equations. Combined creep-
plasticity constitutive models with state variables are of in-
terest in this work. In the interest of brevity, the reader is
referred to Mukherjee (1982) for a discussion of such con-
stitutive models.

The particular constitutive model that has been used to
generate the numerical results presented in the next sections is,
due to Hart (1976), generalized to the case of large strains and
displacements (Chandra and Mukherjee, 1983, 1985). The
model has a scalar state variable I (the hardness, called o* in
previous publications) and a tensor state variable, the anelastic
strain e{?, which is responsible for induced material
anisotropy. For this work, it is assumed that

[u]
2 p=dp -

@1

(22)

where d¥ is the irrecoverable portion of the deformation rate.
Given the Cauchy stress and the state variables at any time,
this constitutive model gieliverDs, among other things, d}}’) and
the state variable rates L and € (¢ at that time,
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Fig. 3 Longitudinal stress as a function of shearing strain from two
methods. Direct integration and BEM solutions.

Numerical Results by Direct Integration

Numerical results for the simple shear problem (Fig. 1), ob-
tained by direct integration for two different approaches, are
presented here. The first of these is the “‘traditional’’ ap-
proach (Nagtegaal and deJong, 1982) and the second is the
New one.

The simple shear problem, with (Dienes, 1979, Lee, et al.,
1983, Dafalias, 1983)

X =X, +ktXy, % =X,, 3= X, (23)
yields the following nonzero components of deformation rates
and spin

dp=dy =k/2, w5, = —wy =k/2. 24)
Using the “‘traditional’’ approach, the nonzero material

rates of the components of Cauchy stress, using equations (1,
21 with o%, d{? =0 and 24), becomes

ijs
dll = kalz - ZGin) (‘722 = - kalz —-2Gd 'i) (25)

) k
0y = (00— ayy) + Gk = 2Gd().

The objective rates of the Cauchy stress and the tensor state

variable { are identified with the Jaumann rate in this
““traditional’”> formulation.

The new formulation requires the elastic rotation matrix
R®, For the time being, this is taken to be the rotation matrix
R from the polar decomposition theorem. Following Dienes
(1979), the nonzero components of R become R,;, = R,, =
cos B, R, = —R,, = sin B, Ry; = 1, where tan = k#/2.

80/Vol. 53, MARCH 1986

Starting from equation (21)

&, = —2Gd®, Gy = —2GdY
and (26)

&, =Gk ~2Gd(

and similar equations for ¢ i from Hart’s constitutive model,
it is a simple matter to compute o;;(?) and e{*) (#) in a spa-
tially fixed frame through the use of R;; and equations (18 and
19) with A, = —2Gd for o = T ete.

Numerical results for the two cases, obtained by direct in-
tegration by marching forward in time, are shown in Figs. 2
and 3. The material parameters used are representative of 304
stainless steel at 400°C (Mukherjee, 1982). It is clearly evident
that use of constant spin components from equation (24) leads
to a prediction of oscillation of stress components in response
to a montonically increasing shearing strain k¢, while the use
of rotation rather than spin leads to a physically acceptable
situation in this example, namely monotonic increase in stress
components as functions of monotonically increasing shearing
strain.

Implementation in BEM

It is clear that the importance of the issue discussed in the
previous sections is not limited to the simple shear example,
but would be of consequence in problems whenever the local
shearing strain at a point or points in a structure becomes large
during deformation of the structure. While most of the re-
searchers referred to earlier have not looked into this more
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general situation, the subject of this concluding section of this
paper is an investigation of the implementation of the rotation
idea in a general context. The rotation idea has been im-
plemented in a general two-dimensional BEM computer pro-
gram (Chandra and Mukherjee, 1983, 1985) capable of solving
elastic-viscoplastic problems in the presence of large
nonelastic strains and rotations. The original BEM formula-
tion has been published before (Chandra and Mukherjee,
1983, 1985) and only some key points and the final BEM equa-
tions are presented here.

The original BEM formulation, pubhshed previously by
Chandra and Mukherjee (1983, 1985), is based on use of the
Jaumann rate in the hypoelasticity equation (7), together with
the updated Lagrangian approach. A key equation in this for-
mulation is the relationship between the material rate of the
Lagrangian {(or nominal) stress § and the Jaumann rate of the
Cauchy stress. In the updated Lagrangian framework, this

relationship is (Mukherjee and Chandra, 1985)
S=5—0ew—Deg 27

where the deformation is assumed to be incompressible and, in
general,

S=(det F)Fl.g, (28)
Further, it can be shown in general that (Atluri, 1984)
1 . .
ﬂ=w——2— Re[U.U-!-U-'.U]-RT (29)

so that in the updated Lagrangian approach, withR = U =1,
one obtains § = w.

Thus, the BEM equation for the velocity field, from Chan-
dra and Mukherjee (1983 and 1985), still remains valid for the
present formulation with the Dienes rate. It must be
remembered, however, that once the velocity field is obtained
throughout the body, further calculations are necessary
before, for example, the Cauchy stress history is obtained in a
reference frame. These subsequent manipulations are carried
out here using equations (18, 19) rather than by integrating the
material rates of the relevant tensors.

It has been shown before (Chandra and Mukherjee, 1983,
1985) that the velocity at a point p inside a structure undergo-
ing small elastic strains, but large viscoplastic strains and rota-
tions can be written as

vp) = §apo [Ui(0, Q7D — T2, Qv (QD)1dSY
+ 300, Uy(0.)F (@)dV
+§p02GU;,(p,@)dP (q)d V)

+fgo GO DC i (D (Q)AV. (30

In the above, U; and T}; are the usual two point kernels of
small deformatlon elastlclty that are given in many references
(e.g., Mukherjee, 1982); G, is a function of components of
the Cauchy stress (Mukherjee and Chandra, 1985); 7; is the
traction at a point on the boundary; and p, and F? are the
mass density and body force rate, respectively, in the reference
configuration. Also, p (or P) is a source point and g (or Q) is a
field point, with lower case letters denoting points inside the
reference volume B, and P and Q denoting points on its boun-
dary dB,. Finally, a comma denotes differentiation at a field
point q.

The traction rate #; in the above equation (using equation
(27)), is

’l"i=nj.§ji=li—nj(7jkwk,-—njdjkok,~ (31)
where
[w]
= =H;0;. 32)

In the above equation, t, can be interpreted as the component
of the rate of the prescribed follower force, per unit deformed
surface area, on the deforming boundary. The follower force
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moves with a boundary point and rotates with the normal to
the boundary at that point.

The next steps require the determination of a boundary in-
tegral equation by taking the limit of equation (30) as p—P
and the stress rate equation by differentiating equation (30) at
a source point. These equations are given in previous papers
(c.g., Chandra and Mukherjee, 1983). The plane strain and
plane stress versions of these equations are also available in
the above-mentioned paper.

Solution Strategy. The solution strategy follows the same
approach as discussed in previous publications (e.g., Chandra
and Mukherjee, 1983). The boundary integral equation is first
discretized to obtain appropriate algebraic equations of the
form

[Al{v) +[Bl{7) = {D). (33)

A march forward time integration scheme is then used with
suitable updating of the configuration of the body. The
presence of velocity gradients in the boundary traction rates
and in the last domain integral in equation (30) requires itera-
tions within each step. The essential differences between this
new approach and the “‘standard’’ one (Chandra and Mukher-
jee, 1983) are stated below.

a) Once the elastic problem is solved at zero time, the
displacement gradients are used to form the deformation gra-
dient matrix F.

b) This matrix F is decomposed according to the polar
decomposition theorem F = RU and R is obtained.

0) The iterations are completed and v;(p), v;,(p), and a
and & @ are calculated in the fixed global basis at zero time,
The materlal derivative of Fis determined from the equation ¥
= LF where L; = v; ;.

d) Time integration is performed next. An explicit Euler
type scheme with proper time step controls (Kumar, et al.,
1980) is used to find the relevant quantities including F at time
At. Fis decomposed into RU at time Af and R is obtained at
At.

€) The objective rates of the Cauchy stress and the anelastic
strain are integrated in time through equations (18) and (19).
Here

= [3]120 + (RIL a6 11-o[R1, - A
(RI[GNRI T, o

[61;=ar

(34)

[o);_ar=
and similarly for [¢].
Thus, the relevant quantities (displacements, displacement
gradients, stresses, anelastic strains, etc.) are found at f = At.
The time histories of various quantities are then obtained by
marching forward in time and suitable updating of the
geometry and the keinels.

Numerical Results. The BEM formulation, described
earlier, has been implemented in a computer program. This
program can, of course, be used to solve general two-
dimensional elastic-viscoplastic problems in the presence of
large strains and rotations. It has been validated by solving the
simple shear problems discussed earlier. The BEM numerical
results in Figs. 2 and 3 agree, within about 5 percent, with the
direct numerical results for the same problem. This exercise
demonstrates the feasibility of implementation of the rotation
idea in a general purpose two-dimensional computer program.

Conclusions

This paper suggests tht elastic rotations should be used in
the modeling of large shearing of solids exhibiting induced
anisotropy during inelastic deformation. It is demonstrated
here that direct integration of objective rates of tensors, ob-
tained from a constitutive model, and subsequent correction
for the rotation of these tensors, overcomes problems of un-
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bounded rotations that could emanate from the usual pro-
cedure of using spins to relate Jaumann rates to material rates.
Use of rotations eliminates spurious oscillations in a simple
shear example. It is further demonstrated that the rotation
idea can be efficiently incorporated into a general purpose
analysis formulation and computer program. This is done by
adapting a two-dimensional BEM formulation and computer
program to reflect the use of rotations rather than spins.
Numerical results from the general BEM program, for the
simple shear example, agree well with a solution for the same
problem obtained by direct numerical integration, The rota-
tion idea can also be incorporated into the finite element or
other general numerical methods.
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Radial Dependence of Near-Tip
Continuum Fields for Plane Strain
Tensile Crack Growth in Elastic-
Ideally Plastic Solids

This paper is an extension of work by Drugan et al. (1982) who derive the stress and
deformation fields at the tip of a plane strain tensile crack that grows quasi-
statically, under general nonsteady conditions, in an elastic-ideally plastic solid.
Here I perform a higher-order analysis of the near-tip fields for this growing crack
problem. My principal objectives are to determine the radial variation of the near-
tip stress field and elucidate the structure of the deformation fields in the 90-deg sec-
tor ahead of the growing crack; this information was not provided by the lowest-
order solution of Drugan et al. (1982). I also derive a crucial asymptotic expression
for the normal radial component of the deformation rate tensor in a moving
“‘centered fan’’ plastic sector, which was given without complete proof by Rice
(1982). The analysis presented herein differs from typical perturbation analyses in
that I am able to derive the higher-order structure of the continuum fields rather
than having to assume expansions for them. Among the results, normal polar com-
ponents of deviatoric stress are shown to vary as (Inr) !, while the in-plane polar
shear component varies as (In r)~2, for small r > 0 in moving “‘centered fan’’
plastic sectors, r denoting distance from the (moving) crack tip. Further, in-plane
strains proportional to InlIn rl as r—0 appear not to be precluded in the 90-deg sec-

W. J. Drugan

Department of Engineering Mechanics,
University of Wisconsin,

Madison, Wl 53706

Assoc. Mem. ASME

tor ahead of the growing crack.

1 Introduction

A knowledge of the stress and deformation fields associated
with the presence of a growing crack in a body is of great im-
portance for the formulation of fracture criteria and for the
investigation of interactions between cracks and other
geometrical, or material, inhomogeneities in a solid. Drugan
et al. (1982) give an exact asymptotic solution (exact in the
limit of r—0, where r is distance from the crack tip) of the
stress and deformation fields at the tip of a quasi-statically
growing plane strain tensile crack under well-contained
yielding conditions. Their analysis treats an isotropic elastic-
ideally plastic solid obeying the Huber-Mises yield condition,
for the general case of Poisson ratio » < 0.5, i.e., elastic com-
pressibility. The Drugan et al. (1982) solution is a lowest-order
solution to the equations governing stress and deformation as
r—0: the stress components are determined as the functions of
angle about the crack tip to which they reduce at r=0, and ex-
plicit expressions for the deformation fields at small r result
for all angles about the crack tip except for a 90-deg sector

Contributed by the Applied Mechanics Division for publication in the JOUR-
NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.,
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itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, October 30, 1984; final revision, July 2, 1985.
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centered directly ahead of the growing crack, where the solu-
tion simply bounds the order of the deformation fields as
r—0. Other investigators have dealt with more specialized ver-
sions of the elastic-ideally plastic crack growth problem (e.g.,
fully incompressible material, steady-state crack growth), and
their work is referenced and discussed in the Drugan et al.
(1982) study. In particular, Gao (1983) has attacked the pro-
blem for compressible material via a steady-state formulation,
but we have serious disagreement with his solution, as detailed
in Drugan et al. (1982).

The present work supplements the Drugan et al. (1982) solu-
tion by extending it to higher order in radial dependence, in
near-tip sectors of principal plastic loading. This is ac-
complished by employing the more explicit asymptotic forms
of the governing continuum equations derived recently by
Drugan (1985). These reduced forms are specialized to the pre-
sent problem in Section 2. As in the Drugan et al. (1982)
analysis, the effects of geometry changes on the formulation
of stress and stress-rate measures and on the equilibrium equa-
tions are neglected. Finite element solutions by McMeeking
(1977) for a stationary crack experiencing plane strain, Mode
1, small scale yielding conditions show finite strain effects to
be important only within a radius of approximately 2 to 3
times the crack tip opening displacement; this radius is ex-
pected to be considerably smaller for a growing crack due to
the far weaker crack tip strain singularity in this case. These
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Fig. 1 Cartesian coordinates x4, x5, x3 are fixed in the body; polar

coordinates r, § are centered at the tip and move with it through the
material as the crack grows

and related issues are clearly explained in the excellent review
article by Hutchinson (1982).

The lowest-order solution of Drugan et al. (1982) is dis-
cussed in Section 3. This discussion includes a new derivation
of the lowest-order deformation-rate fields in moving
“‘centered fan’’ plastic sectors, providing verification of the
results of Rice (1982) (employed in the Drugan et al. (1982)
solution) whose derivation is not sufficient, as explained. Sec-
tion 4 then presents a higher-order analysis of the stress field,
showing that the lowest-order solution, when coupled with the
general governing equations, specify the radial behavior of the
stress field. Knowledge of the higher-order stress field
behavior in the 90-deg sector centered directly ahead of the
growing crack facilitates determination of the heretofore
elusive structure of the deformation field in this sector, as
shown in Section 5.

The geometry of the problem, illustrated in Fig. 1, is iden-
tical to that considered by Drugan et al. (1982). A Cartesian
coordinate system, Xx;, X,, X3, is fixed in the body, with x,
pointing in the direction of crack growth, a being the measure
of crack length, and x; lying parallel to the crack front. A
polar coordinate system, r, 6, lies in the x|, x, plane, is
centered at the crack tip and moves with it through the
material as the crack grows; 8 is measured from the line ahead
of the crack. The unit vectors e and h correspond to the radial
and angular directions, respectively, of this translating polar
coordinate system. Therefore,

or/dx;=e;, 00/0x;=h;/r (1.1)

where

el=h2=COSQ9, 33:h3:0. (1.2)
The convention to be followed throughout the paper is that
Greek indices «,8 have range 1,2 only, while Latin indices
iJ,k,l have range 1,2,3; both types of index will follow the
summation convention and will indicate Cartesian (but never
polar) components of tensors.

e, = —h; =sind,

2 Plane Strain Governing Equations and Asymptotic
Forms

The analysis to follow is based on the continuum equations
that govern plane strain deformation of a Prandtl-Reuss
material, assuming small displacement-gradients, i.e., neglec-
ting the effects of deformation in the formulation of stress and
stress-rate measures, and equilibrium equations. These con-
tinuum equations are summarized here, and the forms to
which they reduce for small 7 are given by employing the
results of Drugan (1985). For plane strain deformation, u, =
0, ¢;; = Oand o3, = 0, where u;, ¢; and o;; are components of
the displacement vector, the infinitesimal strain tensor and the
stress tensor, respectively.

2.1 Equilibrium. For three-dimensional equilibrium, the
stress tensor must be symmetric, o; = 0, and must satisfy. the
equations

do;/3x; +f,=0 @2.1)
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where f; are components of the body force vector. These equa-
tions can be rephrased in terms of the crack tip polar coor-
dinate system for the plane problem to be studied by regarding
o; = oy (1,0, 1), with ¢ denoting time, and by using (1.1):

(80,5/08) (hg/r) + (30,5/9r)es +f, =0. 2.2)

Equations (2.2) govern Cartesian stress components; for polar
components (2.2) become

80,,/3r+(1/r) (80,4/00) + (0, — 04y ) /T +[,=0 2.3q)
80,4/0r +(1/r) (3045/00) + 20,4/ +£,=0.  (2.3b)

Drugan (1985) proved that if the following conditions are all
met: (i) deviatoric components of stress are bounded (as they
are in the present elastic-ideally plastic constitutive model); (i)
the body is in equilibrium with bounded body forces f;; (i)
the quantities r{In(R/r)]1d¢,;/dr exist in the limit as r — 0 (the
equilibrium equations (2.3) require this for rdo,./dr and
rda,,/0r if 80,9/00, 304 /30, 0,,, 0y, 0,9 are all presumed to ex-
ist as r — 0); then

doy/0r=o(lrMn(R/r)1"'} as r—0 2.4
where R is an undetermined constant having length dimen-
sions. Using this result together with the bounded body force
assumption, the equilibrium equations adopt simplified
asymptotic forms; for example, (2.2) become

(Ba,5/00)Yhg+of[InR/r)1 "1} =0 as r—0. 2.5)
Here and throughout the text, I employ standard order sym-

bols; a clear discussion of these and gauge functions is given
by Van Dyke (1975).

2.2 Yield Condition. The Huber-Mises yield condition
Sloy) =sy85;/2—~k*=0 (2.6)

is assumed, where 5; = o;; ~ 8;04/3 are components of the
deviatoric stress tensor, é; is the Kronecker delta, and £ is
shear strength. In the analysis to follow, it is often more con-
venient to employ two differential forms of (2.6),

5;i(80;/80)=0 (2.7a)
5;(80,;/8r)=0 (2.7b)

which must both hold in all plastically deforming regions of
the body.

2.3 [Flastic-Plastic Stress-Strain Relations. The rate of
deformation D, is defined as
1
D,,Eé,-j=—2~ (0v;/0x; + dv,;/9x;) (2.8)

where v; are components of the material velocity vector and a
superposed dot denotes time rate at a material point. The in-
cremental Prandtl-Reuss theory is adopted in rate form, so
that for material currently experiencing elastic-plastic defor-
mation,

I+v | 1
E TE
where E is Young’s modulus, » is Poisson’s ratio, A = 0 is an
undetermined parameter, and superscripts e and p denote
elastic and plastic components, respectively. For material ex-
periencing solely elastic current deformation, whether or not it
has been previously strained plastically, (2.9) applies with A =
0.

D;=D4+Di= S+ As; (2.9

A convenient expression for the stress rate at a material
point, &, results from applying the chain rule to the assumed
functional form ¢; = o;; (r, 6, £) (Rice, 1982):

6= 1(80,/30)0+ (30,,/0r)F + do,;/3t
=(00,/00)asind/r — (30,/3dr)acost + do;/dt, (2.10)

having employed 6 = gsind/r and # = —dcosf, which result
from the translation of the crack tip polar coordinate system
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with the growing crack. Two asymptotic forms of (2.10) were
derived by Drugan (1985):

6= (30;/36)dsind/r— (30;/dr)dcosh +0(1)

as r—0 2.11a)
;= (d0y;/80)asing/r+ o{ [rin(R/r)] ="} ‘
as r—0; (2.11p)

these facilitate employment of (2.9) in the asymptotic analysis.

2.4 Plane Strain Condition. Since I assume ¢; = € +
e/, the plane strain condition e;; = 0 requires

(2.12)

This shows €43 to be bounded at the crack tip since (Drugan,
1985) equilibrium requires all stress components to be
bounded at the crack tip if deviatoric stress components are.
In the form D,; = 0, the plane strain requirement permits A to
be determined from (2.9) whenever 553 # 0, viz.

A= —[633—v(0y; + 6)1/(Esy). (2.13)

2.5 Compatibility. I assume the displacement field u; to
be continuous near the growing crack tip (except, of course,
across the crack flank) since a moving surface of displacement
discontinuity would correspond to an unbounded plastic work
rate in any subregion of the body traversed by such a surface.
Drugan and Rice (1984) showed that a continuous displace-
ment field implies a continuous velocity field near a growing
crack tip for the constitutive model employed here, except
across a quasi-statically propagating surface whose stress state
meets highly restrictive conditions which they derived. In all
regions where the velocity field is thrice differentiable, plane
strain compatibility of the deformation rate field will be
satisfied if

92D, /0% + 82D, /3x% —20°D ,/0x,9x, =0,  (2.14)

which may be restated in terms of the crack tip polar coor-
dinate system as

< 1 a+1 aZ)D_<2 a2+2 a)D
TTF ar 2 a2/ Ny oara0 0 2 a9/ "

+<62 +2 d
or r or

€6y = —€53= — o33 ~v(0}) +on)I/E.

Dy =0. (2.15)

3 Lowest-Order Solution for Crack Tip Fields

3.1 Summary. Drugan et al. (1982) derive a lowest-order
(in r) solution for the stress and deformation fields near the tip
of a Mode I (tensile) crack that grows quasi-statically under
plane strain, well-contained yielding conditions in an isotropic
elastic-ideally plastic solid. The stress field is thus an exact
solution to the governing equations (Section 2) at ¥ = 0 and is
only a function of §. The Drugan et al. (1982) analysis shows
the crack tip field to divide into five angular sectors of four
different types on each side of the crack symmetry plane, for
the general » < 0.5 case. This configuration is illustrated in
Fig. 2, in which: Sectors A and B can be described, for r — 0,
in slip-line terminology as ‘‘constant stress’’ and ‘‘centered
fan”’ plastic sectors, respectively; Sectors C and E are
plastically deforming with non-constant stress fields and have
no asymptotic slip-line analogy; and Sector D contains
elastically unloading material. Drugan et al. (1982) show that 8
= 7/4 is the boundary (at » = 0) between Sectors 4 and B for
general », while 8,, 0,, 6, are found to depend on the specific »
value. For the case » = 0.3, they find

6,=110.26°, 0,=123.13°, 0,=160.38". 3.
The lowest-order solution of Drugan et al. (1982) is not suf-
ficient to specify the deformation field in Sector 4 of Fig. 2

except to show that D; = o(1/r) as r — 0 there and thus that
Sector A produces only bounded contributions to edasr—0,
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g, &

¢ SAB
8, ELASTIC

E D A

> X

Fig.2 Exact solution configuration, directly at the crack tip, for a grow-
ing crack in material with v < 0.5 (from Drugan et al., 1982). The bound-
ary Spp isknowntobef = n/datr = 0.

except possibly on § = 0, where ¢ = o(In r) as r — 0. Their
solution does provide explicit expressions for the deformation
field as » — 0 in each of the other near-tip sectors.

3.2 New Derivation of Asymptotic Deformation-Rate
Field. Rice (1982) derived from (2.9) and (2.74) two restric-
tions on the deformation-rate field (specialized here to plane
strain response of a Prandtl-Reuss material) which can be
fruitfully employed in moving ‘‘centered fan’’ plastic sectors:

Dy, + Dgg = [(1 - 20) /E]6 4 (3.2)
1+ v
Dy (30,5/36) =—2= 55 (30,;/00) —— G (303/00).  (3.3)

These restrictions have the following asymptotic forms:
D,, +Dyy=1[(1-2v)/E](30,,/30)dsind/r

+o[1/(rlnr)] as r—0 3.4)
1D, (30,,/80 ~20,9) = (1/E)[(1 + v) (30,,/80) (30,,/30)
—v(da,,/80)*]asind + o(1) as r—0.
(3.5)
Equation (3.4) is obtained simply by employing (2.11b) in

(3.2) as r—0.

The demonstration that (3.3) reduces to (3.5)asr — Oina
moving ‘‘centered fan’’ plastic sector is more involved.
Although Rice (1982) arrives at a form equivalent to (3.5), his
derivation is not sufficient (Pan, 1982), since he considers only
the lowest-order Carfesian terms in the sum D,z (d0,5/30) as r
— 0. These terms cancel, however, necessitating retention of
higher-order terms. Thus I give below a new derivation of
(3.5), since in addition to being fundamental to the earlier
solutions cited, it is crucial to the higher-order analysis per-
formed here.

Use of (2.11b) permits rewriting (3.3) as

D5 (80,5/30)=(1/E)[(1 +v) (d0;;/00) (95,;/38)
— p (80, /00)*1asind + o(1) asr—0, (3.6)

having multiplied through by r. The left side of (3.6) is ex-
pressible as

1Dy (8045/80) =rD,, (80,,/30 —20,4)
+2rD,y[ = r (30, /8r + f)] + Dy — r(30,/0r +f)1, (3.7)

where (2.3) have been employed. What remains is to show that
rD,.(d0,./88 — 20,) dominates the other two terms on the
right side of (3.7) as r — 0. That it dominates the third term is
easily observed by substituting for Dy, from (3.4) and using
(2.4), having noted from Drugan et al. (1982) that in Sector B
of Fig. 2,

80,,/00—20,y= —4k+0(1) asr—0.

In other words, use of these facts reveals that the first and
third terms of the right side of (3.7) combine to give
[-4k(rD,,) + o(rD,. )] as r — 0.

To assess the second term on the right side of (3.7), we
recognize that a ‘‘centered fan’’ plastic sector moving with a
growing tensile crack tip cannot share its rear boundary with a
“‘constant stress’’ plastic sector. This is true since by invoking
the requirement that the full stress tensor be continuous across
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quasi-statically moving surfaces in the material being analyzed
(Drugan and Rice, 1984), it is easily proved that v, would have
to undergo a jump across such a boundary (the proof is very
similar to one presented in Section 5.2 of Drugan et al.
(1982)), and this jump would produce negative plastic work
since o,y = +k + ol)asr — Oandv, > 0asr — Oina
““centered fan’’ sector at a fensile crack tip. Thus a moving
“‘centered fan’’ sector must be bordered at its trailing edge by
either a currently elastic sector or by a plastic sector with 5,3, #
0 at r = 0; in both of these sector types, the asymptotic
analysis of Rice (1982) specifies that v, = 0(n r) as r — 0.
Now since the results of Drugan and Rice (1984) require con-
tinuous v, across asymptotic (radial) sector boundaries, we
conclude that v, = O(ln 7) as r — 0 in a moving ‘‘centered
fan’’ sector. This fact together with (3.4), (3.6), (3.7) and (2.4)
require that v, = 0(ln r) in a moving ‘‘centered fan’’ sector.
Thus,

D,y =(1/2r)[0v,/00 — vy + rdvy/dr] =0[(In r) /r]
as r—0

in a moving ‘‘centered fan’’ sector. This conclusion coupled
with (2.4) shows that

2rDy[—r(80,,/0r+f,)1=0(1) as

Therefore, rD,, (d0,,./068 — 20,5) dominates the other two terms
on the right side of (3.7) as r—0 (since it cannot vanish as »—0
because the right side of (3.6) is 0(1) as r—0), and thus (3.5) is
demonstrated.
Drugan et al. (1982) show how (3.4) and (3.5) are employed
to determine the complete lowest-order deformation-rate and
velocity fields in Sector B of Fig. 2; here I reproduce only their
results for D, which will be needed in the ensuing analysis:
D?. =Dg = —(1-2»)(K/E)(a/r)sinf+o(1/r)
as r—0

D2y =[(5—4»)/ (V)| (k/E) (a/r)In(R/r)
+ol(ln r)/r] as r—0

D3y, =2(1—2w) (k/E) (a/r)sind +o(1/r)
as r—0

r—0.

(3.8)

4 Radial Dependence of the Stress Field

1 shall now show that the radial behavior of the stress field
at small but finite distances from the growing crack tip is
directly determinable from the lowest-order solution of
Drugan et al. (1982) coupled with the general governing equa-
tions of Section 2. In particular, explicit higher-order expres-
sions will be derived for the stress field in Sectors A and B, the
sectors in which the principal plastic deformation occurs. (The
only other location for singular plastic strain accumulation is
as r—0 along the crack flank, § = +x.)

4.1 Sector B. The deviatoric stress field in the ‘‘centered
fan” plastic sector, Sector B of Fig. 2, was determined by
Drugan et al. (1982) to be

Sy =8p =533 =0

at r=0. 4.1

Sr():k

The manner in which this stress field alters as r increases
from zero in Sector B can be derived from the lowest-order
solution for the rates of plastic deformation, (3.8), together
with the plastic part of the Prandtl-Reuss flow rule,

Df = Asy. 4.2)

First, the parameter A is specified to lowest order in Sector B
via the rf components of (3.8), (4.1) and (4.2):
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A ﬁ% 6 —4v)/V2)(k/E) (a/r)In(R/r) + o[(In r) /7]
s, k+o(1)
as r—0
=[(5—4»)/V2I(A/E) (a/r)In(R/r) +ol(n r) /r]
_as r—0. 4.3)
Then, employing (4.3) and (3.8) in (4.2), one obtains
s —EC_ — (1 —2v)(k/E)sinf(a/ry+o(1/r)
A (5—4n)/VDI/E) (a/r)In(R /1) + o[(Inr) /7]
as r—0
-1
= —2V2[(1 —2») /(5 — 4»)]ksind <ln —?) +o[(In r) 1]
as r—0 (4.4a)
Sgg = T%:sr, +o[nr)-!] as r—0 (4.4b)
Sy = —A_3= ~2s,+o[(nr)~'] as r—0. (4.40)

To determine the r-dependence of s,, for small r in Sector B,

write
Sy=k+g(r0,t) as r—0 4.5)

where g(r, 8, ) — 0 as r — 0. Next, rewrite the Huber-Mises
yield condition (2.6) as

35%,/4 + (5, — Sgg)2 /4 + 5% = k?
and substitute from (4.4) and (4.5) to obtain
R\ 2
—r~> +o[(In )')*2]} /4
+ {o[(In N~=21}/4+ [k2 + 2kg + g*} = K>,
Evidently this specifies g to 0[(In ) =2}, so (4.5) becomes

(4.6)

3 {32[(1 —20)/(5 — 4n)*k3sin26 (m

R -2
Sy =k —12[(1 —2»)/(5 — 4»)]? ksin?0 <ln 7)

+o[nr)~?] as @.7

That this deviatoric stress field satisfies equilibrium to the ap-
propriate order in r is easily verified by rewriting (2.3) as

r—0.

R
—d0,,./0 (ln ——;) =Sgg —S,, — 08,5/00 — 1, (4.8q)

R
3049130 = — 25,0 + 85,9/ <ln 7) —r, (4.80)

and assuming f,, f; to be bounded as r — 0. Substitution of
(4.4) and (4.7) into (4.8) shows that (4.8) are satisfied to
Ol(ln r)~?] as r — O provided that the yet-unspecified
hydrostatic stress component is chosen properly, as reflected
in the derivation of (4.9) below. The deviatoric stress field
given by (4.4) and (4.7) is thus the solution in Sector B to the
order expressed, since it was shown to satisfy equilibrium (2.3)
and yield (2.6) to O[(In #)~2] as r — 0, and because it is derived
from the lowest-order deformation rate field, which is in turn
derived from a continuous velocity field and hence is compati-
ble. Integration of the equilibrium equations at small r, using
(4.4) and (4.7), shows that the stress field in Sector B must
have the form

. o
Gy = Cy—2k0-+ 6M2k(20 +sin20) (ln 7)

Ffr/r+oldn 2] as r—0 (4.90)
R -2
Ose =c,—2k0+61\42k(29—sin29)(1n 7)
+af(r,t)/dr+ol(lnr)~2] as r—0 (4.95)
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Ry -2
O =k—12]\42ksin20<ln T>

+o[(lnr)‘2]. as r—0 (4.9¢)
~1
033 =C,—2k0+ 6V2ZMksing <ln g)
+[af (r,t)/0r+f(r,t)/r1/2+o[(in r)~1]
as r—0 (4.9d)

where M = (1-2v)/(5—4v») and f(r, t) is a function of in-
tegration having the properties that af(r, £)/dr = o(l) asr — 0
and f(r, t)/r = o(1) as r — 0.

By assuming an Airy stress function to have an expansion of
the form

—-n

s=r L5, (0 %) ",

Gao (1980) arrives at expressions having the same functional
forms in a moving centered fan sector as (4.9) when special-
ized to steady-state conditions; a complete comparison is not
possible since all of his higher-order terms contain unspecified
constants. See the discussion by Drugan et al. (1982) of the
Gao (1980) study.

4.2 Sector A. The results of the preceding subsection
were derived strictly for the ‘‘centered fan’’ plastic sector (Sec-
tor B of Fig. 2). However, since the stress field near a growing
crack tip in a solid satisfying the governing equations of Sec-
tion 2 must be fully continuous (Drugan and Rice, 1984), (4.9)
imply the asymptotic form of the radial dependence of the
stress field at all angles about the crack tip. In particular, full
stress continuity across S, of Fig. 2, the boundary between
Sectors A and B, implies that the stress field in Sector A has
the form

0, =00 +oPONE +aPONHE2+0(E72) as r—0
. (4.10)
where £ = In(R/r); the adoption of (4.10) embodies the
assumption that f(r, f) of (4.9) is expressible as
Frt) =c () rE oy (t)rE 2 +0(rE"%)  as
Similarly, we represent the deviatoric stress field in Sector A4 as
5;=5P@) +sPO,0 " +sPO0HE2+0(E72) as r—0.
4.11)

Substituting (4.10) into (2.2) and equating terms of like
order in r, while employing the assumption of bounded body
forces, gives the equilibrium requirements (to 0(§ ~2/r) as r —
0):

r—0.

0@ hy=0 (4.120)
ol hg=0 (4.12b)
0@ hy+ol)e; =0 (4.12¢)

. 9
where the superscript ’ denotes 50

The most convenient form of the yield condition to apply
here is the differential form (2.7h), which, upon substitution
of (4.10) and (4.11), requires (to 0§ ~3/r) as r — 0)

sVl =0 4.13a)
2500 + 5P o) =0. - (4.13b)

Note that the other differential form of the yield condition,
(2.7a), must also be satisfied in Sector 4; however, a short
calculation reveals that (2.74) results in the same restrictions as
do (4.13), but in less illuminating forms.

An asymptotic expression for the stress rate in Sector A for
general, non-steady crack growth is obtained by substituting
(4.10) into the result (2.11a), viz.

Journal of Applied Mechanics

o, =0 ’sing(a/r) +ol}) 'sind (a/ry¢ "
+ [0’ sing — o{Pcostl(a@/ryE 2 + ol 2/1]
as r—0. 4.14)

Drugan et al. (1982) determined the lowest-order stress field
in Sector A to be

o® =0 (4.154)
o =0 (4.15b)
o = (0 + 09)/2 4.15¢)
oD — oD =2k (4.15d)
{9 + o4 = known constant for a specific » value  (4.15¢)

which of course satisfy equilibrium (4.12«) and the yield con-
dition (2.6) at r = 0.

The ol of (4.15) are employed in the higher-order equa-
tions of equilibrium (4.12), yield (4.13) and compatibility
(2.15) (written in terms of stresses via (2.9), (2.13) and (4.14)).
The resulting system of differential equations, when
augmented by the Mode I symmetry conditions and the boun-
dary conditions on Sector A, permits specification of the
higher-order coefficients ()’ (9, ¢} and o'? (8, ©) of (4.10). The
derivation is lengthy but fairly straightforward and is thus
omitted here. Making use of these results, the stress field in
Sector A of Fig. 2 is expressible to O[(In 7) ~2] as

RN !
on =P+ Q@ (=) +{(Qut0)/Din(cos29)
RN\ 2
+R“(l‘)3 <ln 7) +of(n H~2 as r—0 (4.16a)
T R v!
o2 =P+ 0 (10 )+ {(Q()/2)Inc0s20) + R, (1)
RN\ -2
- 12]\/12k} <ln —> +o[(nr)~?] as r—0 (4.16b)
r

RN -2
01, = —(Q,,(£)/2)In[tan(x/4 + 6)] <1n 7) +o[(n -2

as r—0 4.16c)

Ry -1
033 = P33+ [Qy, (1) + 6kM] <ln 7)
Ry -2
+ {[Q”(r)/2+ 3kM]In(cos26) + Ry; (1)} <1n 7)

(4.16d)

where Py, P,,, P3; are known constants for a specific » value
(.e., Py = o of (4.15)), and Q) (1), R, (¢) and Ry;(¢) are
undetermined functions of integration. (Q,,(¢) and R,,(#), be-
ing proportional to the O[(In r)~!] and O[(In r) ~?] stress triax-
iality coefficients, respectively, can be determined only by
complete solution of the higher-order fields at a// angles about
the crack tip.)

Because all stress components are required to be bounded
near the crack tip in the elastic-ideally plastic constitutive
model employed (Drugan, 1985), the results (4.16) show that
the boundary of Sector A must curve for r > 0. That is,
representing this boundary for small » = 0 as

0=n/4+m(r,t) 4.17)

where mi(r, ) — 0 as r — 0 in view of the lowest-order solu-
tion, (4.16) require that m(r, {) < 0 for r > 0. This is evident
in spite of the fact that the value of Q,; (¢) is undetermined,
since (4.16) show that at least one component of ¢; becomes
infinite as § — w/4 for any value of Q,, (¢). A more explicit
restriction on the asymptotic behavior of m(r, #) is obtained

+o[(nr)~2%] as r—0,
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by enforcing continuity of o, to O[(In )~2] across S5, which
via (4.9¢), (4.16) and (4.17) can be shown to require

m(r,t):o[(ln §>—.1] as r—0.

5 Deformation Field in the Constant Stress Sector
Drugan et al. (1982) show that in Sector A4 of Fig. 2
D;=o(l/r) as r—0 (5.1)

but their lowest-order solution does not specify Dj; further.
The results of Section 4.2 permit the structure of D; in Sector
A to be determined, and from this the velocity field and plastic
strain field in this sector may be derived.

For r > 01in Sector A4 (so that 533 # 0), A is given by (2.13),
so that the Prandtl-Reuss flow rule (2.9) becomes

EDy=(14v)0;—v8;0, — [633 — v (&)1 + 022))(5;/533).  (5.2)

Employing the Sector A stress field results (4.16), together
with the asymptotic stress rate expression (4.14), (5.2) pro-
vides Dy; in Sector A4 to higher order:

Dy =DF+0[(Inr)~2/r]
=(1/4E)[(5—4»)Q,,(t) + 6k](52,~52j—51,~61j)

R -1
X (cos8/cos28) (a/r) (ln ——r—) +0[(In r)~2/r] as r—0.

(5.3)

To determine the asymptotic material velocity field, we
begin by integrating the rr component of (5.3) for small r,
recalling that D,, = dv,/dr, to obtain

v, = (G/AE)[(5 - 4v) O, (f) + 6k]cosbln (m g)

+93F(0,t)/86+0[(InH~'] as r—0 5.4

where dF (8, #)/96 is an undetermined function of integration.
Next, the 66 component of (5.3) is employed, using Dy =
(1/r) (0vy/36 + v,). Substituting from (5.4) and integrating
with respect to ¢ gives

vy = — (4/4E)[(5 — 4) Oy, (1) + 6Klsinfln <1n g)

—F(0,8) +G(r,t)y+0[(nr)~11 as (5.5)

where G(r, #) is an undetermined function of integration.
Now, Mode I symmetry requires that

dv,/0=v,=0 on 6=0,

which via (5.4) and (5.5) yield the restrictions
32F(0,t)/00* =0 (5.60)
Gr,t)=F(6,)) +0[(In~"'] as (5.6b)

Finally, (5.4) and (5.5) must satisfy the 76 component of
(5.3), expressed in terms of velocities via D,, = (1/2r) [dv,/80
— vy + rdvy/dr]; this will be satisfied to 0(1/r) as r — 0 pro-
vided that

r—0,

on 6=0
r—0.

32F(0,t) /062 + F(8,t) —F(0,t) =0.
Thus,
F(6,t) =B(t)sinf+ C(t)
where B(¢) and C(t) are undetermined functions, and the
velocity field to 0(1) as » — 0 in Sector A specifies to -

v, = (a/4E)[(5 - 4r) Q,, (1) + 6k]coshln <ln g) + B (t)cosh

vy = — (a/4E)[(5 — 4») Qy, (¢) + 6k]sinfln (ln g) — B(t)sind.

The plastic strain accumulated by a material point as it
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passes through Sector 4 can be determined by integrating (5.3)
at that material point, i.e.,

t
4= Dy, 5.7)

10
where ¢, is the time at which the material point enters the
plastically deforming region. Drugan et al. (1982) showed that
when g is increasing continuously with applied loading, if D%
= 0(a/r) as r — 0 in a plastically deforming sector, then the
contribution to the corresponding e from that sector will be
bounded for 8 # 0. Thus we immediately deduce from (5.3)
that since D% = o(a/r)asr — 0,

e5=0(1) as r—0 when 6#0.

However, (5.3) shows that a material point located directly on
the crack line has

Dr =& =(1/4E)[(5 - 4v) Q) () + 6k](5,:0y

-1
—8y;8,;) (a/r) <1n {i) +0[(In H=2/1]

as r—0 along 6=0. (5.8)
When ¢ is increasing continuously with applied loading, we
employ the relationship ¥ = —a (valid on § = 0) to substitute

for ¢ in (5.8) and then integrate to find
R
e = — e, =(1/4F)[(5—4»)Q,,(¢) + 6k]In (ln 7)

+0(1) as

This reveals that two components of the plastic strain at a
material point on the crack line may (depending on the value
of Q,,(9) become infinite as the crack tip approaches.

f

r—0 along 6=0.
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Three-Dimensional Stress
Singularities at Conical Notches
and Inclusions in Transversely
Isotropic Materials

This study examines analytically the possible existence of stress singularities of the
form o = p%f(6,6) at the apex of axisymmetric conical boundaries in transversely
isotropic materials. (p, 6, ¢) refer to spherical coordinates with the origin at the
apex. The problems of one conical boundary and of two conical boundaries with a
common apex are considered. The boundaries are either rigidly clamped or traction
Jfree. Separation of variables enables the general solution to be expressed in terms of
Legendre functions of the first and second kind. Imposition of boundary conditions
leads to an eigenequation that would determine possible values of 6. The degenerate
case that arises when the eigenvalues of the elasiticity constants are identical is also
discussed. Isotropic materials constitute only a particular case in this class of
degenerate materials and previously reported eigenequations corresponding to
isotropic materials are shown to be recoverable from the present results. Numerical
results corresponding to a few selected cases are also presented to illustrate the
solution procedure.,
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1 Introduction

The occurrence of stress singularities in three-dimensional
elasticity problems (e.g., at the apex of notches and in-
clusions; along crack fronts; and interfaces between dissimilar
materials) assumes importance in studies of the fracture
behavior of materials as well as in general stress analysis (Sih,
1971; Kassir and Sih, 1975; Erdogan, 1983). Most common is
the power type singularity where the stress ¢ assumes the form
o = p°ff, ¢), where (o, 8, ¢) refer to a spherical coordinate
system with the origin at the point of singularity and Re(d) <
0, so that the stresses become unbounded at the origin. In
fracture mechanics it is desirable to know the order of the
singularity 8. As far as three-dimensional stress analysis is
concerned a complete analytical solution for a problem
containing a crack or a notch is very difficult to obtain and
numerical methods such as finite element techniques have to
be employed. In the vicinity of stress singularities special
numerical methods are preferred as they improve accuracy
substantially. One of the often used methods is to employ a
“‘special finite element” which can adequately represent the
singular nature of the stresses in that region (Pian et al., 1972;
Tong et al., 1973; Lin and Mar, 1976; Rhee and Atluri, 1982).
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This requires primarily a knowledge of the value of § and, if
possible, of (8, ¢) as well.

In the case of a crack, a notch or any other such “‘source’’
of a singularity of arbitrary geometry in a three-dimensional
medium, the task of obtaining an analytical solution for §
seems mathematically intractable for isotropic materials and
even more so for anisotropic materials. For isotropic
materials, semi-analytical methods have been proposed by
Benthem (1977, 1980) and Kawai et al. (1977) while numerical
methods have been used by Bazant (1974) and Bazant and
Estenssoro (1977, 1983). For anisotropic materials a
numerical procedure has been recently proposed by
Somaratna and Ting (1986). For any numerical technique it is
desirable to have analytical solutions to at least a few sim-
plified cases so that they may serve as bench-mark tests for the
numerical method and provide useful checks on its accuracy.
In the case of anisotropic materials the simplifications are
achieved by making the material constitutive relation and the
geometry of the problem simpler. In the particular case of
assuming the geometry to be axisymmetric and the material to
be transversely isotropic, the problem can in fact be made
mathematically two-dimensional. In the present paper we
investigate the occurrence of stress singularities in that
simplified problem.

The material is assumed to be linearly elastic and
transversely isotropic with respect to the z axis in the cylin-
drical coordinates (r, ¢, z). In the spherical coordinate system
(p, 0, ¢) the material is bounded by either one (Fig. 1a) or two
(Fig. 1b) conical surfaces defined by § = 6, and § = 6,. On
the boundary or boundaries the surface is either traction free
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material

cross section
Fig. 1(a) One axisymmetric conical boundary

cross section
Fig. 1(b) Two axisymmetric conical boundaries

or rigidly clamped. The former boundary condition signifies a
notch while the latter corresponds to a rigid inclusion. If
necessary the method presented here can be used to analyze
“mixed”’ boundary conditions (e.g., a frictionless rigid in-
clusion). A special case of this problem where the material is
assumed to be isotropic and bounded by one conical surface
has been analyzed by Bazant and Keer (1974) using results of
Thompson and Little (1970). A proper reduction of the more
general solution presented here, of course, leads to the
recovery of the results reported therein.

The mathematical formulation of the basic equations for a
transversely isotropic elastic material under an axisymmetric
deformation is presented in Section 2. Separation of variables
enables the general solution, in which stresses are propor-
tional to p?, to be expressed in terms of Legendre functions of
the first and second kind. This is described in Section 3 while
in Section 4 appropriate boundary conditions are imposed on
the general solution to yield an eigenequation for 8. It is also
shown that under a certain special class of material properties
the general solution degenerates. This degeneracy and the
modifications of the solution required to overcome the dif-
ficulty arising therefrom are discussed in Section 5. Isotropic
materials are only a particular case in this special class of
degenerate materials and the results corresponding to
isotropic materials are recovered in Section 6. They agree with
those reported by Thompson and Little (1970) and Bazant and
Keer (1974). Section 7 presents some numerical results ob-
tained by solving the eigenequation.

2 Mathematical Formulation
Let (r, ¢, z) be a cylindrical coordinate system with the z

axis as the axis of material symmetry and let (u,, u,, u,) be ‘

the corresponding displacement components. We assume that
the deformation is axisymmetric and #, =0 so that u, and u,
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are functions of r and z only. Introducing the displacement
potential ®(r, z) which gives u, and u, (Elliott, 1948, 1949;
Green and Zerna, 1975; Ting et al., 1985) by

ad = 0P o
ar T
where m is a constant to be determined, the stresses are ob-
tained as

u,=

P9 L FEx )
9r=Cn g7 +Clzm+c13mgz—2

%P ad %
O'¢=C'12’52— +C”r—ar—+cl3m@

¥

3’ ad %

0, =Cr3 W +Cl37é;+(,‘33my
32

Orz=C44(1+m)a 3 J

in which ¢; are the elasticity constants for the tranversely
isotropic material. The equations of equilibrium are satisfied
if

2o 4% 1 3%
— t——— — =0 3
arr  ror p* az® ®
where
2 —Cyy Ci3 +(1+m)c44
= = (“a)
mc +(1 +m)c44 —MCy
or, equivalently,
Cyy +CaD? c3te
—m= 1 440 - = 13 442 (4b)
(13 +cw)p®  cytepnp
The second equality of (4a) and (4b), respectively, yields
m? — [M—l]ml:o (5a)
2¢44(C13 + Ca4)
_ 2 -2
p4+2[011033 Ci3 ~2C13Cuq ]p2+ i _g (5b)
2c33044 C33

Notice that m and p are independent of the elasticity constant
¢y,. Therefore, if the boundary conditions are prescribed in
terms of the displacements & is independent of ¢,,.

1t can be shown (Eshelby et al., 1953) that p cannot be real
if the strain energy is positive definite. Therefore we have two
pairs of complex conjugates for p and let them be denoted by
Py, D1, Do and p, where an overbar indicates the complex
conjugate. The associated values of m are denoted by m;, m,,
m, and m, respectively. From (5a4) we note that

mym,= 1 (SC)

Since (55) is a quadratic equation in p? with real coefficients,

if p, is purely imaginary sois p,. Thenp, = —p,, b, = —p»

and m,, m, arereal and satisfy m, = m,, m, = m,. If p;
and p, are not purely imaginary we can choose

Pi=u+iv=—p,;; py=-—utiv=—p (6)

where u, v are real. In this case m, and m, are complex and

m,; = m,. In view of the fact that the problem is linear, the
general solution for displacements and stresses is obtained by
superposing the solutions corresponding to ®’s associated
with p,, p1, p, and p,. In the next Section where we present
the general solution it is tacitly assumed that p, # p,. The
degenerate case where p, = p, is discussed separately in
Section 5.
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Fig. 2 Value of A for a rigid conical inclusion in *“degenerate”

materiais with » = 0.3 (A is independent of y for this case)

3 Solution

First transform equation (3) into the cylindrical harmonic
equation by letting

=—ipz )

For isotropic materials p=i is an eigenvalue of the elasticity
constants and we have Z =z. With (7), (3) becomes

?2e 194® 9@
s o =0 ®
art r ar 8277
To obtain a solution of the harmonic equation (8) we let
R=(r2+ZH%
c=cosy=Z/R )

s=siny=r/R

where (R, ) are similar to axisymmetric spherical coor-
dinates. It is well known (e.g., Lebedev, 1972) that (8) has two
linearly independent solutions given by

d=ARM'Py (0 +BRM'Q41(9) (10

where P, ,;(c) and Q, . (c) are the Legendre functions of the
first and second kind respectively and their argument c is
defined in (9), while \ is an arbitrary number, real or com-
plex, and 4 and B are arbitrary multiplicative constants.

In the definition of R in (9) there is a certain ambiguity. R
in general is complex and if R is admissible so is —R. In fact
this would give rise to two more solutions: $¢=A(-
RMIP,, (=¢) and &=B(—RY»'Q,,1(~c). However
P, (—¢) and Oy, (—c¢) are linearly dependent on Py (c)
and Q,,((c) (Lebedev, 1972) and the (—1)**! can be ab-
sorbed into 4 and B. Therefore they do not provide any new
independent solutions and can be ignored. By similar con-
siderations it can easily be shown that the use of = p instead
of p as the eigenvalue in (7) would not yield any new in-
dependent solutions. Therefore one can ignore p, and p,
which are related to —p, and —p, as discussed earlier and the
general solution is a linear combination of the solutions
corresponding to ®’s as given in (10) that are associated with
p, and p,. Denoting their associations with p, and p, by
subscripts 1 and 2, respectively, we write

Journal of Applied Mechanics

®, =4, R MIPy (c)+BiR MOy, () } a1

@y = A, RN Py () + Ba Ry MOy (c))

where A, By, A,, B, and A are arbitrary constants. The

general solution for the displacements is

3%, + 0%, v=m %, + %,

= — —_— = [ my —=

T ar ar ‘ ' oz L
Similar expressions hold for the stresses.

Equations (1) and (2) which are used to obtain the ex-

pressions for the displacements and stresses corresponding to

the solutions given by (11) require the evaluation of certain

derivatives of ®. First consider

®=RM'Py,(0) (13)
The necessary derivatives of the above & are obtained by using
the differentiation rule and the recurrence relations

corresponding to Legendre functions (Lebedev, 1972) and the
relations given by (9). The results are:

(12)

g% -—Rx[z\(P P )]
ar s €O Al
0% N .
% =RM\+1)(—ip)P]
PP _ A 1
P =R» 1[—S—2PA—)\[()\+1)—§2~}PX,1] ro149
Ex)
e =RM - ANN+1)p*P, ]
2P MAN+ 1D){(—ip)
_ pa-l _
oroz =R [ s (P cP)\,l)]

In (14) as well as in the following Sections it is understood that
the argument of P,, P,_;, Oy and Q,_, is c¢. The rule for
differentiating Q\ and its recurrence relations are identical to
those for P,. Hence the derivatives corresponding to & =
RM1'Q, . ,(c) are obtained simply by replacing P, and Py_ in
(14) by @, and Q, _,, respectively.

When the derivatives of (14) are substituted into (1) and (2)
we obtain expressions of the following form

u, =u,® =R g, ® 3
w,=u, =R g, ®
o, =0, =R "15,® > (15)

o, =0, =R15,®

0, =0, =R 15,®

— Py _ ph=1x (P
oy =0, =R""15,® J

where the superscript P refers to the fact that these correspond
to the solution & = RM»!P,,,(c). In an identical manner
similar expressions corresponding to the solution ¢ =
RM'Q,, (c) can be obtained. Those relationships also may
be expressed by equation (15) itself by merely replacing
superscript P by superscript Q. Expressions for the terms
i,®, .. . etc.in (15) do not contain R.

Hereafter a subscript 1 or 2 (following a comma if other
subscripts are present) will be used to indicate whether the
quantity is associated with the eigenvalue p; or p, of the
material properties. The exceptions are §; and 0, which are
the values of the coordinate # at the conical boundaries.

With the above notation, the general solution for
displacements and stresses corresponding to ®’s given by (11)
is
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U, =A RYAF + B RYIS + A, RYAE) + B, R
u,=A,RNi) + B, R} IS + A, Ry i) + B, RY 1T
g, =A,R}"'6H) + B R} 59

+A,R}168) + BRY 69

o6, =A, R} 168} + B, R} 1) S ae)
+ AR )+ ByRY 0
o= AR} +BIRY Y
+A,RY 168 + B,RY 169
0, =A R3O+ B RS
+ ARy, + B,R} 52} )
Further, from (7) and (9), R can be expressed as
R=p{ (17a)
{=(sin*8—p?cos?6)* (17b)
r=psind, z=p cosf (17¢)

where (p, 0, ¢) refer to the spherical coordinates. Then it is
clear that the stresses are proportional to p® where § = A—1 s
the order of stress singularity. When A\ < 1, the stress is
singular at p = 0. However, for the strain energy to be
bounded at the origin we require that A > — 2. On the other
hand if no concentrated force applies at the vertex, then

KP () = {

boundedness of the displacements at p = 0 demands that A >
0. Therefore the possibility of a stress singularity exists if 0 <
A < 1. In the case of A\ being complex this requirement
becomes 0 < Re(\) < 1 where Re refers to the real part.

4 Boundary Conditions and the Eigenequation

The boundary conditions applicable at § = 8, and (in the
case of two boundaries) at § = 6, are as follows: For the
rigidly connected boundary

u, =Oy u, =Oi (1 8[7)
and for the traction free boundary
o, cosf—o,, sind=0
(18b)
0,, cosf—o, 5inf=0

4.1 Problem (A): One Conical Boundary. In this case the
domain of validity of the solution includes the positive z axis
where ¢ assumes the value of 1. But Qy,(c¢) is unbounded at
c=1 and in order to obtain a finite solution along the z axis
we require that B, = B, = 0. Then there are only two ar-
bitrary multiplicative constants in the general solution (16).
By substituting (16) into (184) or (185) as the case may be and
using (17), we obtain two simultaneous linear algebraic
equations for A, and A, in the form

K (0,)g=0

= |l
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(19
In (19),

(20a)

16 cosd — 5% sind)

1), cosh — ¢ sind)
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Fig.3 Value of ) for a notch in “degenerate’” materials with » = 0.3

and the (2 x 2) matrix K® (6) is given by

aadh texte]
K6 = ’ ' (20b)
aa $af
for the rigid inclusion and
37158 cosf— 5L sinb)
(20¢)
(6D, cosf — 5¥3sing)

for the notch. For (19) to yield a nontrivial solution for ¢ we
require

IK®@)HI=0
and this is the eigenequation for determining A.

4.2 Problem (B): Two Conical Boundaries. The positive z
axis is not included in the domain over which the solution is to
be valid in this case. Therefore the complete solution given in
(16) must be used. It contains 4 arbitrary constants A, B;, A,
and B,. At each of the two boundaries =0, and 6 =0, two
conditions (either (18a) or (18b)) are imposed leading to the
following system of four simultancous linear algebraic
equations for the four constants:

@1

Lw=0 22)
where
A,
A,
W= (23a)
B,
B,
K®(9)) K@Q(8))
L= (23b)
K®)(6,) K©@(8,)

In (23b), KP(8)), is given by (205) or (20c) depending on
whether 6 =0, is a fixed boundary or a traction free boundary.
K@(,) is obtained from K®’(8,) by replacing the Legendre
functions Py, Py_{ by Qx, @x_;. Similar definitions apply to
K (9,) and KO (8,).
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Fig. 4 Value of A for two conical boundaries in isotropic materials
with » = 0.3 for the fixed-free case

For (22) to yield a nontrivial solution for w we require
ILI=0
and this is the eigenequation for determining A in this case.

@4

5 The Degenerate Case p, =p,

When the material properties are such that p, = p, the terms
associated with the two independent solutions given in (11)
become identical and cause the general solution to degenerate.
This situation requires certain modifications of the solution
which will be presented in this Section.

The degenerate case is discussed by Ting et al. (1985) and
we follow the approach presented by them. From equation
(5b) and the fact that p cannot be real it is seen that when p,
= p,, p must be purely imaginary. Also by equations (4b) and
(54) we have m; = m, = = 1. By setting m=—1 in the
second equality of (44), we obtain ¢, ¢33 — ¢}, =0. This would
imply that the matrix c; is not positive definite and hence
m#= —~ 1. If we set m =1 in the second equality of equation (4a)
we get

(c13+2c4) =cyyep (25)
Thus when (25) is satisfied, p, = p, and we have a degenerate
case. The five independent material constants are now
reduced to four by the relation (25). Following Ting et al.
(1985) we introduce the new material constants «, u, v and 3
by letting

e =(a+2p)B°
¢33 = (a+2p)/ B’

Cag =1t (26a)
Cr=Q
C —Cp=2yp
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0
180

160°

Fig. 5 Value of X for two conical boundaries in isotropic materials
with » = 0.3 for the fixed-fixed case

and for later convenience we define » by the relation
a=2uv/(1—2v) (265)
Equations (26a) satisfy (25) and when substituted into (5) they
yield:
p=if, m=1. (27)
We also note, by differentiating the second equality of (45)
and substituting (26), that when p, = p, = if3,
dm 4(1-v)
dp B8
In the particular case of y = 8 = 1, the material becomes
isotropic and « and g become the Lame constants while » is
the Poisson’s ratio.
In order to deduce the second independent solution we
proceed as follows: Let &, and ®, be the two solutions

corresponding to p, and p,. The general solution for the
displacements is

i (28)

3%, 9%,
= _ A JE—
u =4, or +4; ar 29
ad ad®
u, =A,m, aﬂzl‘ +A2m2 *a—zz 30)

In the degenerate case when p; = p,, we have &, = ¢,. To
consider the limit as p, approaches p, let

@1
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Fig. 6 Value of X for two conical boundaries in isotropic materiais
with » = 0.3 for the free-free case

Substitution of (31) into (29) and (30) and then taking the
limit as p, —p, vields, after omitting the subscript 1,

A3<1>+B a (8(1))
or op \ or

I 9®
w8 (5)
ar " t

The terms associated with B in (32) are easily identified as the
second solution and by a similar approach the corresponding
stress results may also be derived. Thus while the first solution
is given by (1) and (2), the second solution is

(32)
dm 3(1)]

u,=Am
dp 0z

=2 (%) |
Todp \or
a 709 dm 0%
uz=m$<a—z)+%a—z
3 /0*®
=gy, <32> (r6r>
+cl3[m 3 (62<I>> dm 3¢ J
ap \ 97? dp 322
3 s0*® 0%
% C126p<W) < r> r 33)
O P d (6%) dm *d ]
ap \ 8z? dp az*
?d
9= a (6r ) ( r)
ten [m_q <62§>) dm anw]
ap dp 9z?
e am 0*¢®
re = Cas [(l+m) <6r62>+EFra—z]

where ® is given in (10). It should be noted that the material
properties ¢;, p, m and dm/dp in (33) have to be assigned
their values for the degenerate case given in (26), (27) and
(28).

Equation (33) requires the differentiation of ® with respect
to p also. Consider first
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=R 1P, ,(0) (34)

Use of the differentiation rule and the recurrence relations for
P, (c) and equations (7) and (9) leads to

0% = —iRM(\+ 1)s cotfP,]

ap = ( )s cotbPy

a /0d

P <—> = — IR M\ + 1)cotf(P) —cP; )]
ap \ dr

d

*<9§’) = —iRMO+ Py + NPy )]

9 (3_2?>= iR [)\()\+ 1)scot9{(>\— SLZ)Px

1
+ <?—2)\+1>ch,1}} (35)
3 /0@ oy .
—<~—>=—1R" HAN+ D~ ip)(— NPy
op \ az*
+{24+ @A~ Dc}Py_D]
3 s 3°d AA=1)
. =_'R}\+1l:___ i 2
ap (6raz> ! Ky L+ NP
+{(A=2)—c22N=1)}cP,_, ]] J
The derivatives corresponding to & = RM!Q,,,(c) are

obtained, as before, by simply replacing P by Q in (35).

When the relations in (35) are substituted into (33), once
again we would obtain expressions for displacements and
stresses in the form of equation (15). Of course, the detailed
expressions for 2!, . . . etc. are now different. In a similar
fashion the solution corresponding to & = RM'Q,,,(c) is
also obtained and this completes the general solution for
Py =p,. The imposition of boundary conditions and the
derivation of eigenequation can now be carried out as ex-
plained in Section 4.

6 Rigid Inclusion in Degenerate Materials and

Isotropic Notch

Isotropic materials are only a particular case of the special
class of ‘‘degenerate’® materials discussed in the above
Section. Even though there are four material constants for
degenerate materials, by non-dimensionalizing with respect to
w one can make A depend only on three parameters v, § and ».
For isotropic materials, v = 8§ = 1 and N depends on the
Poisson’s ratio only. Previous investigators have reported
explicit eigenequations in the case of isotropic materials for
problem (A), i.e. for the case of one conical boundary. In this
section we will consider a rigid inclusion in degenerate
materials and a notch in isotropic materials. For later use we
note here that for 8 = 1 (which resuits in p=1i) equations (9)
and (17b) reduce to

c=cosf, s=sinf, {=1. (36)

6.1 Rigid Inclusion in Degenerate Materials. Explicit
expansion of (21) using (20b) results in the eigenequation

A — 14 =0, 37

‘where it is tacitly understood that the expression is to be
evaluated at = 6,. Substitution of (14), (26) and (27) into (1)
and the use of (15) gives
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A
aﬁﬁ) = —(cP\—P,_))
s
(38a)
ag’? =1+ NPy

To obtain the displacement components associated with the
second set of solutions relevant expressions from (35), (27)
and (28) should be substituted into #, and u, in (33). This

results in
%) = —iN1+Ncotd(Py —cPy_;)
(38b)
%) = —i(1+ N1 —4(1 - »)} Py +cNPy_,]

S.upst_itution of (38) into (37) yields the eigenequation for the
rigid inclusion in degenerate materials as

MU fiep, — Py 01 -40- )Py 40P, )

— (1 + N)Bs cotf[ P, —cPy _, ]P)\} =0 39)
It is worth noting that A depends on 8 and » but not on . The
same situation occurs in the case of two conical boundaries if
both boundaries are rigidly clamped. Now the eigenequation
corresponding to isotropic materials can be easily obtained by
letting 8 = 1 and using (36) in (39). After simplification it
leads to:

M1I+N)

[c(l + NP} + P,

—{(9A+ )+ (1 - ﬂ)]PxPx~1] =‘0 (40a)

where

n=1/[4(1 - )] (40b)
and ¢ and s stand for cosf and sinf respectively as given by
(36). This eigenequation is seen to be the same as that reported

by Bazant and Keer (1974) when due attention is paid to the
differences in notation.

6.2 Notch in Isotropic Materials. For this case the explicit
expansion of (21) using (20c¢) gives
(R e4) — 58 69 )cos?d

+ (a8 547 — 577 5U7)cosf sind

+ (3016 - 347 6)sin?0 =0 1)
Here too it is tacitly understood that the expression should be
evaluated at 6=6,. To reduce the amount of algebraic
manipulations involved we straightaway consider the case of
isotropic materials by letting 8=+=1 which also makes p=i
and m=1. Use of (26) with these values along with (14) in (2)

results in the following expressions for the relevant stress
components in the first set of solutions:

2uNe 1
0 =- L p S —aen)p
52{1? =2uN1+ NPy _, 42a)
2unN1 + N
o0, =220 N ep, )

Similarly the use of equations (26), (27), (28), (35), and (36) in
(33) leads to the expressions for the relevant stress com-
ponents in the second set of solutions
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85 =—iN +x){2u<x—si2)cpx
+ [2#{%2 —(2>\—1)}c2 +a<2~ %)]PH}
67 = -1 +)\){—2u)\cP)\

+ [m{(z)\— e + (2— %)} +a<2— %)]PH}; (420)

171
6&5,)2 =—iN1+ )\){2#[(1 + Ac?) — _] =Py
29l s

+2u[(x—2)—(2>\— et + 515] EPH}

-

where 7 is defined in (40b) and ¢ and s have been reduced to
cosf and sinf respectively in accordance with (36). Sub-
stitution of (42) into (41) followed by much simplification
yields the required eigenequation:

2
WNAEN {[(cz DN+ (2 — DA+ ;—]P§
n

1
+ [(c2 — DN+ (2~ DA+ Z]Pigl
—[2c*(c® = DN + (2 = 1)(3c2 — 1A

+{c* +2(1 =20 +1 }]PXPH} =0 (43)
where ¢=cosf and s=sinf. Once again this is seen to be the
same as that reported by Thompson and Little (1970) and
Bazant and Keer (1974) except for the slight differences in
notation. (There is a typographical error in equation (16) of
Bazant and Keer (1974). In the coefficient of Py (x) Py_;(x)
the term 2(1 — p)A? should read 2(1 — 2»)x2.)

7 Numerical Results

To illustrate the application of the solution procedure the
eigenequation corresponding to several examples was solved
for real values of A that lie between 0 and 1. The search was
carried out by evaluating the expression on the left hand side
of the eigenequation at the two ends of a specified region on
the real axis. If the two values differ in sign a root is present
within the region. (The region should not be too large;
otherwise this method will fail to detect roots when an even
number of them are present in the same region). A promising
region is bisected and each subdivision is tested separately to
determine which one contains the root. This procedure is
repeated until the region size reaches the tolerance level of
accuracy. The computations presented here were carried out
in IBM double precision and the values of \ were refined to
+0.00005 so that they would be accurate to 4 decimal digits.

7.1 One Boundary. The material corresponding to
degenerate case defined by (u, 3, vy, v) was used. As we stated
in Section 6, the material property matrix can be normalized
with respect to u causing A to depend only on 8, v and ».
When assigning values to these parameters one must ensure
that they result in a positive definite material stiffness matrix.
This requires

u>0, v>0, v< i, 62>1—2€’y (44)

The eigenequation for a rigid inclusion as given by (39) is
independent of . Results obtained for varying 8 with »=0.3
are shown in Fig. 2. Presented in Fig. 3 are similar results
obtained for the case of a notch for different values of 8 and ~y
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with »=0.3. In the case of isotropic material (i.e. f=vy=1)
the results agree with those presented by Bazant and Keer
(1974). Even though both figures are for »=0.3 the trends
they depict are typical of other values of » also. It is seen that
the anisotropy represented by the deviations of 8 and v from
their “‘isotropic value’’ of 1 does exert a substantial influence
on the order of the stress singularities.

7.2 Two Boundaries. In this case there are many variable
parameters: the material properties, two boundary angles and
two boundary conditions. For an example we have picked the
case of an isotropic material with »=0.3. The occurrence of
stress singularities for three combinations of boundary
conditions at § = 6§, and § = ¢, are considered; namely
fixed-fixed, free-free, and fixed-free conditions.

The admissible ranges of values for the boundary angles
are: 0 deg < 6; < 0, < 180 deg. In the fixed-free case this
entire region on the 6,/6, plane was scanned for possible
stress singularities. Fig. 4 presents the results as contour lines
of A. Only the region that contained singularities on the
admissible part of 6, /6, plane is shown there. This plot can be
used to find N corresponding to free-fixed case also because A
for free 0, /fixed 6, is the same as that for fixed (180 deg—
0,)/free(180 deg —6,).

In the fixed-fixed and free-free cases the A corresponding
to 6,76, is the same as that for (180 deg—0,)/(180 deg—0,)
which means that on the 6,/68, plane the A\ values are sym-
metric about the line #; + 6, = 180 deg. Therefore only the
region 0<6; <90 deg, 6, <6, <(180 deg—6,) had to be
considered. The parts of this region that contained possible
stress singularities are shown in Figs. 5 and 6 with contours of
A

The N’s shown in the figures are the smallest admissible real
values between 0 and 1. In both the free-free and fixed-free
cases we encountered the situation where there are two real N’s
which turn into a pair of complex conjugate roots at some
point in the #,/6, plane. The real part of the complex roots
would still be between 0 and 1 and would lead to a stress
singularity. In Figs. 4 and 6 we have shown the boundary on
which this transition takes place. It should be pointed out that
on the boundary where real roots turn into complex roots, A is
a double root and the stress may have the p* !(In p)
singularity in addition to the p*~! singularity (Dempsey and
Sinclair, 1979).
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Nonlinear Analysis of Crazes

This paper concerns the nonlinear mechanical behavior of a single craze of finite
length contained in an extended linear elastic medium. The craze is modeled as a
distributed spring with a nonlinear force-displacement relation, which exhibits a
hysteresis loop upon unloading. Stresses, displacements, and energy release rates

are computed and compared against results for a linear craze. The case of a central
crack within the craze is also considered.

Introduction

Crazes are thin, elongated defects that develop in many
polymers. Although resembling cracks in their geometric
configuration, namely length to thickness ratio of 0(10%),
crazes consist of interconnected voids that are transversed by
thin fibrils which span the gap between opposite faces of the
bulk polymer. These fibrils transmit substantial loads,
thereby reducing the ‘“‘craze opening displacement™ to a level
that is one order smaller than the opening displacement of a
crack of an equal length. A schematic drawing, representing
the craze region as an array of parallel fibrils between op-
posite faces of bulk polymeric material, is shown in Fig. 1.

Crazes grow by a process of fibrillation at their tips and
thicken due to both stretching and drawing mechanisms. The
lengths of the “‘process zones” at the tips are about two to
three orders of magnitude smaller than the length of the craze,
and typical craze opening profiles terminate with ‘‘cusps’’
within those tip regions.

The formation, growth, and shape of crazes have been
studied by many investigators [11-12]. The subject is
technically important because crazing appears to be a
preferred energy absorbing mechanism in many cir-
cumstances, and its efficient use can find applications in both
adhesives and composite materials. Nevertheless, the
modeling of the mechanics of crazing appears to be deficient
at the present time. Many investigators associated the craze
region with the tip zone ahead of cracks (e.g., a plastic
“Dugdale zone’’ [6, 8, 10, 12]) and attempted to correlate the
behavior of crazes with considerations of crack stability. This
approach suffers from the severe handicap of being unable to
handle the case of crazes that develop in many polymers in the
absence of cracks. In fact, it is well known that, in most
circumstances, crazes are the precursors of cracks. Fur-
thermore, even in the presence of cracks crazes can grow while
crack lengths remain stationary.

This paper extends a recent work [13] where the craze was
modeled as an elastic foundation with a linear force-
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Fig. 1 A craze model showing parallel fibrils connecting opposite
faces of the bulk polymer

displacement relation. The formulation, which was akin to
fracture mechanics, led to a singular solution associated with
stress intensity factors. These factors can be related to the
familiar energy release ‘‘rates’ that govern the stability and
growth behavior of crazes. A subsequent work [14], which
incorporated time-dependent response for both craze and
bulk polymeric materials, demonstrated that the now time-
dependent stress intensity factors could explain various
observations regarding craze growth and arrest.

Several experimental investigators [1], [5] noted nonlinear
force-displacements relations for the craze fibrils. Fur-
thermore, it was observed that significant hysteresis loops
developed upon unloading. A schematic drawing of the craze
response during the first three loading-unloading cycles is
shown in Fig. 2. In the present work the nonlinear response of
the fibrils, as sketched in Fig. 2, is represented by a nonlinear
boundary condition, which is imposed on the linear elastic
exterior region.

Formulation

Consider an infinite, isotropic, homogeneous, linear elastic
region with G, v denoting the shear modulus and Poisson’s
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Fig. 2 A sketch of a typical stress-strain response of the craze
material

ratio, respectively. Assume a state of plane strain and let oy,
oy, Txy, U, and V designate stresses and displacements
relative to the Cartesian coordinates X, Y.

Let the region be subjected to oy =T as |Y |—o and
consider a diminshingly thin craze along the X-axis at
—-a<X<a.

Modeling the craze as a nonlinear elastic foundation with a
force-displacement relation given by o=F(V), it suffices to
consider the following boundary value problem

Txy(X,0)=0 —<X <o

V(X,0)=0 | X1 >a

oy(X,0)= — T+ FV(X,0),X] [Xl<a (0))
oy(X,Y)—0 [ Yl -0

It can be shown [15] that if (1), and (1), hold then

G 1 (¢ 0V(t0) df
S g S—u 3 E-X @
whereby (1); gives
B G 1 e 93V dt
T_F(V’X)_I—V?Sﬂz 3t t-X ®)

In view of the properties of Hilbert transform [16],

equation (3) can be rewritten as

G 1 d S‘I V d 4
1-v 7 dX —af——X‘E @)
In (3) and (4) V= V(X,0), while under the integrals V= V(£,0).

The explicit dependence of the nonlinear response function
F on the coordinate X along the craze allows the in-
corporation of the case of a central crack within the craze, as
well as the case of unloading over a portion of the craze
region.!

Assuming that F(V,X) is continuous in Vit follows that the
solution of the singular integral equation (4) will be con-
tinuous over [—a,a] if and only if V~(a®—X?)". More
specifically, V takes the form

V=%Va2—X2x(X/a) &)

T=FV,X)—

In (5) x is analytic over [—a, a] and A is some length
parameter.

Similarly to [13], it is advantageous to nondimensionalize
(4) and (5). For this purpose let v=V/A, x=X/a,
F(V,X)=Tf(v,x), and s=&/a. Then, in view of (5), we have
V= AV1—x*x(x) and (4) can be rewritten as follows

1 d¢' v
=) -r— o |
fwx) T dx J-1 s~xds ©

In (6) A= GA/[(1 —v)aT]

Mt is possible to extend F to F(V,X,a), accounting for a redistribution of the
response with craze length a. However, this will not be considered here due to
the absence of pertinent data.

98/ Vol. 53, MARCH 1986

If we select, in particular, A=(1-v»)aT7/G=4 then A=1.
This value of & corresponds to the opening displacement of a
crack of length a in the same extended region. We shall adhere
to this choice of A=4, for which x(1) provides the non-
dimensional stress intensity factor (the ratio between the stress
intensity factor of the craze and that of a crack of equal
length).

Following the same procedure as in [13] it is possible to
convert the singular integral equation (6) to a Fredholm in-
tegral equation with a logarithmic singularity as follows

1
x() + % SO Ro(s%,x)I(1 = 5%) " x(s),8lds = 1 M

In(7) Ry (s2,x1)=(1 —s*) " R(s*,x?)

where

/ 1-x?
T R(s*,x¥) =

1-x?
—In@? ~s2) +1In(l —s?)+2In [1+ - ] 0<s<x
1 —s? (8a)
—In(s? —x2) +1n(1 —x?) +2In [1 + 5 ] x<s<l
1—x (8b)

Assuming further that, during the first loading cycle, the
leading term in f{v,x) is linear in v we can express f as
f(v,x) =vg(v,x). In this case equation (7) gives

1 1
X+ — S . R ) x(9)gl(l - %) x(s),slds=1  (9)

Obviously, if a symmetric crack of length 2C(0<C=<a)
occupies the central portion of the craze, then g=0 for
0<s=c, withc=C/a.

As noted previously in [13], the form (5) yields a
displacement profile that terminates with a vertical tangent at
X=a(.e., at x=1). In view of the exceedingly small length of
the process zone at the craze tip it is possible to correct this
deficiency by means of a Barenblatt-type analysis [17], as
detailed in the Appendix.

The Unloading Case

Consider the first unloading path shown in Fig. 2. The
force-displacement relation along this curve can be expressed
by

o= 0(’")f,,(v/v('")) . (10)

where ¢, v are the maximal values attained by the stress
and the displacement during the loading stage. The function
f. is monotonic in its argument and attains its largest value of
unity at v/v(m)= 1.

Since only one unloading curve is available experimentally,
we shall assume that equation (10) expresses the unloading
path from any stress level.

In view of Fig. 2, there remains some positive residual
strain upon complete, first cycle unloading. Consequently, we
assume that f, takes the form

fu(U/U(’n)) = — kO +gu(U/U(m))

where g, can'be expanded in powers of its argument.
Consider the case when the remote load T is reduced to
aT(0=a<1). Since, in the present circumstance, the for-
mulation of the boundary value problem results in an ex-
pression that is essentially similar to equation (4), we still have
a nondimensional displacement v(x) of the form v(x)=(1—

(11
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x2}” x(x). Therefore, the singular integral equation results in a
form analogous to equation (9) as follows

1 ¢! ,
X+ — [ R62 80 6D, o)/ X 0)slds

= a+R() (2

where ’
i
R(x)= k—ﬂ(_) S o R(s*x2)x" (s)gl(1 = s%)” x"(s),slds  (13)

In equations (12) and (13) v%(s) and thereby x"(s) are
presumed known from a prior solution to the loading case.

Work and Energy-Release Within the Craze

In analogy with the concepts of fracture mechanics, it is
reasonable to assume that crazes will grow when the stress
intensity factor, hence x(1), exceeds a critical value. For this
reason x(1) is the essential quantity to be calculated in the
present work. Nevertheless, it is of some interest to note that
in contrast with cracks, where the entire energy release ‘‘rate”’
is associated with the work done at the tip zone due to crack
advancement, crazes absorb energy also throughout the
fibrillated region as their tips advance. For that reason the
two portions of energy release ‘‘rate’’ are calculated below.

The work W in the portion 0 < X <a of the craze is given by

a /0 VX _ a e _
w= So (SO o-2dV)dX=ZSO (SO F(V,X)dV)dX (14)
whereby, the ‘“‘work relase rate’’ is
Via)
W S FV,X)dV
da 0

o (21,7 rnoar
+ . (% . (V,X)dV)dX (15)

The first integral in (15) vanishes since, by hypothesis,
V(a)=0. Employing the chain rule d/da=0V/dad/dV we

obtain

oW 1 4
—_— =2S — F(V, X)dX (16)
da 0 da
In view of (5), and with A=, we have
oV & ( X IR dx
= _ 1—x? _w.)
da a 1-x? X ox
Therefore, with F(V,X)=Tf(v,x)=Tvg(v,x), and v=
1 —x*x(x), (16) yields
1 oW 1 a
- — =2§ [x—x(l—xz)—l]xg(\ll—xzx,x)dx an
76 oa 0 ox

The nondimensional energy release term (17) should be
compared with 7[x(1)]?, which provides the energy release
‘“‘rate” due to the tip zone mechanism.

For a linear craze f(v,x) reduces to k(x)v, whereby (17)
reduces to

1 aw
T6 oa

When a crack extends over the portion 0<x=c, the in-
tegrals (17) and (18) should be evaluated between the limits ¢
and 1 instead of O and 1.

=2§; k(x)x[x—x(l-xz)%]dx (18)

Numerical Computations and Results

Data on stress-strain behavior of crazes [1, 5] can be
converted to the forms o=fv) and o=d""f,(v/v'") as
required by the present formulation. Unfortunately, those
data are not supplemented by information on craze opening
displacements and craze lengths under prescribed loads,

Journal of Applied Mechanics
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Fig. 3 Comparative opening displacement profiles v(x) versus x for
selected values of c. Nonlinear results (solid lines) and linear values
(dashed lines).
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Fig. 4 Nondimensional stresses ofx) versus x within the craze, for
various values of c¢. Nonlinear results (solid lines) and linear values
(dashed lines).

which is also required in the present analysis. Consequently,
the computations reported in this section are based on ad-hoc
combinations of stress-strain data [1, 5] and craze profile
information [2, 4].

The stress-strain curve for the initial load was ap-
proximated by the cubic equation o=80e—
301.235¢2 +438.958¢%. To convert strain to displacement Vit
was assumed that V=eb,, where the ‘“‘premordial craze
thickness’’ was 6, =0.1um. Considering typical properties of
polystyrene, let G =1000 MPA and »=0.352. Finally, assume
that under 7=7.2 MPa the craze length is ¢=50um. In ac-
cordance with the above stress-strain relation ¢=7.2 MPa
corresponds to e=0.18, thereby yielding a craze opening
displacement V(0)=0.018um as compared with a crack
opening displacement §=(1 —»)7a/G=0.234pm.

Converting to nondimensional quantities we have, for the
first loading stage, f(v) = vg(v) where g(v) was curve-fitted by

2 These values are somewhat different from those employed in Ref. [13].
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gv)y=b, +byv+byv?

with b, =26, b, = —229.1, b, =781.2.
The first unloading curve in [5] was approximated ac-
cording to equation (11) with £, =0.47578 and

£,(0/v") =B, + B, (u/v") + By(v/v™)?

where B, =2.79494, B, = — 5.77698, B, =4.45782.

The solution to equation (9) with g(v) given in (19) was
obtained numerically. In view of the logarithmic singularity in
R(s%,x?) the segment [0,1] was divided into n equal subin-
tervals, and g(v) interpolated linearly over each of these
subintervals. The resulting subintegrals were evaluated
analytically, in analogy with the linear case detailed in the
Appendix to [13]. In the present nonlinear case it is only
necessary to redefine the quantity L(x,s) so that instead of the
previous relation L(x,s)=k(s) V(1 —s?)/(1—x%), we con-
sider now the three expressions

LOx,5) = by(s)V(1—52)/(1—x?)

(19)

20

LO,s) = bW -sDWA —sD/(1=x2) (21
LO(x,5) = by(s)(1 -2V =52)/(1 —x%)

These L% (x,5) (k=0,1,2) are now employed, in manner
analogous to [13], to generate matrices A (k=0,1,2) which
yield the following nonlinear system of algebraic equations
for x; =x(x,)

Y Gy +AQX + AP + AP =1 2)
j=0
i=0,1,...n
Asnoted in [13], im _ R(x?,s*)=2; thereby, if numerical in-
x—1

tegration employs the trapezoidal rule, we have Aﬁ,"} =
(2/nmyby forl=jsn—1and AQ=(1/nm)by for j=0 and
Jj=n.Also, A)=AD=0forall j.

The solution of the system (22) was obtained by means of
the Newton-Raphson method, employing the linear solution
as an initial guess. For an accuracy of 0(10~%) convergence
was typically achieved after five iterations. The results were

somewhat sensitive to the number of subdivisions », and it

was found that an accuracy of 0(10~3) was attained with
n=_80.

For comparison, the linear solution was also evaluated with
the same values of a, G, and ». To attain a value of
v(0)=0.06712, which is the opening displacement obtained
for the nonlinear case, it was necessary to compute the linear
solution with k= 14.19.

100/ Vol. 53, MARCH 1986

The case of a central crack of nondimensional length ¢
within the craze was handled by letting k(s) =0 in the linear
case, and by(s)=b,(s)=Db,(5)=0 in the nonlinear case, for
O<s<ec.

Various results, with comparisons between linear and
nonlinear values, are shown in Figs. 3, 4, and 5. Note that the
differences between linear and nonlinear displacement
profiles, as shown in Fig. 3, are surprisingly small. Therefore,
measurements of those profiles cannot provide conclusive
information regarding the response of the craze material.

It should be noted that in the absence of a criterion for
craze ‘‘disintegration,”’ namely, the condition for crack
formation within the craze, the stress profiles shown in Fig. 4
should not be interpreted as ‘“failure stresses.”’ These stress
profiles are merely computational results that demonstrate the
differences between linear and nonlinear values.

Turning to the unloading case, the ‘“fully loaded’’ quan-
tities ") and thereby o{" were identified with the solution to
equation (22). In view of equation (13), the values of
R; =R(x;)in (12) are given by

n
Ri=ky 25 (APX™ +APOS™Y
j=0

+AP(™)?] i=0,1,...n 23)

To solve for x(x) in equation (12), we employ the numerical
scheme of [13] with a modification that is analogous to that
prescribed in equations (21), with the following additional
replacements

bo(s) — By(s)P)(s)

by (s) — Bi(S)P(s)/x"(s)

by(5) = By(S)PU) (s)/ (x"(s))?
where P (s)= by + b, 0" (s) + b, (v (s5)).

These replacements generate matrices A% £=0,1,2 and
lead to the nonlinear system for the unloading solution x

24

n
Y Gy AP x; + AL + AP = a4+ R, (25)

j=0
i=0,1,...n

The solution for the unloading case, as expressed in
equation (25), was again obtained by the Newton-Raphson
method. Covergence was attained after about six iterations.

Results for =1 (no unloading), oo=0.5 (partial unloading
to half the maximal load) and oo=0 (complete unloading) are
shown in Fig. 6.> For purposes of comparison, the
corresponding displacement profiles for the linear case, where
the displacements are proportional to the load level, are also
exhibited. The substantial differences between the linear and
nonlinear values of the displacement profiles indicate that
unloading tests should provide valuable information on the
response of the fibrillated, craze region.

Finally, the energy-release ‘‘rates’’ at the tip of the craze
W, and the work release ‘‘rates’” within the craze region W,
are plotted in Fig. 7 versus the nondimensional length ¢ of a
central crack. Note that as the crack length approaches unity
W,—0and W, —w, as expected.
Concluding Remarks

In this work it was shown that the analysis of the response
of crazes can be disengaged from crack growth con-

31t should be remarked that upon complete unloading (a«=0) the present
formulation results in slightly compressive stresses within the craze region
(9compression =2-3 percent of the remote load 7). If the craze fibrils cannot
support compression, then the present analysis requires a suitable modification.
Such a modification was not included herein.
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Fig. 6 Nondimensional opening displacement v(x) versus the non-
dimensional distance x during first unloading cycle. Cases of full load
(a=1), partial unloading («=0.5) and complete unloading {(«=0).
Nonlinear results (solid lines) and linear values (dashed lines).
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Fig. 7 Energy release rates at the craze tip, wyjp = 7r[x(1)]2, and work
release rates within the craze region w, =(1I7%) aWida, versus the
nondimensional half-crack length c. Nonlinear results (solid lines) and
linear values (dashed lines).

siderations. This feature of the present work provides a basis
for predicting the behavior of crazes which develop and grow
in the absence of cracks.

The present work indicates that the departure between
linear and nonlinear behavior of the craze fibrils is likely to be
much more noticeable under unloading than during loading.

It should be pointed out that the opening profiles for o= 1
as shown in Fig. 6 do not agree with observed results. The
discrepancy is most likely due to the fact that, in the absence
of any single set of complete data, the computations presented
in this paper were based on disjoint, partial sets of data.

Journal of Applied Mechanics

Further progress in this subject requires experimental
programs which provide complete information on craze
response. Such information should include craze lengths and
opening profiles under various load levels within both the
loading and unloading regimes.
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APPENDIX

Tip Zone Correction

It is known that the fibrillated, craze region terminates with
process zones at its tips. These process zones resemble a
fingerlike array of polymeric matter interspersed with voids,
as shown in Figs. 3, 4, and S of [13]. It has been suggested that
plastic regions develop within the bulk polymer ahead of the
process zones, in which case the tip regions would encompass
both plastic and process zones.

Since the lengths of the tip regions are about two orders of
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magnitude smaller than the length of the craze, it is possible to
consider their effects in ecliminating the mathematical
singularity associated with the present analysis in a manner
that is analogous to Barenblatt’s approach, and which
resembles the linear case of [13].

Denote by —¢,(X) the compressive stresses acting within
the tip regions le—«al <|XI|<lal and introduce the non-
dimensional quantities —p,(x)= —0.(X)/Tand e= o/a.

In analogy with equation (9) we now obtain

1o '
X+ — | RE % 0810 -5 x,0),5ds

- L Sl R(s* x)(1 =%~ p,(s)ds
T 1—¢

(Al)
In (A1) x.(x)=(-x*""v(x), where v (x) is the non-
dimensional displacement due to — p,(x).
Taking the limit x—1~ in (Al) we obtain, in view of the
form of R(s?,x?) given in equation (8)

2 i
X+ = | x el - x©lds
T JO

2t pAs)
=-= SH = ds (A2)

Consider now the asymptotic limit of x,(x) when x<1—e¢
(fixed) while e—0, denoted by x(x).
In this case the right-hand side of (A1) is given by

102/ Vol. 53, MARCH 1986

1
- ilim Sli R(s* x¥)(1 —s*) "V p (s)ds (A3)

T e—0
Obviously, in the asymptotic limit under consideration, the
value of x in (A3) is fixed, while s—1 . In view equation (8b),
we have that lim R(s?,x?) (1 —s%)~" =0 and therefore (A3)
vanishes. Cofiséquently, (A1) yields that x,(x) vanishes.

We thereby recover the well-known result that, for
vanishingly small tip regions, the tip zone correction does not
affect the solution outside those regions.

The tip zone correction is thus confined only near x=1, and
it follows from (A2) that

__ 2" e
x=- 2§ LD ds-—c. (ay)

The combined solution, denoted by x.(x), due to the remote
load T and tip region stress — o,.(X), is given by the singular
solution for 0 <x <1 - e namely

Xe(x) =x(x) for 0<x<1—¢ (AS)
while x.(1) is determined from
2 (! .
X+ = | X0l - xolds=1-C, (A

The amplitude and distribution of p,(x) in (A4) must be
such so as to yield a value of C, which leads to x.(1)=0,
eliminating the mathematical singularity associated with the
solution x(x).
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The Elastic Field of an Elliptic
Inclusion With a Slipping Interface

The paper analyzes the elastic fields caused by an elliptic inclusion which undergoes
a uniform expansion. The interface between the inclusion and the matrix cannot

sustain shear tractions and is free to slip. Papkovich-Neuber displacement
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Evanston, IL 60201

Introduction

The elliptic inclusion is defined in this paper as an elliptic
subdomain, in an infinite two-dimensional space, which
undergoes a uniform eigenstrain (stress-free strain, trans-
formation strain) e}, and which also has elastic moduli dif-
ferent from those of the matrix.

Most of the inclusion problems solved by Eshelby (1957)
and others assume continuity of displacements at the interface
of the inclusion, i.e., perfect bonding. Recently Mura and
Furuhashi (1984) found that the stress field of an ellipsoidal
inclusion with a slipping interface vanishes when the eigen-
strain has only shear components with respect to the principal
axes of the ellipsoid.

In this paper the complementary part of the theory is
developed. The eigenstrain in this paper is not of the shear
type. For mathematical simplicity, however, we consider a
two-dimensional inclusion. As expected, the solution cannot
be expressed in a closed form, and is in the form of infinite
series. Numerical results are given to illustrate the nature of
the elastic fields.

Relations for Elliptic Coordinates

Elliptic coordinates are obtained by the coordinate trans-
formation

x=ccosh acos 3

) , 0y
y=csinhasinf
Eliminating first 8 and then « from these equations,
¥ 2
clcosh’a | cisinhia
2 p @)

S AN |
c?cos?B  c’sin?p

Contributed by the Applied Mechanics Division and presented at the Winter
Annual Meeting, Miami, Fla., November 17-21, 1985 of THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.,
10017, and will be accepted until two months after final publicaiton of the paper
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, November 16, 1984; final revision, May 31, 1985.
Paper No. 85-WA/APM-28.
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potentials are used to solve the problem. In contrast to the perfectly bonded in-
terface, the solution cannot be expressed in closed form and involves infinite series.
The results are illustrated by numerical examples.

Fig. 1

Elliptic coordinate system used

and the coordinate lines are seen to be ellipses and hyperbolas
(see Fig. 1).

The relations between the displacements and strains in the o
and 3 directions are (Love, 1927, p. 54)

aU, 3/ 1
ea=h1—~+h1h2Uﬁ%( )

do 7;_
U, ] 1
eg="hy -a*B—ﬁ +h1h2Ua£<h—2> 3)
hy 0 , 0
Yas A a_(x(hZUﬁ)+h EB(han)

where

da \?  ( da\? B\Z [ B2
(9% O ,_ (98 98
i) (5 () +(2) @
From (1), we have
hy=hy,=h=(2/c*(cosh2c—cos2f) } * (5)

The relations between the strains and the stresses are given
by Hooke’s law

MARCH 1986, Vol. 53/103
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= O (kD + B 00ep)
%a= (k+De, +B—x)eg

oB=K_Gr{(K+1)eﬁ+(3—K)ea) 6
Totﬁ = G‘Yaﬁ
where G is the shear modulus, « = 3 —4v for plain strain and «
= (3 —»)/(1 + ») for the plane stress, and v is Poisson’s ratio.
The displacement components in the elliptic coordinates are
given in terms of those in the Cartesian coordinates by

ax ay
Uy=hy — U,+h — U,
“ e x da 7
o o (M
Ug=h U, +h
8=M e t+hy 35
or
U, =chsinha cos@ U, +ch cosha sing U, ®

Ug= —chcoshasinf U, +ch sinha cosg U,

where h is defined by (5).
The Papkovich-Neuber displacement functions ¢, ¢, and
¢, are used to represent U, and U, as

d
26U, = e (o +x¢1 +ydy)— (x+ 1oy
3 ®
26U, = > (@0 +xb1 +yd;) —(k+ 1),
where
V2hy=0, V2¢,=0, V2¢,= (10)

Boundary Conditions

Consider an elliptic inclusion that undergoes uniform
eigenstrains e} and e;. The present problem is to find the
stress field when the elliptic inclusion is free to slip at the
interface that cannot sustain shear tractions.

The boundary conditions at the interface o« = o are

U,=U,+Uz, ay
where the quantities with the bar pertain to the inclusion. The
meaning of U}, is as follows:

The elliptic inclusion with ef, ¢} will deform corresponding
to the displacements U} = e}x, Us = ¢}y if it has no con-
straint from the matrix. Because of the constraint, however,
the displacement for the inclusion is the sum of U* and the
elastic displacement U; caused by stresses and given by (9).
When U}is transformed into the elliptic coordinates by (8),

Ut = (c*h/4)sink2a](1 + cos2B) et + (1 — cos2B) e}],
Up = — (c*h/4)sin2B[(1 + cosh2a) e} + (1 — cosh2a) €;].

It may be noted that, if the eigenstrain also has a ¢; com-
ponent as in case of thermal expansion, the terms e} and ¢j in
(12) must be replaced for plane strain with e} + vej and €5 +
ve}, respectively. The boundary conditions (11) state the
continuity of the normal component of displacement and the
continuity of normal traction and vanishing shear stress.

It has been found by Mura and Furuhashi (1984) that a

0y =04, Teg=0, Tu=0

(12)

shear eigenstrain e}, does not contribute to the stress field for

the slipping inclusion. Therefore, €}, is not considered here.
Consequently, the present problem has symmetry about the x
and y axes.

The Papkovich-Neuber Functions

For an elliptic inclusion (a; > a,), the Papkovich-Neuber

displacement functions are chosen as

104/ Vol. 53, MARCH 1986

b9 =cp [F0a+ E A,,e‘"‘"cosnﬁ]

n=1

(13)
=09 E B,e "™cosnf3
n=1
for the matrix (o > «4) and
$o =Cg E A, coshno cosnf3
n=1
(14)

b, =cq E B, coshna cosnf

n=1

for the inclusion (o < op). Here ¢, = 0 and ¢, = 2Ge} or
2Ge}. In the expressions above, Fy, A,, B,, A,, B, are
unknown constants which are determined from the boundary
conditions (11).

Next we evaluate the displacement and stress components
corresponding to the terms in the series (13) and (14). The
quantities defined in the inclusion carry bars.

For ¢y = cpFpa,

2GU, /¢y =Foh, Uy =0,
0o /Co = —(1/2)Fyc*h*sinh2a,

ag/co = (1/2)Fycth*sinh2a, (15)
Tup/Co = — (1/2)Fyc?h*sin2B.
For ¢y = ¢ E A, e "cosnf,
n=1
2GU, -
—2 =-h E A, ne”"cosnf3
Co n=1
2GU, =
£ =—h E A,ne”"sinng
Co n=1
_Z_a_ =(1/4)ch* Y A,nl—(n—1)e~"cos(n +2)B
0 n=1
+{(n+1)e~=2ey (p—1)e~ "+2a}cosnf
—(n+ e "cos(n—2)G]
% =(1/4)c2h* Y, A,nl(n—)e~"cos(n+2)B
0 ‘n=1
= ((n+1e~ D4 (n—1)e~"+Dajcosnp
+(n+ e~ "*cos(n —2)p] (16)
_chzﬁ_ = —(1/4)c2h* Y, A,nl(n—1)e~"sin(n +2)8
0 n=1

—{(n+ e =2 p (p— e~ "+ }ginnB
+ (n+ 1)e "sin(n — 2)06]

oo
For¢, = ¢ E B,e~"*cosnf3,

n=1

2GU, d
© = —(1/4)ch Y, B,[(n+x)e~ - Da
C n=1
+ (n—x)e” D) x {cos(n+ 1)+ cos(n — 1)5},
2GU, )
Co = —(1/4)ch E B,[e~ 1~ Da

n=1
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+e~ 1+ DeY{ (n—k)sin(n + 1B

Lo
= ¢ E B, coshna cosnf,

. For ¢,
+ (n+x)sin(n — 1)}, n=l
o _ 34 - _ —(n—Da e1d ©
co =10 ; Bl =Lt e 2GCU“ =(1/4)ch Y B, {(n+R)sink(n—1)a
0 n=1
_ —(n+ Do !
+(n—«)e ( 3)]cos(n+3)ﬁ o . +(n—k)sink (n+1)a}
~(n—-a _»¢_ —{(n—-Na —(n o
+{(n+3)e 2—2+«k)e +4de % {cos(n+ 1)8+cos(n — 18],
+(n—x)e "I cos(n+ 1B+ { (n+k)e (N o .
—4e= (1D 2(—2 4 k)e D 26Us —(1/4)ch Y B, {cosh(n—1)a+cosh(n+ Da)
+(n—3)e= D cos(n—1)B “ n=
—{(n+x)e= Ve (n—1)e~ ey cos(n — 3)A), {(n—r)sin(n+1)B
an + (n+®)sin(n— 1B},
“L =6 ) Bynll (=3 D Je ~(/16)3h Y Byl (n# Deosh(n—Da
0 n=1 Co n=1
+(n—x)e” "thycog(n+3)B +(n— K)cosh (n+ 1)a)cos(n+3)8
Fl—(n=De "I 224 x)e~ ("D g 4o~ (14D + [ (n+3)cosh (n—3)a~2(—2+k)cosh(n—Da
~(n—x)e” "I jcos(n+ 1) — { (n+x)e” 1= +4cosh(n+ 1o+ (n—R)cosh{n+3)a)cos(n+1)8
+4e=(nmDe 4224 k)e (D + {(n+k)cosh(n—3)a—4cosh(n—Da
+(n+ e "*Iycos(n—1)8 +2(=2+R)cosh(n+ Da
+{(n+r)e” "D (n+3)e” "D cos(n - 3)B], +(n—3)cosh (n+3)a)cos(n—1)8
>, - + B)cosh (n—1)a+ (n—1)cosh(n+ o}
T“ﬁ = 344 _ _ -~ (n—-Na {(n
. (1/16)c*h ; Bon[—{(n—1e cosh(n— 3],
— —(n+a ey " - _
+(n—x)e }sin(n +3)8 8. =(1/16)c*h* E B,nl{ (n—3)cosh(n—Na
+{(n+De =N _3(_24g)e(n-he Co n=1

+(n—r)e” I gsin(n+ 1B+ ((n+k)e~ (13
+2(—2+k)e” "D 4 (n—1)e~ "+ Iysin(n—1)8
—{(n+x)e= "D g (n+ e~ "+ D) sin(n—3)4].

For ¢, = ¢ E A, coshna cosnf3,

n=1

+(n—k)cosh(n+ alcos(n+3)B
+{-(m~-Dcosh(n—3Na+2(—2+k)cosh{(n—Na
+4cosh(n+ a— (n—k)cosh(n+3)ajcos(n+1)83
~{(n+&)cosh(n—3)a+4cosh(n—1a
+2(—=2+k)cosh(n+ Do

+(n+ Dcosh(n+3)a}cos(n—1)8

26U, =h Zm: A,n sinkna cosnf, + {(n+R)cosh(n— 1)
“ =1 + (n+3)cosh(n+ Dalcos(n—3)01, (19)
2GU = - o
£ =—h ) A,ncoshnasinn, (/16K Y Bunl{ (n=Dsink(n -
0 n=1 0 n=1
5 @ +(n—k)sinh(n+ Dalsin(z+3)8
I U Z:;IA"”[(”“ 1coshna cos(n +2)B + { = (4 Dsink (n — 3)a+2(— 2 + B sink (1 — D
—{(n+Dcosh(n-2)a+ (n—1)cosh(n ~(n=Rsink(n+3)ajsin(z+ DB
+2)ar) cosnB * —{(n+R)sinh(n—3)a+2(—2+ &)sinA(n+ Do
+ (nojr 1ycoshnacos(n—2)8] +(n—Dsink(n+3)a}sin(n— 1)
* ’ (18) + { (n+ Rsink(n—Da+ (n+ Dsink (n+ a)
% =(1/4)c?h* Y A, nl(n —1)coshna cos(n +2)B sin(n—3)g].

€o n=1 Using the results above and considering the symmetry of
the problem about the y axis it is seen that 4, (n=1, 3, 5,
- 1 - —1)cosh p n =
{ (n+ )cosh{n—2)a+ (n— 1)cosh(n ...), A, (n=1,3,5,...),B, (n=0,2,4,...),and B,
+2)a}cosnf

(n=0,2,4,...)vanish.
+(n+1 h -2)81, ..
(n+1)coshnacos(n =2)6] Determination of the Unknown Constants
The remaining unknown constants A;, A;, B, B; and F, are
determined from the boundary conditions (11).
The condition U, = U, + U} at o = o yields

% = (1/4)c*h* Y, A,nl(n— Dsinkna sin(n +2)8
0 .on=1

— {(n+ Dsinh(n-2)a+ (n—1)sinkh(n+2)a}sinng

+ (n+ 1)sinAno sin(n — 2)65]. Fo+ E [Wear Ay +kp By +kzByit)

n=0
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Fig. 4 Slip magnitude along the interface of inclusion
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Fig.2 The stress distributions along the x axis +8pB, | +8pB,., +SpeB, . 1)cosnB=0

00r The condition 7,53 = 0 at @ = o corresponds to

tpoFosin2f+ E (taAu 2 HpA, +ipd, o
Gy (sLip) n=1

_  +ig By 3 +ipmB, tigByyy + g By a)sinn=0.  (22)

-05f The condition 7,5 = 0 at o = oy yields

*
y
«<

Z (t-Al/—ln~2 + fAZ/_ln + t-AJAn+2 + t-Ban—3

n=1

+igp By g B, g B, 3)sinnf=0 (23)
-1or where T = G/G. The constants ku;, kg, kaiy kpiy S, Sais
Saiv Sais Shis tros Lais tais tais and fg; are known functions of
n, ag, k and & Equating the coefficients of cosnf and sinnf (n
=1,2,3,...)in (20) or (23), we obtain an infinite system of
algebraic equations for Fy, 4,, B,, A,, and B,,.

Stress /2Ge

Gy (SLIP)

L Numerical Calculations

For a numerical example we calculate the stress field and
slip magnitude when an elliptic inclusion of the same material
as the matrix and with an axis ratio &/¢ = 1/2 undergoes the

eigenstrain ef = 2¢;. The stress components along the x and y

1 L i 1 | 1 l 1 1 ] . . . . . . .
o0 Ol 0.3 0.5 o7 09 axes inside the inclusion are shown in Figs. 2 and 3. The solid
y/b curves are for the slipping inclusion and the dotted curves for
i o the perfectly bonded inclusion. The stress field for the slip-
Fig.3 The stress distribution along the y axis ping inclusion is not uniform as it is for the perfectly bonded
inclusion. The stress field generally relaxes but may increase
o o locally due to slip at the interface. The corresponding slip
~ (/DY kA, 4+ kg B, |+ kB, }cosnB (20) magnitude along the interface is shown in Fig. 4. The point x
_ 2 ¥ % = a,y = O corresponds to 8 = O and the pointx = 0,y = b
(G_/TZCO)C sink2a { (ex +¢; )4_-(6’( €;)c0s2} corresponds to 8 = 90 deg. The slip direction is indicated by

The condition 0, = 6, ata = oy gives the arrows in Fig. 4.

Since the problem contains a large number of independent

SpFo+ E [(Sq1A,_s+S1A, +SuA,,»  parameters, an exhaustive representation of the results
=0 numerically is not feasible. It may be noted, however, that
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similarly to problems with specified surface tractions,
(Dundurs, 1969) eigenstrain problems also show a reduced
dependence on the elastic constants. Thus, instead of a
general dependence on T', «; and «,, the stress components in
eigenstrain problems are of the form G/[T'(x, + 1) + &, + 1]
times a function which contains only two combinations of the
elastic constants. The derivation of this result is given in the
Appendix, and it was confirmed for some numerical runs
which are not quoted here.
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APPENDIX

To show the reduced dependence of the stress components
on the elastic constants we use the complex-variable for-
mulation of plane elasticity (Muskhelishvili, 1953) in which
the displacement and stress components are related to the
complex potentials ¢(z) and ¥ (z) through

2G(U,+iU,) =kdp~2¢" — (A1)
o+ 0y =2(¢" + ) (A2)
Opy = Oy + 200, =2(2¢" +") (A3)

It is seen from (A2) and (A3) that the stress components
depend on the elastic constants in the same way as the
complex potentials. When the eigenstrains are compatible, the
elastic constants can enter the complex potentials only
through the boundary conditions at the interface. The
requirements that the normal tractions be continuous and that
the shear tractions vanish at the interface are homogeneous
and contain no elastic constants. Hence, only the condition on
the normal displacements need be examined in detail.

The normal component of displacements in the complex
formulation is given by the expression

4GU, =e " (kp—2¢' —¥) +e? (kdp—20" —¥)  (Ad)

where 0 is the angle from the x-axis to the outer normal. The
differential relation

d(¢+zd' +¥) =i(t,+it,)ds (A5)

is also needed in the derivation. In (AS5), ¢, and ¢, denote
traction components, and the arc-coordinate must be chosen
so that the material is on the left when moving in the direction
of increasing s along the boundary.

Whenever the eigenstrains in the inclusion are compatible
and can thus be integrated for displacements, the required
continuity of normal displacements at the interface can be
written as the first equation in (Al) or

UY +UR =f(s) (A6)

Journal of Applied Mechanics

For (A6), the superscripts 1 and 2 refer respectively to the
matrix and the inclusion, U, is normal displacement caused
by stresses and reckoned positive in the direction of the outer
normal. Moreover, f(s) is a known function corresponding to
the normal displacement of the integrable eigenstrain in the
inclusion. It is important to note that (A6) is the
nonhomogeneous condition in the problem. Substituting
(A4), (A6) becomes

Tlexp(—i6,)(ky &, ~ 2] — Y1) +exp(i6, )k, b1
— 2 — )] +exp(— i, )(ky by — 265 ~¥3)

+explif) (1 65 — 23 — ¥2) =4Gof (5) (A7)
where the subscripts 1 and 2 are used to refer to the matrix
and the inclusion, and I' = G,/G,. At this point, the left side
of (A7) contains the three elastic constants T, k;, and 5.
Newton’s third law requires that at the interface

d(@, +20] +¥,) =d (¢, +2; + V) (A8)
Due to the fact that the interface does not transmit a net force
and, moreover, that an arbitrary complex constant v can be
added to ¢(z) and «¥ to Y(z) without affecting the
displacements, it is easy to show that (A8) yields

¢ +20] +¥) =¢, +2¢3 + ¥, (A9)
at the interface. Noting that exp (i6,) = —exp (i0,), it follows
from (A9) that
exp(—i0,)(¢, +2{ + V)
+exp(— i, )(¢, + 203 + ¥, ) =0 (A10)
exp(if, &, +2b{ + 1)
+exp(i6, (6, + 23 + ¥,) =0 (All)

Finally forming the linear combination (A7) + Y2 (I'+1)
[(A10) + (A11)] of the preceding equations and dividing by T’
(k; + 1) + ky + 1, theresultis

@2+ &+ B) [exp(— i), +expl(i6,)$,]
~(&—B) [exp(—i0,) @[ + Y1) +exp(i0, )(Zo|

+ Y1+ Q2— &~ B) [exp(— i), + exp(if,) b, (A12)
+ (&~ B)lexp(— i0,)(z¢] + ¥, ) +exp(i8,)(Zd3 + V)]
_ 4G,
B (s +1)+x, + lf(s)
where
. T'(+ 1)~k +1) A_P(Kl—l)—(l(z—l) (A13)

T(g + D)+ +1° Tk +1)+x,+1
The constants & and (Dundurs, 1969) are measures for the
mismatches in the uniaxial and voluminal compliances of the
two elastic materials. It may be noted that —1 = & = +1, —
Y2 = 8 = ¥4, that & = = 0 for identical materials, and that
& and f simply assume opposite signs upon interchange of the
two materials. The last fact is clear by reflected in the
structure of the left side of (A12).

Since (A12) is the only nonhomogeneous condition among
those that determine ¢(z) and y(z), it is clear that the
complex potentials are of the form {G,/['(x; + 1) + & +
11} F (z; &, B). Consequently, on basis of (A2) and (A3), the
stress components have the same dependence on the elastic
constants. It may be noted that the shape of the inclusion does
not enter this derivation.
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1 Introduction

Problems of wave propagation in layered elastic composites
have attracted a great deal of attention from researchers dur-
ing recent years [1-6]. Several studies [7-9] have used Flo-
quet’s theory for one-dimensional wave propagation or
Bloch’s theory for three-dimensional wave propagation. These
investigations have shown that when the wavelength of a har-
monic wave is comparable to the characteristic length of the
composite layers, successive reflection and refraction of the
waves from the interfaces between layers leads to a significant
dispersive effect. Such phenomena cannot be predicted by so-
called ‘‘effective modulus’’ theories. For anti-plane or plane
strain waves, the dispersion relationship can be interpreted
geometrically as a surface in the wave number-frequency
space. The important feature that was discovered is the
presence of pass bands and stop bands, i.e., regions in the fre-
quency spectrum where harmonic waves are either propagated
freely or attenuated, respectively. The curves on the surface
which define the boundary between the pass bands and stop
bands divide the surface into so-called Brillouin zones.

The analyses made by Delph, Herrmann, and Kau [7-9] and
by other researchers were performed with the assumption that
the material properties within each layer of the composite were
homogeneous. However, considering realistic manufacturing
processes and/or naturally occurring variations it may not be
reasonable to expect a uniform distribution of the elastic con-
stants and mass density throughout each composite layer. It is
the purpose of this paper to present a general method to
analyze the sitution in which the cells in the periodically
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combined with a Wronskian formula to yield the dispersion relationship for this
nonhomogeneous composite. Numerical results show that the presence of material
nonhomogeneity affects the range of frequencies which can pass through the com-
posite unattenuated.

layered composite structure are nonhomogeneous, i.e., the
elastic constants and mass density depend on the spatial coor-
dinates within each layer.

This method is based on a procedure of representing the
solution of the governing second order ordinary differential
equations by means of a technique taken from probability
theory. Combining Floquet’s wave theory with properties of a
special Wronskian formula, the dispersion relationship for
wave propagation in certain nonhomogeneous composites is
derived. Numerical calculations pertaining to the dispersion
relationship for nonhomogeneous composites have shown that
the presence of a material nonhomogeneity within each layer
of the composite alters the width of the stop band and affects
the dissipative characteristics of the medium.

2 Derivation of the Dispersion Relationship

The system under consideration consists of an infinite se-
quence of two alternating layers, each of which are taken to be
nonhomogeneous and elastic. Perfect bonding is assumed be-
tween the adjoining layers. A unit cell is defined as the union
of any two adjacent layers. As shown in Fig. 1, the two
lamellae of the N-th unit cell have variable Lamé moduli
N (X)s p ()3, (N(X), pr(x)), variable mass densities
{pm(x), ps(x)}, and thicknesses (24,, 2k}, where the
subscripts m and f refer to ‘‘matrix” and ‘‘fiber” layers,
respectively.

Let u, v, and w be the three Cartesian components of the

. displacement vector in the x, y and z directions, respectively.

The layers lie in the y-z plane. Consideration will be given only
to waves propagating in a direction normal to the layers. For a
one-dimensional longitudinal strain wave propagtaing in the
x-direction, only the z component of displacement is nonzero.
Therefore, we take

u=u(x,t) v=w=0 Q.1

where the function u (x, £) satisfies the equation of motion
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Fig. 1 Geometry of nonhomogeneous layered composite

d%u a3 ou
u _9(p __>
P(¥) 5 8x< ) 5
where D(x) = MNx) + 2u(x). The material properties D(x)
and p (x) satisfy periodicity conditions
D(x+d)=D(x) p(x+d)=p(x) (2.3)12

where d = 2(h,, + hy) represents the thickness of one unit

(2.2)

cell, while
D, (x), for matrix
D(x)= 2.9
D,(x), for fiber
and
Pm(X), for matrix
p(x)= , @)
pr(x), for fiber

The global coordinate x is replaced with two local coor-
dinates, x,, and x;, in the N-th unit cell, as shown in Fig. 1.
Thus, (2.2) holds in each layer

2
9 Up

a du,
O (Xi) -'t_p_— :'5};<Dm (X))

u
ox

) 0=x,=<2h,) (2.6),
m
u 3 ou
7 _ i
o1 " ax, (Df(xf) ax,)

The solutions of (2.6);_, are taken in the form of harmonic
plane waves as

0=x,52h;) (2.6),

[ D, 7% i

Uy = [ Dm (xm) :I Um (xm)e ‘ (27)1
_[ PO 1" o

uf— [W} Uf(xf)e ! (27)2

where w is the circular frequency measured in radians per
second, U, (x,) and Us(x;) are two unknown functions
representing the amplitude of vibration. The longitu-
dinal wave speeds will be denoted by ¢, = VD, /p,,, and ¢; =
\/Df/ pf.

We next introduce nondimensional parameters and non-
dimensional dependent and independent variables according
to :

Xm = Us T U,
2h,,

Xm =

X7
Xp = i
Ty

Journal of Applied Mechanics

=2whf ‘IFCfO - ar - O,

Q = t = = 2.8
7, | 2n, DO " D0 @8
- _Y 5 oy o Prixn)
Ce= = D =
4 Cf ] Cm Cmo 4 (Xf) D f (O)
T - D m (xm )
D m (xm ) =
D, 0)

where ¢,,, = VD,,(0)/p,,(0) and ¢, = VD;(0)/p/0) represent
the longitudinal wave speeds at the interface between the
matrix and fiber, respectively. The stresses in the matrix and
fiber layers are indicated by o,, and o, respectively. Using
these nondimensional quantities and substituting (2.7),_, into
(2.6),_,, the equations of motion are reduced to a system of
second order Sturm-Liouville ordinary differential equations

dzvn
- 2.9,

=tV (WU, =0
m

U, .
—d;2i+ V(x,@)U;=0 @.9),

f
with variable coefficients given by
Q2*2 1 d ( 1

B dT?,,,)
C’Zn (xm ) 2 d}fn 2‘)"I d;m

1 1 dDI}I ) 2

V"I (}”1 ’Q) =

= — (2.10)
4 Dy dxm :

02 1 d(l df))

—i(-:l— i‘@—) ’ (2.10),

RCro
hfcma

For convenience, we now revert to mathematical notations
introduced initially to indicate the corresponding nondimen-
sional quantities, thereby dropping the barred notation. It is
hoped that this will not confuse the readers. Furthermore,
since both independent variables x,, and x; vary between (0,
1), there is no need to distinguish between them. In the follow-
ing derivation, we will let x stand for both x,, and X;.

Let U,; (x, @) and Ugi(x, Q) ( = 1, 2) be the two fun-
damental solutions of (2.9),,, respectively, satisfying the
boundary conditions

U, 0,2 =U,,(1,2)=Ux(0,2) =Up(1,H)=1 @.11),

Uml(LQ) = UmZ(O’Q) = Ufl(l 19) = Uﬁ(OsQ) = 0 (2.11)2
Since the coefficients V,, (x, @) and ¥ (x, Q) vary with X,
determination of analytical expressions for the fundamental
solutions is not a simple task. However, when Q is not an
eigenvalue of (2.9),,, a method recently developed by Chung

{10] which uses probability theory allows the solutions U,,; (x,
Q) and Uj; (x, Q) to be expressed in closed-form as

U, 1 (x,Q) = S[B o exp(S; V,,,(B,,Q)dt)dp"

T

where 7% = 7

st = exo({) vuBa)a)ar @12),
and
—_— ! X
Up(x,Q) = S[B,:O] exp(E0 V,«(B,,Q)dt)dp
Uﬂ(x,mzsw y exp(SO V,(B,,Q)dt)dpx @.12),

MARCH 1986, Vol. 53/109

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where [B,: 7>0] stands for a Brownian motion process, 7
means the first exit time from the interval (0, 1), and p* is the
probability distribution of the process [B,: > 0] starting at x.
In fact, using a random walk instead of Brownian motion, a
second order finite difference scheme can be formulated to
calculate the fundamental solutions (2.12), , very accurately.
This procedure will be illustrated in a separate paper.

Complex forms of the fundamental solutions are given in
terms of U,,; (x, @) and Uj; (x, ) by

U,y (6,2) = U (6,2) + (U, 5 (x,2) (2.13),
WU,y (6,2) = U,y (6,9) = iU, 5 (x,2) (2.13),
WUy (6,0 = Upy (x,2) +iUp (x,Q) (2.14),
Up(0,80) = Up (x, Q) — iUp (x,2) (2.14),
They must satisfy the boundary conditions
W (0,2) = U, (0,2) = U1 (0,2) = U1 (0,2) =1 (2.15)
and
W (1,0) = Up (1,9) =,
U (L) =Up(1L,Q) = —i (2.16),5

The general solution for the displacement in the matrix layer
of the N~th unit cell can be written in the form

um (X,Q) = [Am(uml(xag)

1
Dm (x)
+ B,y U, (x,2) e~ (2.17)

where A,, and B,, are nontrivial complex constants yet to be
determined. Using the stress-strain relations, the stress in the
matrix layer of the N-tA unit cell is given by

1
on = DAUAGD ~ = DUy (6,9) 2.22),

1
9p =D Up (6D ~ 5 Dflp(x,9) (2.22),

To complete specification of the problem, continuity of
displacement and traction must be enforced at the interface
between matrix and fiber layers, which leads to

(2.23),,

uf(l’ﬂ)zgum(o’ﬂ) Uf(lyﬂ)"—‘nom(o)g)

and

u}‘(O,Q) =£um(139) (2'24)1—2

a}0,Q) =10,(1,2)
where £ = h,/hyand g = p,Chy/PsC . Moreover, u} and o}
represent the displacement and stress in the fiber layer of the
(N + 1)~th unit cell, respectively.

According to Floquet’s one-dimensional wave theory, (2.7),
with its periodic variable coefficients admits quasi-periodic
recurrence relations for the displacement and stress between
two adjacent cell units as follows

uf(0,2) =ug(0,Q)e*  a}0,Q) =0,0,Q)e* (2.25),,

where k = k; + ik, is the complex Floquet wave number.
Combining continuity conditions (2.24),, with (2.25),_,, we
obtain

u 0,2)e* =tu,(1,9) 0/0,2)e* =y0,,(1,2) (2.26),,
Substitution of expressions (2.18) and (2.21) for the stresses

o, and o into (2.23), and (2.26),, respectively, yields a set of
four homogeneous algebraic equations from which the

du 1 :
6, =D,, m_ A,0,,+B,, e~ (2.18 unknown constants 4,,, B,,, A5, and By can be determined. A
" x D, (x) (A + Bnons @18 ontrivial solution for these eonstants cxists if the corres-
where ponding determinant of the matrix of coefficients vanishes.
o1 = D,,,‘u/,,l(x,ﬂ)~i DU (6,2) (2.19), S.etting. the detel'rminant equal to zero leads to the following
2 dispersion equation
ie —1Ie -1 —1
eetkd ee™d —i i
=0 (2.27)
U, (1,2)+i8, U,n(1,2) =i, - Uf(0,9)+6, - UpH0,0) +6;
(U1 (0,Q2) =B, )% (U2 (0,2) =B, ) e —UALL) B, —Up(l,Q)+iB,
1, where three new parameters have been introduced as
0m2=Dmcu-rIn2(x99)"'—2_‘qu'l'mz(x’g) (2‘19)2 3 1 1
€ =—$—' ﬂf=? Df'(o) Bom =“2‘ D, 0) (2.28) 5

The prime represents a derivative of the associated quantity
with respect to x. Similarly, in the fiber layer of the N-tA unit
cell, the displacement and stress take the forms

We see from (2.27) that the dispersion relationship depends on
derivatives of the complex fundamental solutions U,, (x, )
and U, (x, 2) evaluated at the end points x=0 and x=1.
These derivatives are related to the corresponding derivatives
of the real valued fundamental solutions as follows

U1 (0,92) = U5, (0,2) +iU,;,(0,Q)
1 (1,Q) +iU,,,(1,9)
UH(0,2) = Up0,2) +iUA0,2)
WH(1,Q) = UA(1,2) +iUp(1,2)

U2 (0,2) = U, (0,2) —iU;,(0,2)
WU (1,Q) = U, (1,0) —iU;,(1,2)
UH(0,2) = Uj (0,2) —iUA(0,2)
WH(1,2) = U4 (1,Q) —iUp(1,2)

(2.29)

1 .
Up(%,Q) =——— [4, U7 (x,Q) + B, U (x,Ble " (2.20)
y e A Uy
U (1,Q) =
ou, 1 : o
O'f—-:Df—E:—I)'f‘(;)' (Afoﬂ +Bf0'/2)e 0 (2.21) ‘
where
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Before expanding the determinant (2.27), we will examine
some important features of the fundamental solutions U, (x,
2 and Uy, (x, ©). Henceforth, we assume that the material
properties in each layer of any unit cell are symmetric with
respect to the midplane of that layer.
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Proposition 1.  If the coefficient V,(x, Q) in (2.9), is sym-
metric with respect to the midplane x = 0.5 in the interval (0,
1), such that

Vr(x,9) = V(1 -x,0) (2.30)

then the derivatives of the fundamental solutions Uj (x, Q)
and Up(x, Q) at bothends x = Oand x = 1 satisfy

UA(LQ) + Up(0,2)=0 UA©0,2) +Up(1,2)=0

Proof: The Wronskian W, [U,, Up] of the fundamental
solutions U, (x, Q) and Up(x, ) is defined as

Up(6,Q)  Up(x,Q)

231,

WU, Upl= (2.32)

Up(x,Q)  Up(x,)

Furthermore, due to the symmetry of V,(x, 2) and based on
the basic behavior of the Wronskian, we have

W _o (O=x<1) (2.33)
dx
Thus
W (0,Q) = W,(1,Q) (2.34)
or written in expanded form
Un(0,2) Up(0,2) Un(1,2) Up(1,92) )
Un(0,) Up(0,Q) Un(1,2) Up(1,2) @33

Therefore, according to the boundary conditions (2.11),_,,
(2.35) is equivalent to (2.31);. Using the symmetry condition
(2.30), (2.31), is easily confirmed. The same argument follows
for the behavior in the matrix layer.

Making use of (2.29) and (2.31), the dispersion relationship
(2.27) reduces to the simple form!-2

eikd 4 F(Q)et*d +1=0 (2.36)
where F(Q) is called the “‘spectrum function’’ and is given by

(U,qu,m)z +e? (U,',,1(1,9))2 - (U,g(o,9>+eU,;,1(o,Q)—ﬁ,—eﬁm)

A, D=0 (2.42)

Obviously
7(1,2)=0= Uﬂ(0,9)=0 (2.43)
However, this conclusion is in contradiction to the original

assumption (2.11),, and therefore Uy (1, Q) must not vanish.
The same argument can be made concerning U}, (1, Q).

Proposition 3. If Q is not an eigenvalue of (2.9), the
derivatives U (0, Q) and Ui (1, Q) can be expressed in the
form
byu (1,Q) —byu,(1,Q)

U4 (0,) =
7. a1, (1,9) —a,u,(1,2)

(2.44),

aby—a,b,
ayu (1,02} —a u,(1,2)

where the functions u; (x, @) ¢/ = 1, 2) are solutions of the
following initial value problems

Un(1,Q) =

(2.44),

du; .
—6—1;2——+ Vi,u;,=0 (@(=1,2) (2.45),
uj(0,0) =a; u{(0,Q2)=b; (2.45),

where (a,, b)) and (a,, b,) are two pairs of arbitrary constants

satisfying the condition
a by, —a,by #0 (2.46)

Proof: We form the Wronskians W [u;, Upn] and W, [u,,
Unl, and then use (2.34), which leads to

Wiluy,Unl=u,(0,2) U (0,2) ~u{(0,2) Un (0,2)

=u (LY ULZL,D) —u{(1,2) Uy (1,2) 2.47),
Wiluy, Up 1 =1,(0,2) U7 (0,2) ~u3(0,2) U, (0,2)
=u, (1L, UA(LD) ~u;(1,2) Uy (1,0) (2.47),

2

F(Q)=
eUAL,Q) UL, (1,2)

The derivatives of the first fundamental solutions U, (x, Q)
and Uy (x, ) must be known at the ends x = O and x = 1 in
order to determine the function (). For this reason, we pre-
sent two basic properties of these derivatives.

Proposition 2. If Q is not an eigenvalue of (2.9), ,, then
the derivatives Uy, (1, @) and Uf (1, 2) must not vanish. This
will insure that F(Q) remains bounded.

Proof: If the independent and dependent variables are
transformed according to

xX*=1-x Uj(*Q)=Un(1~-x,Q) (2.38)

and the symmetry condition (2.30) is used, (2.9), takes the
form
£ ']

U;
d2*2, + V(D Ur=0
de

On the other hand, according to (2.11),_, and (2.38), we find
that

(2.39)

Un(1,2)=0 = U{(0,2)=0 (2.40)

Therefore, if U;(1,Q) is to vanish, according to (2.38), Ug*
(0,Q) must vanish also, i.e.,

Unp*(0,2) =0 (2.41)

The existence and uniqueness theorem states that if { is not an

eigenvalue of the ordinary differential equation (2.39), and

homogeneous boundary conditions (2.40) and (2.41) are
posed, then (2.39) has only a trivial solution

Journal of Applied Mechanics

(2.37)

Invoking the boundary conditions (2.11),_, and initial condi-
tions (2.45),, (2.47),_, reduces to

a, UA(0,Q) —u, (1,Q) U (1,2) = b, (2.48),
a, Up(0,Q) —u,(1LQ)UA(L,Q) = b, (2.48),

If Q is not an eigenvalue of (2.9), we can select the constants a,
and a, such that

a,u,(1,2) — ayu, (1,2) #0 (2.49)

Therefore, the algebraic equations (2.48),_, have the unique
solution given by (2.44),,. From (2.44),_, we conclude that
the problem of finding the derivatives U (0, ) and Uf (1, Q),
which are needed to specify the dispersion relationship (2.27),
reduces to solving the initial value problem (2.45);_, to obtain
the values of u; at the end x = 1. An identical procedure is
followed to find the derivatives U, (0, @) and U, (1, Q).

In order to calculate stresses in the entire interval (0, 1), we
need to find the derivatives of the fundamental solutions
U, (x, @) and Uy (x, Q). They can be calculated by the follow-
ing procedure.

Proposition 4. If Q is not an eigenvalue of (2.9),_, we can
use Chung’s method to express the derivatives of the first and
second fundamental solutions Uy (x, ) and Uy (x, ) as

V(x,Q
Uh (o) =«/—Vf—20x7mi (UA©.2)Lp(02)

J
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+ UA(LQ) Ly (x,2))

Q
Up(6,2) = —|—L2 sz())cﬂ)) (UA(1LQ) Ly(x,0)

(2.50),

+UA(0,0) L (x,92)) 2.50),
and likewise for U, (x, Q) and U,,,(x, )
U 60 =2 0.9) L0 0)
ml\s - m(O,Q) nI m0
Ur’nl(LQ)Lml(x,Q)) (251)1
’ " (X ) ,
UmZ(x!Q):_ _"’:'1—(-0—6.)“ Uml(]’Q)LmO(x’Q)
ml(O’Q)Lml(xaQ)) (2.51)2
where
L,o(x,Q)= S{B o exp(S ,,,(B,,Q)dt)dp (2.52),
L =| e (] HaB.2at)dpt (2.5,
Lo(n.f) = S[B . e[, H, (B, @)dr) dp* 2.53),
L) = S[B » e(|, Hy (B, @)dt) dp* (2.53),
The functions H,, and H are given by
1 &2
m (x Q) - m (X Q)+ 2 [IOg Vm (X Q)]
2 dx
1 d
T [log Vi (x,Q)] (2.54),
1 &
H(x,Q) =V (x,Q) +— > I [Iog Vf(x,ﬂ)]
1
T [Iog Vi(x, Q)] (2.54),

Uﬂ(l D), UA(l, ©), Up(0, Q), and Up(L, Q) are known after
considering (2.31) and (2.44).
Proof: We introduce a new function Y, (x, Q) by

V(0,0
Y, (6,92) =,/#((x§))— Uh(x,Q)

Substituting (2.55) into (2.9), and using the symmetry condi-
tion V0, ) = V1, ), we obtain a boundary value problem
for the unknown function Y (x, Q) as follows

(2.55)

‘:f +Hp(x,2) Y, (x,0)=0 (2.56),
Y,(0,2)=Uj(0,), Y (L,2)=Uxn(1,Q) (2.56),

Thus, following the same procedure that lead to (2.12),_,, we
obtain the first and second fundamental solutions of the above
boundary value problem as expressed in (2.50);,, and
(2.51),,.

3 Pass and Stop Bands
Composites

in Nonhomogeneous

The most important feature regarding wave propagation in
a periodically layered, elastic, homogeneous medium is the
presence of stop band characteristics. Next we investigate how
this characteristic is affected by specific material non-
homogeneities.

When the basic dispersion relationship (2.36) is expanded,"

the following two equations emerge
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e ¥ cos 2kyd + F(Q)e ¥ cos k,d+1=0 3.1,

e sin kld[e—kzdcos k1d+%F(Q)] = (3.1),
where the complex Floquet wave number k has been decom-
posed into a real part k; and an imaginary part k,, called the
dispersion coefficient and dissipation coefficient, respectively.
In order to find the specific dependence of k| and &, on @,
(3.1),_, possesses must be solved simultaneously. The solution
depends on the magnitude of the function F(Q) as follows

(1) When

‘%F(Q) |=1 ¢.2)

(3.1),, possesses the unique solution
cos kd= —%F(Q) 3.3),
k,d=0 (3.3),

Thus, the dissipation coefficient &k, vanishes, and the pass
band in the dispersion spectrum consists of all nondimensional
frequencies @ which satisfy (3.2). In other words, harmonic
waves are propagated without attentuation for values of Q
which satisfy (3.2).

(2) When
1
|? F(Q) |>1 3.9
then (3.1),_, possess the solution
kd=n=n (n=0,1,2, (3.5);
F(Q F(Q
kzd——logl () / () —1 3.5),

Here the dissipation coefficient &, does not vanish. Therefore,
when the frequency  results in (3.4) being satisfied, harmonic
waves are attenuated as they pass through the medium. This is
the proof of the presence of stop bands, and (3.5), predicts
how the dissipation coefficient depends on the frequency.

We have assumed that the nondimensional frequency Q is
not an eigenvalue of (2.9),_,, so that the function F({1) must
be finite. We now examine the case when Q becomes an eigen-
value of (2.9); or (2.9),. In the following, we refer to the
eigenvalue as Q*.

Proposition 5. Uy, (1, ) and Uy, (1, Q) tend to infinity if
and only if Q tends to Q*.
Proof: Let u* = u* (x, 1*) be one of the eigenfunctions

corresponding to @*. According to the definition of the eigen-
value, we must have

u*(0,2") =u*(1,)=0 (3.6)
If we further assume that
Uy =u*(x,0%) a,=0 b,=u*'(0,2%)#0 3.7

From (2.44),_,, we find that when g, = Oandu, (1,Q) =0
Uq(0,2) =0 Uj(1,2)— oo (3.8)
On the other hand, for lu (0, @*)!| to become unbounded, it
is seen from (2.44), that for any two nontrivial constants u,
(0, D) and u, (1, Q), the expression
uf(1,82%)u5(0,92) —u(0,2%)u;(0,2) ~0 (3.9)
Obviously, this is the case only if both u} (0, @*) and u} (1, 2*)
tend to zero simultaneously. This also means that Q must be
one of the eigenvalues of (2.9), ,.
The eigenfrequency Q* could reside in either the pass band

or the stop band. This depends on the behavior of function
F(Q) as Q tends to Q*. We take
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F*=lim F(Q)
Q-0

Therefore, as stated in (3.2), if [F*[ < 2, Q* is in the pass
band, otherwise, it falls in a stop band. For nonhomogeneous
composites, there may exist a special eigenfrequency where
| F*| becomes infinite. We would call such an eigenfrequency
a pole in the frequency spectrum. If a pole would occur; the
dissipation coefficient k,(Q*) would become infinite. The
amplitude of any harmonic waves would be immediately at-
tenuated at this frequency. In the next section, we show by ex-
ample that at this special frequency all eigenfrequencies for
homogeneous layered composites lie entirely in the pass band.
Therefore, a pole cannot exist for homogeneous composites.
This raises a very natural question: For nonhomogeneous
composites, can a pole actually occur? It has been proved that
the derivatives of the first and second fundamental solutions
Upn(x, Q) and Up,(x, Q) become infinite at both ends x = 0 and
x = 1 when € is one of the eigenfrequencies. In this case, the
spectrum function F(Q) is approximated by

(Uf (1,2))* — (U (0,2)) U/ (0,Q)

Thus, if IUj’l(O, Q)1 = 1UAQ, Q)1 as Q tends to Q*, then
F*(Q2*) tends to infinity. This must indicate the presence of a
“pole.”” A more detailed discussion on this interesting pro-
blem is actually needed and will be addressed in another
paper. In what follows, we give some examples to illustrate the

differences in the behavior of the dispersion relationship be-
tween homogeneous and nonhomogeneous composites.

(3.10)

F(Q)= nst (3.11)

4 Examples and Discussion of Numerical Results

Example 1. As a special case of the general theory
presented above, we will calculate the spectrum function and
associated dispersion characteristics for an elastic composite
with homogeneous layers. In this case, the mass density and
elastic moduli are constant within each matrix and fiber layer.
We then have

v,

W =T202, V=202, @1,

The first and second fundamental solutions of (2.7),_, are

given by
sin 7*Q(1 — x) sin 7*Qx
U, 6,)=——r--—"17->= U, ,x,Q)=——— 4.2),.
ml(—x ) sin 7(‘*9 mz(x ) sin T*Q ( 2)1 2
sin 7Q(1 —x) sin wQx
Ug(x, ) =———— Up(,Q)=—r—— 4.3),_
nexf) sin 7§} n41) sin wQ 4312

Therefore, the derivatives of the first two fundamental solu-
tions U, (x, ) and U, (x, Q) are given by

cos m*Q(1—x)

Un ()= -1 — 4.4
0o 4 sin 7*Q (4.4),
cos 7{(1 —Xx)
U} ’Q = — Q__________ 4.
o) " sin 7Q (4.4),
From (4.2), ,, (4.3),.5, and (4.4),,,
U,;”(O,Q) =—7*Qcot TI'*Q,
Uy (1,2) = —7*Q csc 7¢Q (4.5),.,

Uq(0,2) = —nQcot 7 Uf[f(1,Q) = —nQcsc 7 (4.6),

Substituting (4.5),_, and (4.6),_, into (2.37), we find the spec-
trum function has the form

F(Q) * . .
G(Q)y=— 5 =cos 7 cos #*Q— A sin 7l sin 7*Q  (4.7)
where ) = . [£neCne, P ],
2 pfocfo PmoCmo
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Fig. 2 Spectrum function for three example problems
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Fig. 3 Dispersion coefficient for three example problems
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Fig. 4 Dissipation coefficient for three example problems

Thus, based on previous arguments, we obtain the spectral
behavior as follows

G(Q), for IG(M)I=1
cos k,d= 4.8)
(-1, for IG(Q)I>1
where 7 is a positive integer and
0, for 1IG(2)1 =<1
k,d= 4.9

log(!G(Q)l —V(G(M))? - l), for 1G(2)1>1
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Fig. 7 Derivative of fundamental solution Uy at x = 0 for three exam-
ple problems

Thus, when the relation 1G(2)) < 1 is satisfied, the cor-
responding frequency is in the pass band. Otherwise, the fre-
quencies are in the stop band. These results are the same as
given by Lee and Yang [5] and Delph et al [7-8]. From these’
solutions, we see that there are two sets of eigenfrequencies

™

$=—n, Qf=n 4.10),,
™

at which both derivatives Up (x, Q), and w1(x, ) tend to in-

finity at the boundaries x = 0 and x = 1. After substituting

(4.10),_, into (4.7), we obtain
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Fig. 8 Derivative of fundamental sofution Uy at x = 1 for three exam-
ple problems

G(Qf) =(— )"cos n* 4.11),
2
G(}) = (= 1)'eos —— n @.11),
™
For these eigenfrequencies, we always have
[G@apl=t, 1GQ;)I=1 4.12),,

which means that for homogeneous, layered materials, all
eigenfrequencies are in the pass band.

Figure 2 shows the spectrum function G(Q) = —WF(Q)
versus §) for this composite. In this example we have assumed
that k,,/h, = 0.25, D,,(0)/D,(0) = 0.02, and p,,(0)/p/0) =
0.33. These values are the same as those used in the paper by
Delph et al. [7]. Figures 3 and 4 show the dispersion relations
Q versus k,d and Q versus k,d, respectively. Figures 5-8 show
the behavior of the derivatives of fundamental solutions Uy,
©, M), Uy, (1, D), Uj (0, D), and Uy (1, ), respectively.

Example 2. As an example of a nonhomogeneous elastic
composite, we will consider the following variation of the
material constants in each of the layers

o (x)=1— "2" [1+cos m(2x— 1)] @.13),
DO
Dy (x) =1 =2 [L+cos m(2x~ D] 4.13),
and
pr(x) =1+ "2 [1 +cos w(2x— 1)] (4.14),
D,
Dy(x) = 1+=2 [1+cos m(2x - 1) (4.14),

where p, and D, are two positive parameters each less than
unity.

The spectrum function —F(Q)/2 is shown in Fig. 2 for this
nonhomogeneous composite. We have assumed the same
values for the parameters h,/h;, D,(0)/D(0), and
0:(0)/p4(0) as in Example 1. The parameters D, and p, were
both chosen to be 0.5. Figures 3 and 4 show the dispersion
relations, while Figs. 5-8 show the derivatives of the fun-
damental solutions for this example.

Example 3. As another example of a nonhomogeneous
elastic composite, we will assume the following quadratic
variation of the material constants

Pm(x)=1+p,x(1—x)
D, (x)=1+D,x(1-x)

(4.15),
(4.15),

and
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pr(x)=1+p,x(1-x) (4.16),
D;(x) =1+D,x(1 ) 4.16),

where p, and D, are two positive parameters each less than
4.0. For this case, the values of all parameters were taken to be
the same as in Example 2, except D, and p, were both equal to
2.0. This meant that at x = 0.5, the magnitude of the material
properties was the same as in Example 2. The spectrum func-
tion, dispersion relations and the derivatives of the fundamen-
tal solutions are shown in Fig. 2, Figs. 3 and 4, and Figs. 5-8,
respectively.

Figure 2 exemplifies the effect of material nonhomogeneity
on the behavior of the spectrum function. The nonhomogene-
ity is seen to affect both the amplitude and phase of the spec-
trum function. Figures 3 and 4 show how the material
nonhomogeneity changes the basic dispersion relationship.
The vertical line segments in Fig. 3 are the stop bands and in-
dicate the range of frequency where attenuation of the wave
amplitude will occur. The nonhomogeneity is seen to affect
the width of the stop bands, particularly at low frequencies. A
sharp decrease of the attenuation coefficient k,d at low fre-
quencies can be seen from Fig. 4. The material
nonhomogeneities which have been considered are seen not to
affect the high frequency behavior of the spectrum function
and the corresponding dispersion relationship when compared
to composites constructed of homogeneous layers.

Figures 5 and 6 show the derivatives of the fundamental
solutions U}, (0, @) and U,, (1, Q). Eigenfrequencies are in-
dicated where the derivatives become unbounded. Figures 7
and 8 show the derivatives Uy (0, @) and Up (1, Q). Here
eigenfrequencies also exist. On comparing these results with
Figs. 2 and 3, it is seen that the eigenfrequencies lie within the
stop bands for the nonhomogeneous composites and within
the pass bands for the homogeneous composites. In addition,
a “‘pole’’ was not discovered during the calculation. Further
studies to either discover or rule out the presence of such a
feature is necessary.

Our attention has focused only on the investigation of the
dispersion relations for nonhomogeneous composites by com-
bining Floquet’s wave theory with Wronskian properties of

Journal of Applied Mechanics

the fundamental solutions of the associated differential equa-
tions. We will defer the calculation of the vibrational mode
shapes and discussion of further details of Chung’s probabili-
ty theory to a later paper.
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Tubes

Asymmetrically Heat Radiated

The transient and stationary temperature distributions in a tube wall caused by an
asymmetrical heat flux distribution are evaluated. The results are represented for the
case of a heat radiating half-space. In addition, the accompanying stress distribu-

tions are computed.

Introduction

The mechanical behavior of asymmetrically heated tubes is
of interest in solar energy and fusion energy generation. In
both cases the tubes are cyclically heated. For a fatigue evalua-
tion the cyclic temperature and stress distribution of these
tubes have to be known. For fusion reactors the temperature
distribution must also be known because creep and swelling
are temperature dependent.

While stationary temperature distributions in asymmetri-
cally heated tubes are well-known from analysis [1], non-
stationary distributions are often treated through the
numerical solution of the equation describing transient heat
conduction [2, 3] and in the last 10 years by finite-element-
analysis [4, 5]. In this paper an analytical solution of this
problem is communicated.

1 Temperature Distribution in Tubes

1.1 Basic Equations and Boundary Conditions. The basis
of the following calculations is the equation for transient heat
conduction

oT

—=xAT

ot
where T is the temperature, ¢ the time, 1/A the thermal con-
ductivity, c the specific heat, and d the density. The Laplacian
is written in cylindric coordinates as

10 & 1 &

A= —+—+— — 2
p dp  Bp*  pt Be? @
where the radius p and the angle ¢ are describing a point in the
tube wall. The boundary conditions are given by a constant in-
ner surface temperature (arbitrary chosen: T = 0) and the heat
flux Q at the outer surface. ’

x=(Acd) ! (48]
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T(p=r)=0 3)

aT .
0 (p=R)=—AQ(p) C))
0

1.2 Fourier Components of the Time Dependent
Temperature Distributions. To solve equation (1) under
boundary conditions given by equations (3) and (4) it is usual
to carry out a Laplace transformation to eliminate the time
dependence. If 7 denotes the Laplace transformation of the
temperature T

T= SO T(t)exp( —~pt)dt )
one obtains from equation (1), considering the initial condi-
tion T(t=0)=0,

327"+ aT
dp?  pdp

with g% = p/«.
Since equation (6) is dependent only on p and ¢, insertion of
the usual set-up

*T -
+— —q?T=0 6
JEEye q (6)

T(p,0) =f(p)*2(¢) ™
into equation (6) gives after separation of both variables
292 2
P f  pdf —0°g
Tt = ®)
Jfap Jfoo gy
The Laplace-transformed boundary conditions are
T(p=r)=0 )
oT D D .
— (p=R)=——=x— D=-A (10)
dp P q* @

If D, denotes the nth Fourier component of D, the nth
Fourier component of the related temperature becomes after a
lengthy analysis [6] for heat flux distributions symmetrical to
¢ =0 (only cos-terms)
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n__ n
T =D R (p/r)"=(r/p)

- 2
" (S A L A, Dn —xopt
T RN+ (/R kgle g

Jaloy RY (e T (o) Y (1) = T (0 N Y, (4 0)]
o, [(1— nz/aiRz)J,z,(akr) ~J*(a,R)]
forn>0

(11

and

T,,=D,Rin(p/r) + 7D, ), e*

k=1
Ji (o R) Joloyr) [To(op) Yoloyr) — Jo(or) Yolaip)l
a[J5(r) = Ry R)] ’

forn=0 (12)

where «, are the positive roots of the equation

, .

?[Y,l (o )y (o R) — T, (o) Y (p R)]

—oq Y, (), (0 R) = J (0 1) Yy g1 (0 R)T =0 (13)

Journal of Applied Mechanics

R=2

Time dependent temperature distribution in a tube in front of a

J, and Y, are the Bessel functions of order n.
The case n=0 is also treated in [1]. The results are in agree-
ment. The general solution is given by

T(p,p,t) = E T,, (p,t) cos ne (14)
n=0

1.3 Temperature Distribution. Since the Fourier com-
ponents of the temperature are known, any possible heat flux
distribution which is symmetrical with respect to ¢ = 0 can be
evaluated. Here only results for a tube in front of a heat
radiating half-space will be communicated. In this special case
the heat flux is given by

. 1.

Q(¢)=7 QO)1 + cos ¢] (15)
The Fourier series has only two terms and evaluation becomes
very simple. Figure 1 shows the time dependent temperature
distribution for a thick-walled tube with R/r=2 for ¢ =0, w/2
and 7. The temperature values are normalized to the
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temperature of the hottest point on the outer surface (¢ =0,
p=R).

The stationary temperature distribution follows from equa-
tions (11) and (12) for t—oo

0) [ p/r—r/p
T (p,0) =—— AR | Inp/r+— "
(0s9) 2 N R r ¥ /R

Figure 2 gives a representation of this relation in isotherms.

cos ga] (16)

2 Thermal Stress in the Tube Wall

Thermal stress calculations can be performed by application
of the temperature results reported in Chapter 1. This will be
shown also for the case of a heat radiating semi-infinite body.
To simplify the notations the geometrical data are normalized
to the inner radius r by setting r=1.

Axial strains and deflections caused by bending moments
should be prevented, i.e. e, = 0. The elasticity equations are

E

o, =(1—_'_p5m[(1 —u)e, +pe, —(1+u)aT]

g,=—————[(1 - +ue, —(1+
S U= [(L—p)e, +pe, —(1+p)aT]
E
0 =
PP 1+/L
where o,, and ¢,, are the shear stress and strain, u is Poisson’s
ratio, « the coefficient of expansion, and E the Young’s
modulus.
Two equilibrium conditions are given by

a7

€op

do, 1 do o,—0, _0
dp p de o
da,, —1_ do, N 20, o (18)

dp p d¢ p
The strain components can be expressed by the displacements
(u, v) in cylindric coordinates

du 1 dv u

= : €, =

P9’ Y p do p
1 < 1 du N v v)
€ =e{— —_——
 2\p dp 3 p

Since the temperature distribution is given by a Fourier series
it can be concluded that the displacements are

19)

U= Eun (p) cos np; v= Evn (p) sin ne (20)
n n

By introducing equation (20) into equations (17-19), one
obtains a system of two coupled differential equations

I e el
=— 11_4_2’; 20pnT,
u,,”p+u,;'i°_[1+ (I_Z”W] W v,
2(1—p) 2(1-p)
b w

The solution of this system will yield the displacements and
using equations (17) and (19), the related stresses in the tube
cross-section. Application of the general set-up.

v=Ap* u=Bp*
gives the solution of the homogeneous form of equation (21)
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(22):

J

TIT(R,0)=1

0.1

Fig. 2 Isotherms in case of a heat radiating half-space
u=Ap+Ayp~! forn=0 (23)
v=0

and
1~ 3 A4
u=A—p*+ A4 ’2+[ —A>—A In
1 5—dp p 2P 34y 3 4o
forn=1 24)

U=A|p2 +A2p'—2 +A3 +A4lnp
A particular solution of the non-homogeneous system can be
evaluated by the method of ‘‘variation of parameters’’.

For n=0 only a single differential equation follows. Its
solution is

1+ 1 r»
U=t —S TEds (25)
1-u p N
For n = 1 the respective displacements are given by
1 1 r» [
ui:i——l[—S x2de+S T dx
2 1—p Lp? 1
1 1 4 —4u
— T () (-t —dinp— 2)]
g T O\zt3mg, ~me 5,
1+ 1
v,=—a— s [———g xZde—S T dx
2 1-u Lp?h
1 1
+——~T’(1)<p2 ———4 lnp)] (26)
8 02

The unknown constants 4;, 4,, A;, A4 have to satisfy the
boundary conditions at the outer and inner surfaces

0,(R)=0,(1)=0,,(R)=0,,(1)=0 27
For n=0 one can find
_aE [p?=1 1 SR lgv ]
ot i )
Oppy =0
aF [p*+1 1 ¢R 1 ¢»
0“’0_—_—_1—;4[R2—1 Fgl ng5+751 ngg—T] (28)
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and for n=1 the following expressions hold

of 2 3-2u
= Ap=2A4,p"3~—— A "1>
apl 1+}*’-<5_4IL 1P 2P 3'—4H’ 4P
17 1 9T 6—4yu 1
+ — {1 ( R ~hy )
l—,u.[8 ap()p 3-4p b 5—4p,p
I re
_—Tg EZTdS
p° Ji
oF 2 1-2u
[ — -3 __ A -1)
Taet 1+u(5~4,¢ Ao =2Ayp™ m gy A
oF [ 1 6—4u 1
5 — — {1 ( 4 )
[ () T T f
1 ¢»
_3S EszE
p° 1

K 6 1-2
= < Ap+24,073 + s A4P“1>

T T T e \5 4y 3-4y
FE 1 2—4
T - [ T —p - a p“>
8 ap 5— 4u 3—4u
+ ! Epsszf] ET
p* i I—p
with
K 2
§°Tdt
1 1+p | 1 !
A= — | )= (5-dp) —————
S T a() G- —
J, e
7d.
1 l+pl| 1 8T , ETa

+_~.—__
2 l-u| 8 9o RY-1
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Taking into account the first terms of equations (11) and
(12) the stationary stress components can be written after
dropping the restriction r=1 (i.e., R—R/r and p—p/r) as

1 oE . [p*—r 1 R

O = ) 1_” AQOR[Rzer —pT(ZRzlﬂT
2

—R2+r2>—21n—p—~—rz—+1]
r 4

1 aF . p2+r: 1 ,, R

Oup = P 1_# AQOR[RZ__,-Z -p_Z(ZR ln—;
2

—R2+r2)—21n—p—+—’2——1] (30)

roop

: o
Tpgy =05 0y =09~ 0,0) —aEAQGR In —

and
2
m=_21~ 1O{_E# 0 [“;——“;TE_IR—Z—RZRJMZ (r p)]
1 «FE . r or R2
Pl T [ Q]AR[T_3W o R (r/p)]
Oppy = 0py 31
oy, = (o, +awl)—aEAQlR<-§———pL>/<§+7:_)

The stresses are then given by
0, =0, +0, COS¢
g,=0, +0 | COS @

pe =0ppp T ow,l sin ¢ 32)

By use of equations (11), (12), (28) and (29) the transient
stresses can be evaluated. Figure 3 shows the circumferential
stresses d,, as a function of the normalized time for a thick-

g
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walled tube (R = 2r). Maximum stress values are reached in the
stationary case. Figure 4 represents the stationary stress
distributions for o, ¢,, 0,, and different values of ¢. It is well
known that temperature components 7, with # > 1 have no
influence on stationary stresses in tubes [7]. Thus it is possible
to compose all stationary stress distributions by use of the
components with n=0 and n=1.

3 Summary

The Fourier components of the instationary-temperature in
an asymmetrically radiation heated tube have been evaluated.
As a result the temperature can be composed for an arbitrary
heat flux distribution. The situation of the heat radiating half-
space was outlined. From the temperature distributions
related thermal stresses are calculated. It was found that max-
imum stresses occur in the stationary case.

120/ Vol. 563, MARCH 1986
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J. L. Nowinski

H. Fletcher Brown Professor Emeritus,
Department of Mechanical

and Aerospace Engineering,
University of Delaware,

Newark, Del. 19716

Range Cohesion Forces

After a brief derivation of the formula for the nonlocal moduli, Fourier transforms
of the stress components in their nonlocal aspect are established. Satisfaction of the
traction-free boundary conditions leads to the: Srequency equation of the problem.

A particular case involving longitudinal Lame modes is analyzed in more detail. A
numerical example solved shows a considerable decrease of the speed and the
Jrequency of the short waves as compared with those of long waves studied in the

classical theory.

Introduction

Wave propagation in cylindrical rods of circular cross
section is, as is well known, one of the classical subjects of
elastodynamics, initiated and rigorously treated in the papers
of Pochhammer and Chree about a hundred years ago. Since
then, various facets of problem were examined in numerous
publications, the reviews of which may be found in the books
and articles of Kolsky [1], Ewing, Jardetsky and Press [2],
Abramson, Plass and Ripperger [3], Miklovitz [4, 5], and
Achenbach [6), to name only a few. All of this work was done
within the framework of the conventional (whether linear or
nonlinear) theory of elasticity, one of whose principal
postulates states that the interactions of particles in solids
represent contact forces with the range of action limited to
Zero.

Unlike the conventional (local) theory, the nonlocal theory
of elasticity, or more broadly the nonlocal continuum theory
of deformable bodies, developed in the third quarter of this
century!, asserts that the cohesion forces are long-range
forces, and on account of this the thermomechanical state at a
point of the body is influenced by all of the particles of the
body. More explicitly this means that the stress at the ob-
servation point X, which in the classical elasticity is a function
of the deformation at X, in the nonlocal theory becomes a
functional of the deformation field at every point X’ of the
body. This standpoint is not as academic as it may seem at the
first sight, inasmuch as according to the experimental
evidence interactions of particles reach occasionally their
fifteenth closest neighbors. In addition to that, solutions of
problems treated in the context of the non-local elasticity

1 Mostly due to the efforts of Edelen, Eringen, Kroener and Kunin (cf., e.g.,
[7] through [10]).
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display occasionally an impressive agreement with the data of
experiments and observations. As illustrations of this fact, the
following may serve as a few examples:

1 Contrary to the predictions of the classical theory of
clasticity, and in agreement with experimental evidence, the
nonlocal theory concludes that elastic waves in unbounded
media are dispersive. This new kind of dispersion has a
strictly constitutive character and was found for plane waves
in an infinite medium [8], for the Rayleigh waves [21], and for
the Love waves [11].

2 Likewise, the stress singularities at the tips of the
Griffith cracks predicted by the local elastic theory (as a result
of the inadequacy of this theory to describe physical
phenomena on a submicroscopic scale) become removed in
the nonlocal theory, and replaced by regular stress
distributions. The latter display a striking agreement with the
conclusions of the atomistic theory [22].

3 Similar corrections are suggested by the nonlocal theory
with regard to the classical singularities at the cores of
dislocations. Here not only the infinite stress concentration is
smoothed out, but also some interesting byproducts are
obtained like, for example, the theoretical shear strength of
the materials that compares favorably with the data of ex-
periments [23].

4 1In the case of seismic waves, the nonlocal elasticity
predicts a lower bound for the speed of Love waves that
agrees better with the seismological observation than the
bound inferred from the classical theory [11].

5 So far as the fluid dynamics is concerned, the secondary
flow pattern in rectangular pipes found experimentally agrees
well qualitatively with the pattern calculated on the basis of
the nonlocal dynamics of a viscous flow [24].

6 Finally, it is worth noting that the nonlocal theory of
clasticity serves as a rather natural link between the classical
local elasticity and the atomistic theory of lattice dynamics of
Born and Von K4rman. In fact, by bringing the equations of
nonlocal elasticity into a discrete form, one arrives at the
equations of the lattice dynamics (cf., e.g., [18], equation

(2.5)).
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Although a final verdict on the usefulness of the nonlocal
elasticity may be brought in only after further theoretical and
experimental studies, this author — prompted by the foregoing
and similar facts —examined recently the nonlocal aspects of
wave propagation in a solid circular cylinder [12]. This
problem is, in a certain sense, a special case of the problem
analyzed in the present paper but with different boundary
conditions. It was found in [12] that in addition to the known
configurational dispersion, the non-local theory predicts a
second type of dispersion associated with the constitution of
the matter and determined by the constitutive equations.

The present note intends to extend the study [12] to hollow
circular cylinders. To save on space, some calculations
common to both cases are not reproduced in the present text.
When the need arises, however, we refer to the appropriate
place in [12].

With respect to the hollow cylinders, the conventional
features of the wave propagation in such cylinders were
examined in the comprehensive articles by Greenspon [13],
Gazis [14], [15], Bird et al. [16], and Armenakas et al. [17],2
among others.

We first recall the derivation of the dispersion equation in
the case of longitudinal waves in an infinite space that leads to
the formula for the nonlocal moduli in terms of the wave
number. We then derive the equations for the Fourier trans-
forms of the stress components for a hollow cylinder with
nonlocal material characteristics. Satisfaction of the boun-
dary conditions prescribing traction-free surfaces of the
cylinder leads to the heavily transcendental frequency
equation of the problem.

Two particular cases are considered, one of which involving
Lamé’s longitudinal modes is treated in more detail. A
numerical example, showing a considerable decrease of the
wave speed and frequency of short waves as compared with
those of long waves studied in the classical theory, is
illustrated graphically.

1 Nonlocal Moduli

In order to determine the elastic nonlocal moduli, we
imagine a plane longitudinal wave to propagate in an infinite
elastic nonlocal medium. Since the nonlocality of the medium
brings about a (constitutional) dispersion of the wave, the
associated dispersion equation may be compared with the
corresponding equation derived on the basis of the Born-von
Karmdn lattice dynamics. A longer calculation (see [12], pp.
191-192) yields

., ka
- sin“ —
20 () AN (k) 1 2 W
2u+N V2r (ka>2 ’ .
2

where u and A are Lamé’s constant, i’(k) and A’ (k) the
Fourier transforms of the nonlocal moduli, & the wave
number, and « the interatomic spacing. The foregoing
equation rests on the assumption that the interactions of
particles are limited to the closest-neighbor atomic planes (cf.,
[18], equation (1.3)).

2 A Hollow Circular Cylinder

Let us now consider an infinitely long hollow circular

cylinder whose inner and outer radii are ¢ and d, respectively. .

The cylinder is referred to a cylindrical r, ¢, z coordinate
system, and a plane longitudinal wave is transmitted in the
z-direction along the axis of the cylinder. Referring for details

2 Mainly from the point of view of shells.
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of calculations to the paper [12], pp. 192-194, we note that in
the Kroener-Eringen representation the nonlocal constitutive
equations become:

du
=N+ 204 2 +SV [)«( e’ —rl,

27—z D0 +2u’(Ir' —x1, Iz’ —2 I)%u—,]a’v’,
r

u
T¢¢——)\0+2M; +§V [)\ (Ir" —rl,
Iz —~z D6 +2u' (Ir" —r |, Iz’-zl)u—,]dv’,
r

ow
=N+ 2u +SV [x'( I’ —rl,

lz" ~z 8" +2p (" ~r ), lz' —z1) %w_/ ]dv’,
4

;= <au+6w)+s e
rz =W 3z ar V“(r —l’l,

ou’ !
Iz’—zl)< — + w—,)dv’.
az r

2.1

where V is the volume of the rod, r the position vector,
u'=u'(r',z’;Handw' =w'(r’, z’; ) the displacement
components, and § the dilatation. We subject the just-written
equations to the double Fourier transformation (designated
by the overbar) and obtain,

= - u -
Tr=a1u,+a, = —ika,w,

u 2.2.1)
'7'¢¢ =4a, ; +a212,,~—ika2‘7v,
Tz =02 (u,r + ;) —~ika, w, 2.2.2)
7-72 =a3(w,r_ikﬂ)s (2.2.3)
with
ay=N+2u+QmY2N +21"),
a; =A+(Q2mV2N, (2.3)

ay=p+Q2m) 25,

As shown in detail in Section 2 in [12], pp. 194-196, the
governing equations of the problem are

- 1.

0, + ;0’,+'y%0_=0, 2.4.1)
- 1. 1\ -
Q,,+;‘Q,—+("y%—;7)920, (2.4.2)
where
P oo
O0=u,+ - —ikw, 2.5.1)
Q= —(ka+ W), (2.5.2)

u and w are Fourier transforms of the radial and longitudinal
displacements, respectively, and
2 2
ow pw
1= =t
al at3

¥ (2.5.3)

A lengthy but standard calculation leads to the following

solution of the system (2.4.1) and (2.4.2):
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Fig. 1 Nondimensional frequency and wave speed versus the non-

dimensional wave number and the nondimensional nonlocal modulus

i lp.

u=CJ,(vin+C Y (v1)

+CJ i (12D) + C Y (121), (2.6.1)
W= C L, (1) + Cae ¥, (i)
Y1 Y1
—03”7210(72r)—c4f2—2Y0(72r), (2.6.2)
where J;, Y;, i=0, 1, are Bessel functions of the first and

second kind, respectively. Substitution of the above equations
into the equations of the stress components relevant to the
present investigation gives,

Ji (“N)]

r

Fr=C I:a4',o (711 —2a;

Yi(v1)

+C2[04Ya(71r)—203 ]+2a3C3 [’YzJo(’er)

P
J r Y (vor
- ‘LSZL)] +2a;Cy [’Yz Ya(’er)‘”%Z)], 2.7
T =iay[—2kC,J (1) —2kC, Y (1)
+asC3J 1 (y2r) +asCy Y (y,0) (2.8)

where

Journal of Applied Mechanics

K v
a=a;y,+a—, as=—- —k.
71 k
The assumption that the inner and outer surfaces of the

cylinder are free from external tractions, that is, in symbols,
Trr (C) =T, (d) =0!
T (€} =7, (d) =0,

furnishes a system of four homogeneous linear algebraic
equations for the four unknown coefficients C;, i=1, 2, 3, 4.
A nontrivial solution of the system requires, naturally, the
vanishing of the principal determinant of the system.

A general solution of the associated frequency equation,
which even in the classical case requires a comprehensive
study (cf., e.g., [14]), is not of our primary interest here,
Instead, we wish to confine our attention to a brief
examination of two particular cases of the problem. The first
of these is rather trivial; the second one permits us to make
some observations as to the impact of the nonlocal treatment
on the dispersion of a certain type of wave. (@) We first note
that if the inner radius of the cylinder c—0, then in order for
the stresses to remain bounded at r=0, one has to set
C,=C,=0. The equations (2.7) and (2.8) then (after an
appropriate translation of notation) reduce to the equation
(2.12) derived directly in [12] for a solid cylinder. A more
detailed analysis of this case is found in [12]. () The second
case deals with longitudinal waves known as the

2.9

(2.10)
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equivoluminal Lamé modes ([19], p. 795). These waves are
associated with the value of the Lamé constant A=0° and
v3 =k?%. Combining this with the second pair of the boundary
conditions (2.10), we find that a, =a5 =0, a, =2a;, pw?/a,
=k%, y,=0, C,=0, and 7, =0. The remaining two of the
boundary conditions now provide the characteristic equation
of the problem,

Jir29Y( (v2d) = J{(72d) Y (y,0) =0. (2.11)

The foregoing transcendental equation has the same form
as the one derived by Gazis ([14], equation (34)) in the
framework of the classical elasticity; the only difference
between the equations lies in the presence of the nonlocal
modulus &’ in the coefficient a,. Proceeding further, we find
from the relation pw?/a; =k? (after appeal to the equation
(1.1)) for very long waves Cuonioc/C210c = 1.41, and for ad-
missibly shortest* waves Cponee/Cs 10c =0.91, Where ¢ ouoc iS
the actual wave speed and ¢, is the speed of conventional
equivoluminal waves.

For a thin cylindrical shell for which A/c< <1, we may
assume that y,c>>1 and, consequently, y,d>>1 where
d=h+c. With this in mind, we are permitted to approximate
the development of the Bessel functions appearing in (2.11) by
the first two terms of their Hankel asymptotic series (cf., e.g.,
[20], formulas 808.4 and 812.4). A lengthy calculation leads
to the equation

. Ty.h
siny, h— gjézc—d cos y,h=0,
which, after assuming that y,A=nw+¢eand e< <1, n=1, 2,
3, ..., (cf., [15]) gives finally the value of the frequency win
terms of the ratio 4/c:

wm 2t ()],

n=1,2,3,...,

(2.12)

2.13)
where again

ﬂ:cgloc(ux/ﬂ“—). @.13a)
o I

The graphs in Fig. 1 depict the nondimensional wave speed as
well as the nondimensional wave frequency (the latter for the
first three modes) as functions of the product ka (k=wave
number, a=lattice constant) for the first Brillouin zone,’
0 =ka <. The value of the thickness # is assumed bo be equal
0.Ic. It is seen that for the waves of the minimal length 2a, the
wave frequency drops to 0.64 of its value established in the
conventional treatment. The same decrease is observed in the
value of the wave speed.

3 Concluding Remarks

The following few remarks sum up the main differences
between the local and the nonlocal aspects of the problem
under discussion:

(@) Apart from the configurational dispersion, registered
by the classical theory, and associated with the presence of the
boundaries, the nonlocal theory discloses a new type of

B 3We extend this assumption to the nonlocal material, that is, we also set -

A =0.

4 As shown in lattice dynamic, the wave frequency being a function of the
wave number, the wave length is not completely determined for the given
frequency. This ambiguity is avoided if the wave length 1 is restricted to the
interval 22 <1 <o, where a is the lattice parameter (cf., e.g., [23], p. 6).

5 As noted in the preceding footnote, there is 2a<1=<oo, Since | =27n/k
(k=wave number), then the ambiguity mentioned before disappears if
0= ka=<m; the interval [0, «] of the accepted variability of &« is known as the
first Brillouin zone.
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dispersion —the constitutive dispersion—distinct from the
former, and associated with the internal structure, or con-
stitution, of the matter.

(b) The nonlocal theory plays the role of a link between
the classical elasticity and the atomistic approach: it converts
into the conventional theory in the limit of the (infinitely) long
waves, but turns into an atomic scale theory in the limit of the
short waves and the discretization of the equations of motion.

(¢) With regard to the wave velocity, in the range of short
waves (beyond the reach of the classical theory), the nonlocal
theory predicts the wave velocity less than that of the con-
ventional long waves. In particular, in the case discussed in
Section 2, for short waves the wave velocity (and the wave
frequency) drops to 0.64 of its value established by the
conventional theory.
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Direct Measurement of Flexural

J. Takezaki

Y. Y. Hung

Strains in Plates by Shearography

Strains in a flexed plate are directly related to the second derivatives of the plate

deflections. A technique is developed which enables shearography to measure

School of Engineering,
Qakland University,
Rochester, Mich. 48063

second derivatives of deflection directly. The technique is based on generating
fictitious carrier fringes in the form of periodic linear fringes of uniform spacing.
The carrier fringes are distorted when the plate is deformed. The change in the pitch

of the carrier fringes due to deformation yields the flexural strain directly. The pitch
of the carrier fringes is equivalent to gage length.

Introduction

Plates are common structures used in engineering to resist
bending loads. Experimental techniques are often used to
measure strains in plates of complex geometry and loading
conditions. Mechanical and electrical strain gages indicate
strain at the two faces of the plate. From these strains,
moments can be computed. However, this information can
only be obtained on a point-by-point basis. Optical methods
are more interesting since they can give whole-field in-
formation and no contact with the plate is required. These
optical methods are classified into two categories: non-
coherent light methods and coherent light methods. The
noncoherent light methods are the moire method [1, 2] and
the classical optical method [3]; the coherent light methods
included holography [4, 5] and speckle interferometry [6].
The practical use of the moire method is limited by their
deficiency in sensitivity. Holography, one the other hand, is
too sensitive for many practical applications. Furthermore,
holography measures deflections; therefore, it is necessary to
differentiate the measured deflections twice [7, 8]. The work
of differentiation is not only laborious but also creates a
major source of error. Speckle photography [9, 10] and
speckle-shearing interferometry [11-13], including
shearography [14, 15], measure the slopes of deflections.
Thus, one differentiation is still required to obtain the
flexural strains.

Several methods have been suggested for obtaining the
flexural strain directly [16-17]. However, all the proposed
methods possess one or more severe limitations. Con-
sequently, these methods demand complex experimental
apparatus, complicated fringe interpretation, or apply only to
special surfaces such as a mirror-like surface. Shearography
seems to be a practical tool for the flexural strain
measurement, as the experimental design is very simple, no
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Fig.1 Schematic for generating carrier fringes by shifting virtual light
source

surface treatment is needed and the fringe patterns produced
are of high quality.

This paper describes a new technique of shearography that
allows the second derivatives of deflections in plates to be
measured directly.

Method

The experimental procedure is illustrated in Fig. 1. The
object under study is illuminated by a point source of coherent
light through a lens as shown, and it is imaged by an image-
shearing camera. If a photographic plate at the image plane of
the image-shearing camera is doubly exposed with the
illuminating lens being translated along the illumination
direction, a ‘‘fictitious fringe carrier’ not due to the
deformation is formed. The carrier fringes are in the form of
linear fringes of equal spacing. If, in addition to the lens
translation, the plate is deformed between exposures, a
perturbed linear fringe carrier is obtained. The local per-
turbation depends on the local deflection gradients, The
change of the spacing is directly related to the second
derivatives of the plate deflections. Therefore, the flexural
strains are directly determined by measuring the spacing of
the fringe carrier.

Generation of Carrier Fringes

The linear carrier fringes are generated by translating the
illumination lens. When a point light source is located inside
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the focal length of the lens, a virtual image of the point source
is formed. This is equivalent to a spherical wave diverging
from the virtual point in [18]. If the lens is translated, the
virtual point source is also translated. The translation of the
virtual point source induces a quadratic phase variation of
wavefront across the object’s surface. The image-shearing
camera measures derivatives of the phase variation, and the
derivative of a quadratic phase change is a linear variation.
Therefore, a set of linear fringes are produced by the lens
translation and the fringe lines are perpendicular to the
direction of shearing. Since this set of fringes is not due to
deformation of object, it is referred to as ‘‘fictitious carrier
fringes.”

Analysis of Carrier Fringes

As illustrated in Fig. 1, shearing in the x-direction through
the image-shearing camera is considered. The intensity of the
total light field on the image plane, 7, has been obtained in the
general form in [14, 15] as

I, =2a%*(1 + cosg,) 4}

where ¢, is a random phase angle. Equation (1) represents a
random intensity variation pattern commonly known as
speckle pattern.

When the light source position is shifted from S to S,, as
shown in Fig. 1, the relative phase shift A, between the two
sheared wave fronts induced by the relative optical path
change 8/ (see the Appendix) can be obtained as

2 2
b= 56D = 5T (kixoy) @

where A is the wave length of a coherent light, &k, =(R,—
R)/R,R,; (see Appendix) and d&x is the magnitude of
shearing. Therefore, with the translation of the light source,
equation (1) is modified as

I;=2a*[1+cos(¢, + A,)] 3)

If a photographic film at the image plane is double exposed
sequentially to I, and I, the total energy recorded can be
expressed as

Ir = L+1;
= 20¢*[2+cosg, +cos(p,+A )] Y]

where the energy is recorded linearly. Equation (4) represents
a frequency variable fringe; this type of fringes is not readily
visible as explained in [14, 15]. However, equation (4) can be
rewritten as

2¢, + 4, AW ] ©)

I =44 [1 + 0§ ———= CcOs —~

r 2 2

The second term in equation (5) represents the amplitude cos
(2¢, + A,/2) of high-frequency random carriers modulated by
the low-frequency factor cos A,/2. Fringe lines are areas

where the high-frequency carriers are nulled. This
corresponds to
Ar =0 6
cos = = )
that is
27
A, =Q@n+ D= —{(k,x)éx (n=0,1,2) @)

where n is the fringe order. Therefore, fringes are lines of
equal A,.

It should be emphasized that this type of fringe pattern is
different from the conventional fringe patterns. Conventional
fringes are loci at which intensity is minimal. The con-
ventional fringes are readily visible to the eye, whereas the
present frequency variation type fringes are not visible.
However, these invisible fringes can be converted to the
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visible intensity variation type by an optical high-pass Fourier
filtering process.

Equation (7) shows that the fringe pattern produced by the
translation of the illumination source consists of periodic
linear fringes. The fringe lines are perpendicular to the

‘shearing direction x and their pitch is Nk;8x. This fringe

pattern is referred to as ‘‘carrier fringes.”’

When the object is deformed in addition to the point light
source translation, the relative phase shift A’ induced by the
relative optical path change for the deformation case (Ap-
pendix), is obtained as

2T
Ay = “)T(fsl*)
27 du v ow
) a2 C—)6 8
Y <k1x+ ax +8 x T/ ®

where A, B, and C are sensitivity factors which can be varied
(see Appendix). Equation (3), therefore, is modified as

I, =2a%[1 +cos(¢, + AD)] )]

If a photographic film at the image plane that is doubly ex-
posed to an object before deformation and again after
deformation with the light source position shifted, it records
the total energy given by

Iy = I+1I;
= 2a%[2+cosd, +cos(¢, + A} )
Equation (10) is the same type as equation (4), thus we can
rewrite equation (10) as

Al Al
I’T=4a2[1+cos<¢x+ —x)cos—x] 1)

2 2
Again, fringe lines are areas where the high frequency carriers
are nulled. That is

7

cos —= =0 (12)
or
, 27 du dv
Ax—(2n+1)1r— T <k1x+A F}; +BEX
aw
+C—)6x(n=0,1,2) a3)
ax

Equation (13) represents a perturbed carrier fringe. The local
perturbation is related to the second derivatives of
displacement, For measuring flexural strains in piate
structures in which the out-of-plane displacement dominates,
equation (13) becomes

2 3
en+r= T (k,x+cf)5x
A X

7 (14

Direct Flexural Strain Measurement

Flexural strains in a flexed plate are related to the second
derivatives of the plate deflection by
9w

?w Fw
fx:hrxz ,Gy':h"a? 57xy=

0xady

where 4 is the distance from the neutral plane to the plate
surface.

The second derivatives of the plate deflection can be
determined directly by measuring the change in pitch in the
deformed carrier fringes.

If we consider the difference between the fringe order i+ 1
at position x,,, and / at position x; in equation (7), we can
define the fringe pitch as follows:

(15)

A

—_ 16
kybx (1)

P=Xiy —X=
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Fig.3 Carrier fringes with deformation

In equation (16), N, k;, and dx are known constants.
Therefore, the pitch of the carrier fringe for the case where
there is no deformation can be obtained as the constant pitch
in the direction of shearing.

Considering the carrier fringe positions x; and x;,, for the
deformed carrier fringes, the fringe spacing p* is defined as
the same manner as equation (16). It can be written as
A C (aw”‘ a_wl> (17
kiox k 0x ox

D =X X =

For simplicity, let us assume that the object is illuminated
and observed from a large distance and both along the z-
direction. The sensitivity factors of equation (17) can be
approximated by C =2, and equation (17) becomes

Wi, aw,-) k, ( A *> ky .
vt V2L (2 _p*) = (p—p*) (18
<ax )= 2 \kax 7)) U8
We can consider p*as the small increment Ax, then
(awiﬂ _ a—wi>/sz {‘:1_ p—p")
ox ax 2 p*
If Ax is small, the right-hand side of the above equation

approximates as d2w/dx?, the second derivative of deflec-
tions.

(19

Therefore
Pw (aw"“ - @”—")/Am _h (p*—p) 20)
ax? ox ax 2 p*
Equation (20) shows that it is possible to obtain the second

derivative of deflection by measuring the deformed carrier
fringe pitch p* and the undeformed carrier fringe pitch p.

Journal of Applied Mechanicé

—O-— EXPERIMENT RESULTS
—{— EXPECTED RESULTS

1
AN
T

SPAN POSITION ALONG THE CENTER LINE

THE SECOND DERIVATIVE OF DEFLECTION

Fig. 4 The second derivative distribution of deflection along the
centerline

Fig.5 The moire fringe pattern of the second derivative of deflection

Should the shearing be in the y-direction, equation (20)
becomes
Pw_ ki (0*-p)
2 p
To determine 3°w/dxdy, shearing in a third direction is
needed, say in a direction inclined at an angle « with the y-
axis. This ‘‘rosette’’ information allows 3%>w/dxdy to be
calculated with the following equation
?*w  FPw P*w ’w

—— = ——sinfa+ sin2a+ — cos?
dx,2  ox? Axdy “ ay? «

@D

2

Experimental Demonstration

To verify the validity of the technique, a square plate made
of aluminum and of dimension 110 mm X 110 mm X 2 mm
was chosen for the study. The plate was built in along all
edges and subjected to a uniform pressure of 3.45 KPa. An
argon laser emitting light of wavelength A=0.515xm was
employed as the coherent light source.

The aluminum plate was illuminated and observed at a
large distance normal to the plate so that the sensitivity factor
A=B=0and C=2,

Figure 2 shows an undeformed carrier fringe pattern ob-
tained by translating the illuminating source between the two
exposures. The fringes were made visible by a high-pass
optical Fourier filtering technique. Figure 3 shows the
deformed carrier fringes. In both fringe patterns shearing in
the y-direction was used. 32w/3dy? along the centerline of the
plate was deduced with equation (21). The comparison of the
experimental results with the theoretically expected results is
shown in Fig. 4. Good agreement between the results of the
two approaches is seen. Hence, the validity of the proposed
technique is confirmed.

MARCH 1986, Vol. 53/127
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Another avenue of obtaining the second derivatives of
deflections is to form a secondary moire fringe with two
identical deformed carrier fringe patterns, one shifted relative
to the other. Figure 5 shows a moire fringe pattern depicting
0*w/dy* distribution in the square plate. Here, the carrier
fringes enchance the visibility of the moire fringe pattern.

Conclusion

A technique employing shearography is developed that
allows direct determination of the second derivatives of plate
deflections and thus the flexural strains. Though the outputs
of the technique are fringe pattern, it does not require
identifying fringe orders. Instead, only the measurement of
the carrier fringe spacing is needed to deduce the data. It
should be pointed out that the differentiation process of
shearography is a finite difference approach.

The removal of the need to identify fringe orders lets
shearography acquire a high potential of being developed into
a computer based automatic data reduction system.
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Fig. 6 Optical path diagram for analyzing carrier fringes

APPENDIX

Analysis of Carrier Fringes

The optical path difference for the ray travelling from the
light source S;(x4,v42;) and S(x,,y:,2s) to the camera
O(xy,Y0,29) via the point P on the object, is obtained as
follows:

Before Deformation,

SP = [(6—x)?+ =)+ (z,—2)*1"2 (AD)
242+ 2, — 2y — 222
- Rs[1+x D e T s]
2R2
SaP = [0 =%+ (g =) +(z4—2)*1"? (A2)
24y +2% - 2xx,— 29y, — 222
- Rd[1+x Yy +z ;1 VY d]
2R}
Where R2=x2+y2+z2and Ry =x%+y% +z%. The fore-

going equations are obtained by neglecting high-order terms
in the series expansion. Therefore, the optical path change /
from S and S, to the point on the object is

1(x,»,2) (S4P+OP)—(SP+OP)

I

i

1
Ry=R,+ 5 ki R? (A3)

where OP is a constant due to no deformation
Rs - Rd

ko=2_"_4
! Rst

For the neighboring point P,(x+ éx,y,2), the optical path
change /, (x + 8x,y,2) can be obtained as follows:

[ (x+6x,),2) (S4P, +OP)—(SP, + OP})

, R2=x*+y?+7?

1l

1
= R;—R,+ Ekl{(x+6x)2 +y2+72)  (Ad)

Small terms in the foregoing equation are neglected.
Therefore, the relative optical path change is expressed as

1
Col=1(x+8x,0,2) — lx,y,2) = 3 Kk (2x6x + 6x2)

v =k, xbx (A5)
where 6x? can be neglected if the magnitude of shearing éx is
small. Consequently, the relative optical path change is given
by the linear function in the direction of shearing. Similarly,
in the y-direction,

ol=k,yby (A6)
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After Deformation. P(x,y,z) is displaced to P’(x+u,
y+v, z+w) and P(x+éx,y,2) is displaced to
Plx+éx+u+béu, y+v+o6u, z+w+6w). By the similar
derivation, it can be shown that the relative optical path
change 8/* between the two neighboring points due to the
deformation plus lens translation is

o

I

| )
> k1 (2xdx) + Adu + Bév + Céw

5 5
[klx-*—A‘; +8% +C—w]6x (A7)
X

6 oy é
where

Journal of Applied Mechanics

If the magnitude of shearing éx is small, the foregoing
equation can be approximated as

ou dv ow
61*:<k 1A% g% _)
1 X o + e +C Fy ox (A8)
Similarly, in the shearing direction y
ou a a
6l*=<k1y+A~+B_U +C—w>6y (A9)
ay dy ay
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Bimodal Optimization of
Compressed Columns on Elastic
Foundations

We consider columns attached to elastic foundations and compressed by axial end
loads. Pinned-pinned, clamped-clamped, and pinned-clamped boundary conditions
are treated. The columns have rectangular sandwich cross sections with a fixed
lightweight core and identical face sheets of variable thickness. For given total
volume, we optimize the variation of the thickness along the column so as to

maximize the buckling load. In most cases, the optimal design is bimodal (i.e.,
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associated with two buckling modes). The optimal designs depend on the foun-

dation stiffness, and the largest increase in buckling load relative to a column with
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Introduction

Optimization of columns for maximum buckling load has
been a topic of widespread interest (e.g., see the reviews by
Haug and Olhoff in [1]). Part of this interest has been due to
the existence of bimodal solutions [2], in which the optimal
design has a double eigenvalue and two distinct eigen-
functions. However, only a few examples have been treated
for columns which are attached to elastic foundations.

Kamat considered columns with solid cross sections of
similar shape in his Ph.D. dissertation [3]. The ends were
pinned and the area was assumed to be constant in 10 or 16
equal-length sections of the column. For two values of
foundation stiffness, a unimodal formulation was used to
maximize the buckling load. Similar problems were analyzed
in Turner’s Ph.D. dissertation [4], except that 20 sections
were used and columns with clamped ends were treated as
well. The results for the clamped-clamped columns were
published in [5].

The dual problem of minimizing the total volume for a
given buckling load was considered by Kiusalaas [6]. He
assumed that the column had a sandwich cross section with 20
sections of constant face-sheet thickness. His analysis allowed
for multiple eigenvalues. One example was presented, in-
volving a pinned-pinned column with a given foundation
stiffness, and his iterative solution procedure led to a bimodal
optimal design.

Since the previous work on this problem is sparse, and some
of it is restricted to a unimodal analysis, we decided to carry

Contributed by the Applied Mechanics Division for publication in the JOUR-
NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
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constant thickness is 22 percent.

out the present study. We use a bimodal formulation and
consider a range of foundation stiffnesses and three sets of
boundary conditions: pinned-pinned, clamped-clamped, and
pinned-clamped. An idealized sandwich cross section is
assumed, for which the moment of inertia is proportional to
the effective area. For given length and total volume of the
column, the buckling load is maximized.

Formulation

We consider an elastic column of length L, which is at-
tached to an elastic foundation of the Winkler type with
constant stiffness coefficient X and is subjected to a com-
pressive axial end load P. The horizontal coordinate is
denoted X, with 0=< X =L, The cross section is assumed to be
rectangular with constant width B, consisting of a lightweight
core of constant height A and Young’s modulus E,, covered
by identical thin face sheets, each with variable thickness 7(X)
and Young’s modulus E, (see Fig. 1). The bending stiffness of
the cross section is given by

i 2T AT
I=—EBH2T<1 LAy
El= = & TRy

E.H
Zr)

/

We assume that the ratios 7/H and E H/(E,T) are suf-
ficiently small so that the last three terms inside the paren-
theses in (1) can be neglected.

The volume of each face sheet, denoted V, is fixed in our
optimization problem. We denote the face-sheet cross-
sectional area and the bending stiffness of a reference uniform
column (having the same total volume) as A, and EI,,
respectively. It follows that

A, =V,/LEl =EHV,/(2L). )

The buckling load is the lowest of the eigenvalues P= P;. If
Y:(X) denotes the corresponding mode, the governing
equilibrium equations are
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Fig.1 Geometry of cross section
[EIX)Y (01" + P Y (X)+KY(X)=0, i=12, ... (3)

We introduce the nondimensional quantities
x = X/L, y;(x)=Y,;(xL)/L,a(x)= A xL)/A,,
p;, = P,L*/(EL), k=KL*/(EL). (4)
The design variable is a(x), which is the nondimensional face-

sheet area (or thickness). With the use of (4), the governing
equations become

oy )" +py! () +kyi()=0,i=1,2, . .. )
and the constraint of constant volume becomes
1
SO a(¥)dx=1. ©)

At a pinned end, y;=0 and ay /=0, The latter condition will
lead to «=0 at a pinned end of an optimal design. At a
clamped end, y; =0and y/=0.

If we multiply (5) by y;(x), integrate, and carry out ap-
propriate integration by parts, we obtain the standard
Rayleigh quotient for the eigenvalue p;. We normalize the
modes such that the denominator of this quotient is unity,
i.e.,

1
So (y,-’)zdx=l, =12, .., @)
and then we obtain
1 1
D= So a(yi”)zdx+kS0y,2dx, i=1,2... &)

For a given set of boundary conditions and a given
foundation stiffness &, we wish to determine the design
function o(x) which satisfies (6) and maximizes the minimum
eigenvalue (i.e., the buckling load). The optimal solution may
be multimodal, and it is convenient to utilize a bound form-
ulation [7] in which we maximize a lower bound 8 on p;. We
construct the following augmented functional £ to be
minimized:

L= =B+ Y viB-p;+0)

i=1
i 1 1
+ Enino(y,’)zdx—l] +“Ho adx—l] ©9)
i=1
where the p; are given by (8), 0, are slack variables, and vy;, 7;,
and u are constant Lagrange multipliers.

Stationarity of £ with respect to v, and 6; leads to the fact
that v;=0 if p; is not the minimum eigenvalue, while
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Fig. 2 Buckling loads for pinned-pinned columns (dotted line is
second buckling load for optimal column when unimodal)

stationarity with respect to 8 implies that the sum of the v,
values is unity. Stationarity of £ with respect to y;(x) leads to
(5). Finally, stationarity with respect to a(x) leads to the
optimality condition
Yl @1 = (10)
i=1
We seek solutions to the set of equations (5), (6), (7), and
(10), along with the derived conditions on the v,;. Equation
(10) is a necessary condition for stationarity of buckling load,
and the numerical procedure converges to a maximum value

of the buckling load. We will discuss the results separately for
the three sets of boundary conditions.

Pinned-Pinned Column
For a uniform pinned-pinned column (= 1) attached to an

elastic foundation, the buckling load and mode are as follows

[8]: for the integer n such that
(n-Dn?n* <k=n?(n+ 1),

(11

we have

(12)

V1 (x) = sin(nmx).

22
Punit =10"T + n27r2 . nw
The mode shape changes from symmetric to antisymmetric
(or vice versa) as k is increased past a transition value (n—
1)2n274, and at these values the buckling load is a double
eigenvalue and is associated with two modes. In Fig. 2, the
dashed lines depict p,.i; for 0<k= 2,000, with a transition
value fromn=1ton=2at k=389.6.

If the foundation stiffness k is zero, the optimal design and
corresponding buckling load and mode are given by [9]

a(x) = 6x(1 = X), Pop = 12,9, (x) =V3x(1 - X). 13)
The design «(x) is shown in Fig. 3(a), along with the reference
uniform column having the same volume. This optimal
solution is unimodal. The second buckling load, p=36,
corresponds to an antisymmetric mode.

In the range 0 <k <376, we find that the optimal solution
remains unimodal. The governing mode y(x) is given in (13),
and using this mode in (5), along with the conditions «(0) =0,
a(1) =0, and (6), leads to the optimal design

k) < k) , ko, ko,
= e — JR— +_ —_
a(x) (6+120 X 6+20 x 12x 24x

and the corresponding buckling load

(14)
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(c) k=1,000

Fig.3 Optimal designs for pinned-pinned columns
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Fig. 4 Buckling loads for clamped-clamped columns

Pop = 12+ (k/10). (15)

As with the uniform column, this load increases linearly with
k. The second buckling mode associated with the design (14)
was computed by applying a finite-difference method to (5),
and the resulting values are depicted by the dotted line in Fig.
2. At k=376, py, (shown by the solid line) and the second
buckling load coalesce.

If k£>376, the optimal solution is bimodal. We obtained a
numerical solution to the governing equations with the use of
finite differences. We assumed a(x) and y, (x) to be symmetric
and y,(x) to be antisymmetric, and we used 16 knots in the
region 0 <x=<1/2. Then (5), (6), (7), and (10) become a system
of nonlinear algebraic equations in the following quantities:

D, €1, ¢;, and the unknown values of «, y,, and y, at the

knots. In order to avoid solutions involving negative values of
o, we replaced o by ¢* and used the ¢ values as unknowns.
The resulting system of equations was solved directly with the
use of a standard computer program.

The maximum buckling load obtained from this procedure,
Pop» 18 plotted in Fig. 2 for the range 376 < k <2000 and listed
in Table 1 for k=500, 1000, 1500, and 2000. The

132/ Vol. 63, MARCH 1986

Table1 Critical loads
Pinned-~Pinned Clamped-Clamped Pinned-Clamped

k Punif popt Punif pv:>pt Puni £ p¢:>pt

0 9.9 12.0 39.5 48.0 20.2 24.7
500 52.1 58.6 75.4 81.1 55.8 64.1
1,000 64.8 71.9 101.2 106.1 74.5 86.5
1,500 77.5 84.4 111.2 121.3 87.0 99.8
2,000 90.1 97.0 121.1 132.8 98.1 111.4

corresponding optimal designs a(x) for k=500 and k£ =1000
are shown in Figs. 3(b) and (¢), respectively. The optimal
designs for k= 1500 and &k =2000 are almost identical to that
in Fig. 3(c). We also note that the design obtained by
Kiusalaas [6] (for the dual problem) corresponds to k=443
and has a local minimum in the center as do the designs shown
in Figs. 3(b) and (¢).

The governing modes change shape as k is increased. As for
the uniform column, the modes become more wavy and have
more nodes with increasing k. The optimal designs also
become more wavy as k grows larger.

Clamped-Clamped Column

For a uniform column with both ends clamped, the
buckling load p; is the lowest root of the equation [8]

Vp—Z\/%sin(% Vp+2\/%> =+ p+2\/%sin<—;— m)

(16)
Transitions between symmetric and antisymmetric modes
occur when

k=2 —12xt pur=2(n + Dr2n=23, ... (17

Some other values of p,;; are listed in Table 1. In Fig. 4, py.¢
is plotted versus k& (dashed curve), and a transition from
symmetric to antisymmetric buckling occurs at k=97*. The
buckling load is almost linear in k£ between transition points.

The optimal designs are found to be bimodal for all values
of k=0. At k=0, the maximum buckling load for a sandwich
column with clamped ends is p,, =47.956 [10]. Optimal
buckling loads for the range 0 < k <2000 are plotted in Fig. 4,
and some values are listed in Table 1. The optimal designs
a(x) for k=0, 500, 1000, and 1500 are shown in Fig. 5, and
the design for £ =2000 is almost identical to that in Fig. 5(d).
These results were obtained by the procedure described in the
previous section, except twice as many knots were used in this
case. Again, the optimal design and the associated modes
become more wavy as k increases.

Pinned-Clamped Column

Here we assume the column is pinned at x= 0 and clamped
at x=1. For the uniform design (o = 1), the buckling load p,
is the lowest root of the equation

Vp—2VksinVp+ 2k =Vp + 2VksinVp —2vk  (18)

It is plotted in Fi'g. 6, and some values are listed in Table 1.
Some other solutions are
Punir =0 + D)w?/2 at k=(n? - 1)27%/16,n=2,3, . . . (19)

Since the boundary conditions are not symmetric, this case
does not involve symmetric and antisymmetric modes.
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(c)k=1,000
(d)k=1,500

Fig.5 Optimal designs for clamped-clamped columns

For k=0, the optimal solution is bimodal and is given by
[11,12]

2x(1 =V2x)/(2V2) if0sx<1/V2,
a(x) = (20)
rPV2x-DEV2-x)/(2¥2)  if1/V2=x=1,
r(1 —v2)x + (r/2)x? if0<x=<1/V2,
yi(x)= ) (21)
—(r/2)(1 —x)? if 1/V2=x=1,
1~ (1/V2)x — (r/2)x* if0=x=<1/V2,
Y2 (x)= (22)
—(r/2)(1 —x)? if 1/V2<x=<1,
where
r2=pop =6/(3V2—4)=24.73. 23)

The design (20), depicted in Fig. 7(a), has a hinge at x=1/V2
(where o=0). The mode y,(x) in (21) has continuous slope,
while the mode y,(x) in (22) has a discontinuity in slope at the
hinge and can be obtained from y,(x) by reflection of the
section from x=0 to x=1/v2 across a chord connecting the
pinned end with the hinge [12]. Both modes have constant
(»/)?, 0=x=1, and thus satisfy the unimodal optimality
condition as well as the bimodal one.

When k>0, we find that the optimal solution is bimodal
and does not contain an inner hinge (a unimodal solution with
a hinge can be obtained analytically, but it has a lower
buckling load). The boundary conditions are not symmetric,
and therefore we cannot separate y,(x) and y,(x) into sym-
metric and antisymmetric functions. We used 32 knots in the
region 0<x=1 and again solved the governing equations
directly.

Results for the pinned-clamped case are presented in Table
1 and Figs. 6 and 7..They exhibit similarities to the previous
results in the form of the curve of p,, versus k and in the
increased waviness of the optimal design and "associated
modes with increasing k.

Journal of Applied Mechanics
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Fig. 6 Buckling loads for pinned-clamped columns
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Fig.7 Optimal designs for pinned-clamped columns

Concluding Remarks

We have determined optimal designs for pinned-pinned,
clamped-clamped, and pinned-clamped sandwich columns
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attached to elastic foundations. For pinned-pinned columns
with a sufficiently small foundation stiffness coefficient
(0 <k <376), the optimal solution is unimodal (i.e., associated
with a single buckling mode). In all other cases, the solution is
bimodal. The percentage increase in buckling load over that
of a uniform column is 22 percent when k=0 and less than
that when the foundation is present.

For uniform columns, the governing modes become more
wavy as k increases (e.g., see (12)). This is also true for the
optimally designed columns. In addition to the results
presented here for 0 <k =<2000, we carried out a few com-
putations for values of £ up to 20,000, and the trend con-
tinued: the solutions were bimodal and the modes and designs
had increasing numbers of local minima and maxima.

The columns were assumed to have ideal rectangular
sandwich cross sections of fixed width, so that the moment of
inertia was proportional to the effective area. The results can
also be applied to some other cross sections, such as ideal I-
beams. For the case of a solid rectangular cross section of
fixed height and varying width, however, the results will only
be applicable if the foundation stiffness is constant; for
example, if the restoring force were proportional to the
contact area, then the stiffness would be a function of the
width and would vary along the column [13].

Finally, we note that the occurrence of bimodal optimal
designs for columns is not restricted to symmetric boundary
conditions where the modes associated with the lowest
eigenvalue can be assumed to be a symmetric mode and an
antisymmetric mode. This was demonstrated in the case of a
pinned-clamped column, previously in [12] for no elastic
foundation (where the optimal design possesses an inner
hinge), and here in the presence of an elastic foundation
(where no inner hinges occur).

134/ Vol. 53, MARCH 1986

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant CEE-8210222.

References

| Haug, E. J., and Cea, J., Optimization of Distributed Parameter Struc-
tures, Volume I, Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands,
1981,

2 Olhoff, N., and Rasmussen, S. H., “On Single and Bimodal Optimum
Buckling Loads of Clamped Columns,”’ International Journal of Solids and
Structures, Vol. 13, 1977, pp. 605-614,

3 Kamat, M. P., ““Optimization of Structural Elements for Stability and
Vibration,” Ph.D. Dissertation, Georgia Institute of Technology, 1972.

4 Turner, H. K., *‘Optimal Design of Elastic Structures for Stability Under
Multiple Loads,”” Ph.D. Dissertation, Virginia Polytechnic Institute and State
University, 1979.

5 Turner, H. K., and Plaut, R. H., “‘Optimal Design for Stability Under
Muttiple Loads,” Journal of the Engineering Mechanics Division, Proceedings,
ASCE, Vol. 106, 1980, pp. 1365-1382.

6 Kiusalaas, I., ““Optimal Design of Structures with Buckling Constraints,”’
International Journal of Solids and Structures, Vol. 9, 1973, pp. 863-878.

7 Bendse¢e, M. P., Olhoff, N., and Taylor, J. E., ‘A Variational Formula-
tion for Moulticriteria Structural Optimization,”” Journal of Structural
Mechanics, Vol. 11, 1983, pp. 523-544,

8 Hetenyi, M., Beams on Elastic Foundation, The University of Michigan
Press, Ann Arbor, 1946,

9 Prager, W., and Taylor, J. E., “Problems of Optimal Structural Design,”’
ASME JouRNAL OF APPLIED MECHANICS, Vol. 35, 1968, pp. 102-106.

10 Masur, E. F., ““Optimal Structural Design Under Multiple Eigenvalue
Constraints,”” International Journal of Solids and Structures, Vol. 20, 1984, pp.
211-231.

11 Banichuk, N. V., and Karihaloo, B. L., *“On the Solutjon of Optimization
Problems with Singularities,”” International Journal of Solids and Structures,
Vol. 13, 1977, pp. 725-733.

12 Ofhoff, N., and Niordson, F. 1., “Some Problems Concerning
Singularities of Optimal Beams and Columns,”’ Zeitschrift fiir angewandte
Mathematik und Physik, Vol. 59, 1979, pp. T16-T26.

13 Adali, S., “Optimal Circular Ring Sector Subject to Inequality Con-
straints,”” Journal de Mécanique Applique, Vol. 4, 1980, pp. 131-154.

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Optimal Forms of Shallow

R. H. Plaut

Professor,
Department of Civil Engineering.
Mem. ASME

Stability

L. W. Johnson

Professor,
Department of Mathematics.

Cylindrical Panels With
Respect to Vibration and

Thin, shallow, elastic, cylindrical panels with rectangular planform are considered.
We seek the midsurface form which maximizes the fundamental frequency of vibra-

tion, and the form which maximizes the buckling value of a uniform axial load. The
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material, surface area, and uniform thickness of the panel are specified. The curved
edges are simply supported, while the straight edges are either simply supported or
clamped. For the clamped case, the optimal panels have zero slope at the edges. In

the examples, the maximum fundamental frequency is up to 12 percent higher than
that of the corresponding circular cylindrical panel, while the buckling load is in-
creased by as much as 95 percent. Most of the solutions are bimodal, while the rest
are either unimodal or trimodal.

Introduction

Cylindrical panels are used in a variety of structures, such as
airplanes, rocket boosters, ships, and submarines [1]. They are
often subjected to disturbances which cause vibrations, or to
axial compressive forces, which can cause buckling. Hence,
there has been extensive research on the vibration and buck-
ling of cylindrical panels. In most cases, the form of the panel
perpendicular to its generators has been taken to be circular.
Here, however, we consider shallow cylindrical panels with ar-
bitrary form, and we seek the form which maximizes the fun-
damental vibration frequency or the buckling load.

A few representative papers dealing with cylindrical panels
can be mentioned. Various sets of boundary conditions have
been treated in the literature [2-4]. The vibration of noncir-
cular cylindrical panels was analyzed in [5-7]. References 8
and 9 considered nonuniform compressive forces, while
postbuckling behavior was discussed in [10-13]. Elastic-plastic
behavior [1, 12], stiffened panels [14], and composite panels
{15] have received attention, and some optimization studies
have been carried out [1, 16, 17].

In the present work, the governing equations are based on
Donnell’s theory. The curved edges of the panel are assumed
to be simply supported with no tangential displacement, while
the straight edges are assumed to be either simply supported or
clamped, with no normal displacement. For the case of buck-
ling, a compressive, normal load is applied uniformly along
the curved edges.

In the optimization formulation, the boundary conditions,
material, thickness, and surface area of the panel are
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Applied Mechanics Division, June 15, 1984; final revision, April 15, 1985.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject(t:cg)gglulgncens

specified, and the form is variable. Hence, the total volume
and mass of the panel are given. The optimality conditions for
maximum fundamental frequency and maximum buckling
load are derived with the use of the calculus of variations,
allowing for multimodal solutions. To obtain numerical
results, an iterative technique based on the optimality condi-
tion is applied to get close to the optimal solution and deter-
mine its governing modes, followed by a direct solution of the
governing equations. The results depend on the boundary con-
ditions, aspect ratio, and surface area parameter. Twelve cases
are solved for both the vibration problem and the buckling
problem. Three of the resulting optimal solutions are
unimodal, 18 are bimodal, and three are trimodal.

We note that a similar type of investigation was carried out
in [18, 19] for shallow, axisymmetric shells with a circular
boundary.

Shell Equations

We consider a thin, shallow, elastic, cylindrical panel with
constant thickness 4, density p, Young’s modulus £, and
Poisson’s ratio ». It has a rectangular planform with X = 0, a
along its curved edges, and Y = 0, b along its straight edges.
The height of the middle surface above the base plane (i.e., the
form) is Z(Y), which will be chosen in an optimal manner. At
the straight edges ¥ = 0, b, the slopes Z’(Y) are not specified.

The area S of the middle surface can be written as

S=a[b+%S:(Z’)2a’Y] (1)

under our shallowness assumption. We define the nondimen-
sional surface area parameter 5% by

B =2S—ab)a/(q*b) @

where
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Fig. 1 Geometry of cylindrical panel (in nondimensional terms)

q=h/N12(1=»%). 3)

For shallow, circular cylindrical panels with height A and
radius of curvature R, we have Z(Y) = 4HY(b- Y)/b? and 52
= 16a°H?/(3q*b*) = a*b*/(12g*R2).

With T denoting time, we let W(X, Y, T) be the upward
deflection of the panel and F(X, Y, T) be the Airy stress func-
tion. In-plane inertia is neglected. The linear equations of mo-
tion, based on Donnell’s theory with uniform axial prestress,
are [20]

DVAW+PWyy—Z" Fyy+phWer= 0, @
VAF+ERZ" Wy = 0, )

where P is a uniform, normal, compressive force per unit
length on the edges X = 0, a,

ER? . 94 84 94
b= 12(1 —?) Vi )~<6X4 +2 ax?ay? 6Y4>( ), (©)

and subscripts X, Y, and T denote partial derivatives.
To study vibrations with frequency Q, we let

W(X,Y,T) = W(X,Y)cosQT, F(X,Y,T) = F(X,Y)cosQT. (7)
We then define the nondimensional quantities
x=X/a,y=Y/a,c=bla,z =7Z/q,w= W/q,
f=F/D,p = Pa®>/D, w = Qa*ph/D (8)

where 0=x=<1, 0<y=<c (see Fig. 1), and we define the design
function g(») by

gy =z'0). ®

In nondimensional terms, equation (2) becomes

] c
o 27y — @2
| eay = (10)
and the governing equations for w(x, »), f(x, ¥) become
VAW pW,y —8 [ — 0w = 0, (1
Vg W= 0, (12)
where
a4 a* a*
v = (—+2~——+——~> 13
) oxt T axtayr - oyt () (13)

and subscripts x and y denote partial derivatives.

Classical simply supported boundary conditions are as-
sumed on the curved edges x = 0,1. Normal displacement is
allowed, but not tangential displacement, and [13]

w=w,=f=f,=0. (14)

On the straight edges ¥ = 0,c, we assume either simply sup-
ported or clamped conditions, with tangential displacement
but no normal displacement. These conditions are denoted
§S2 and CC2 in [4], and lead to

136/ Vol. 53, MARCH 1986

(15)

w=w, =fy =S, =0
and

w=w, =fy =Sy =0 (16)

respectively (see the Appendix). .
. We now consider the two optimization problems separately.

Maximum Fundamental Frequency

For the case of free vibrations, we set p = 0 in (11). Further,
we denote the nondimensional natural frequencies by w,, n =
1,2, ..., and the corresponding vibration modes and stress
functions by w,(x, ) and f,(x, »), respectively. Multiple fre-
quencies may exist; for example, we may have a double fre-
quency w; = w, with corresponding eigenfunction pairs w,, f;
and w,, f5.

From (11) and (12), we can obtain a Rayleigh quotient for
w? which becomes

w2 =[05, (V2w,)? = (V2 )?

+2(w, ) (f,)x8 1dxdy amn
if we normalize its denominator by
o1 widxdy = 1, (18)
where
92 9?2
2 = (—— . 19
v2( ) (ax2+ay2)< ) (19)

Our objective is to determine the design function g(y) which
maximizes the fundamental (i.e., lowest) vibration frequency
for a given value of the surface area parameter 8%. The op-
timal solution may be multimodal, and it is convenient to
utilize a bound formulation [21, 22] in which we maximize a
lower bound B on w?. With the use of Lagrange multipliers v,,,
«,, and g, and slack variables 8,, we construct the following
augmented functional:

ns

i hd cpl
L=—B+ ), v,B-w2+6)+ Y, oz,,[SO SO whdxdy — 1]
n=1 n=1
1 ¢e
tu|—| gay-p2 ©0)
c Jo
where w,, is given by (17) and we have incorporated the con-
straints (10) and (18).

Stationarity of L with respect to v, and 6, leads to the fact
that v, = 0if w, is not the fundamental frequency, while sta-
tionarity with respect to B implies that the sum of the 1y,
values is unity. Stationarity of L with respect to w, and f,
leads to (11) and (12), respectively. Finally, stationarity with
respect to the design function g furnishes the optimality condi-
tion

1
80)=— 1 v, | [0, o)l

n=1}

@

If the straight edges of the shell are clamped, it follows from
(9), (16), and (21) that the optimal form has z* = 0 (i.e., zero
slope) at these edges.

Maximum Buckling Load

For the case of buckling, we set w = 0in (11) and denote the
eigenvalues by p,, n = 1, 2, ..., and the corresponding
eigenfunctions by w,(x, ) and f,(x, y). If we now normalize
the modes by~

1
Jodo [ 2dxdy = 1,
the appropriate Rayleigh quotient becomes

b, = j;sg [(VZW”)Z - (Vz‘fn)z

(22)
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.a) e=2/3; B2 =500

b) c=2/3; B2 =1,000

L

¢) c=1; B%=500

d) c=1; 8%=1,000

—_ Ty

e) c=1.5; 8%= 500

—_ Ty

f) c=1.5;8%:1,000
Fig.2 Optimal forms for maximum fundamental frequency with simply
supported edges

+2w,) )8 1dxdy. (23)
The optimization formulation is similar to that in the
previous section. In (20), w2 is replaced by p, (which has the
same formula) and the normalization condition (18) is re-
placed by (22). The optimality condition again is given by (21).
Solution Procedure
For both optimization problems, we let

w,(x, ») = w,,, ()sin(mnx),

F2%, ) = Frn@)sin(mm). @4
Then (11) and (12) become
W,',';;’n - 2m27r2 Wz;:w + (m47r4 - m2 7r2pmn
- wtznn)wmn + m2 7r2g ’-/‘I"" = O? (25)
mn~2m2 W2 fly + MAT [, — 272G W,,, = 0, (26)

where we denote the corresponding frequency and load by w,,,,
and p,,., respectively, with p,,, = 0 when the frequency is op-
timized and w,,, = 0 when the buckling load is optimized. The
optimality condition (21) can be written in the form

g0 =2 3 LW OVon O @7

m=1 n=1

where the I',,,, are constants which are zero except for pairs m,
n associated with the minimum eigenvalue. For example, if the
lowest frequency is bimodal with w,, =w,, then all coeffi-
cients T',,,, in (27) are zero except I';; and T'},.

The boundary conditions (either (15) or (16)), aspect ratio ¢,
and surface area parameter 32 are specified. Two phases are
used in the solution procedure. In the first phase, we choose
an initial design g(y) and solve (25) and (26) for different
values of m to find the lowest eigenvalue (either the fun-
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Fig. 3 Optimal forms for maximum fundamental frequency with
straight edges clamped

T

damental frequency or buckling load) and the associated
eigenfunction pair (or pairs) w,,, f... Equation (27) is
employed to modify the design, and (25), (26) are solved using
the new design. This is repeated to increase the lowest eigen-
value until the multiplicity of the optimal eigenvalue and the
forms of the associated eigenfunctions become clear. Next, in
the second phase, we solve (27) directly for g(»), using (25) and
(26) to furnish w,,(y) and f,,(»). When the solution is
trimodal, for example, this procedure involves a set of seven
nonlinear differential equations. The constraints (10) and
either (18) or (22) are incorporated to scale the functions.

To obtain the numerical solutions, we divide the length
O=<y=c into 32 sections and apply finite differences at the
knots. A standard eigenvalue program is used in the first
phase of the solution procedure, and a quasi-Newton method
in the second phase.

A number of locally optimal solutions may exist. We at-
tempt to determine the global optimum for each case by
starting from several initial designs, converging to a local op-
timum, and then selecting the best of these as the optimal
design.

Results

We computed optimal solutions for aspect ratios ¢ = 2/3,
1, and 1.5, and surface area parameter values 5> = 500 and
1,000. In all cases, the optimal forms z(y) turned out to be
symmetric about the center, y = ¢/2.

First, consider the free vibration problem. The optimal
forms are depicted in Figs. 2 and 3 when the straight edges are
simply supported and clamped, respectively. In the figures, we
plot z(y)/c versus y/c. The optimal panels in Figs. 2 and 3 lie
above the base plane. As mentioned earlier, at a clamped edge
the optimal form z(y) has a zero slope.

Some frequencies associated with these optimal designs are
listed in Table 1, along with frequencies of a circular cylin-
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Table 1 Vibration frequencies for circular and optimal forms
Frequency
Circular panel Optimal panel ratio
E: g2 “) w, wy wy ) wy vy 0y
§S  2/3 500 103.2 121.8 154.5 210.8 | 104.5 118.6 151.8 208.7 1.01
§S 2/3 L,non| 107.8 157.6 187.2 237.2 | 116.0 132.6 166.8 222.7 1.08
SS 1 500 59.7 86.4 1i23.0 183.7 63.4 81.6 120.1 182.1 1.06
SS 1 1,000 68.4 109.3 142.9 198.2 74.7 97,2 135.1 194.0 1.09
SS 1.5 500| 41.3 65.5 105.8 170.0 42.6 64.4 105.4 169.9 1.03
Ss 1.5 1,000 50.8 80.5 117.0 177.4 50.8 80.5 117.0 177.4 1.00
€ 2/3 500 | 111,1 126.3 160.2 216.8 l24.71 140.6  175.6 231.6 1.12
CC  2/3 1,000} 144.4 158.8 189.8 241.,2 | 150.8 164.6 195.5 247.5 1.04
cc 1 500 { 69.6 87.3 124.8 185.5 74.8 92.1 129.4 189.7 1.07
cC 1 1,000 | 80.5 109.3 143.7 199.6 85.1 104.3 141.8 200.9 1.06
cC 1.5 500 | 44.7 65.8 106.4 170.6 46.2 67.3 108.6 172.7 1.04
¢ 1.5 1000{ 52.1 80.5 117.4 177.9 54.8 80.6 119.4 180.2 1.05
]unﬁmodah all other optimal solutions are bimodal
Table 2 Buckling loads for circular and optimal forms
Circular panel Optimal panel Load
R B, Py P b, o T B
sS2/3 500 | 1080. 375.7 268.7 281.3 547.1 288.9 288.9 327.4] 1.08
SS2/3 1,000 1178. 629.0  394.6  356.4 687.2 414.4 414.4 436.3) 1.16
SS 1 500 361.0 189.1 170.3 213.6 201.4 201.4 219.1 259.1y 1.18
SS 1 1,000| 474.4 302.8 229.8 248.8 | 298.2 298.2 298.2 317.2{ 1.30
S 1.5 500 172.9 108.6 126.1 183.1 167.3 185.4 208.5 249.6| 1.54
sS L5 1,000 261.6  164.2 1541 199.3 296.9 296.9 321.4 350.8| 1.93
cc 2/3 500 | 1251, 404.0  289.1 297.5 966.9 416.3 369.1 390.7} 1.28
cC 2/3 1,000{ 2113, 639.0 405.5 368.6 9l4.4 527.6° 527.6 552.8| 1.43
¢ 1 500 | 491.1 192.9 175.3 218.0 | 252.1 252.1 276.9 317.1| 1.44
¢ 1 1,000( 655.9 302.8 232.4 252.3 | 394,9 394.9 394.9 409.4| 1.70
¢ 1.5 500 202.2  109.5 127.5 184.3 185.4 185.4 196.5 237.9| 1.69
CC 1.5 1,000( 274.7 164.3 155.1 200.4 | 302.6 302.6 3N2.6 318.1) 1.95

drical panel having the same boundary conditions and values
of ¢ and B2. For each value of m in (24), there are an infinite
number of vibration frequencies, and we denote the lowest of
these by w,, in Table 1. The lowest frequencies for m = 1,2,3,
and 4 are presented in Table 1 for the optimal panels and the
corresponding circular forms. (We note that the four frequen-
cies listed for each case do not necessarily include the second,
third, or fourth lowest frequencies of the panel; for example,
the second lowest frequency for m = 1 may be lower than w,,
w3, and wy.)

In these 12 examples, the fundamental frequency is
associated with m = 1, i.e., one half-sine wave in the x direc-
tion. For the circular cylindrical panels, the lowest eigenvalue
is distinct. This is also true for the optimal design in the case
when the edges are clamped with ¢ = 2/3 and 8% = 500. In the
other 11 optimal solutions, however, v, is a double eigenvalue
and the solution is bimodal. The vibration mode associated
with w, in the unimodal case is symmetric about y = ¢/2 (with
no nodes). For the other optimal solutions, the governing
modes can be written as a symmetric and anti-symmetric pair,
or any linear combination of those functions. In the circular
case the governing vibration mode is antisymmetric about y
= ¢/2 (with one node) for the first six rows and last three rows
of Table 1, and symmetric for the remaining three rows.

The last column of Table 1 lists the ratio of the optimal fun-
damental frequency to that of the corresponding circular
cylindrical panel. In one case the optimal form is nearly cir-
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cular and, therefore, the improvement is negligible. The
largest increase shown is 12 percent, which occurs for the
panel having a unimodal solution.

Results for the buckling problem are presented in Table 2
and Figs. 4 and 5. For most of these optimal forms, the panel
does not lie completely above the base plane. In the case of
clamped edges, the slope there is zero again.

Similarly to the notation in Table 1, we denote the lowest
eigenvalue for a given value of m by p,,, and we list p,, p,, D3,
and p, for the optimal and circular cylindrical panels. In con-
trast to the vibration results, here none of the cases exhibits a
multiple eigenvalue for a given value of m. Instead, eigen-
values for different values of m are sometimes equal to each
other.

In Table 2, the buckling loads (i.e., the lowest eigenvalues
over all values of m) are underlined. For the circular cylin-
drical panel, the buckling loads are distinct eigenvalues and
the associated mode for each case has either two, three, or
four half-sine waves in the x direction. For the optimal panels,

‘modes with lower values of m tend to govern or join in a

multimodal solution. As an example, in the first row of Table
2, the buckling mode is associated with m = 3 for the circular
case, while the optimal solution is bimodal with m = 2 and m
= 3. In the second row, p, is the buckling load for the circular
form, while p, and p; again govern for the optimal panel.
We note that there are three trimodal solutions in Table 2,
corresponding to the designs in Figs. 4(d), 5(d) and 5(f). In
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a) ¢=2/3; B% =500

0) c=2/3; B% <500

b) c=2/3; B2 =1,000

b) c=2/3; B2 =1,000

¢)c=1; B%=500

c)c=1;B%=500

d) c=1; B%=1,000

d) c=1; B%=1,000

e) c=1.5, B%= 500

e} c=1.5; B%= 500

£) c=1.5; B%=1,000

Fig. 4 "Optimal forms for maximum buckling load with simply sup-
ported edges

these cases, there are buckling modes with one, two, and three
half-sine waves in the x direction.

In some of the examples, the second eigenvalues for one or
more of the governing mode numbers m are close to the buck-
ling load. For example, if the straight edges are clamped with
aspect ratio ¢ = 1 and surface area parameter 82 = 1,000,
then the optimal buckling load is p, = p, = p; = 394.9, while
the second frequencies for m = 2 and m = 3 are 396.8 and
396.2, respectively.

In all of the circular cases and most of the optimal cases
listed in Table 2, the buckling modes associated with the
buckling loads are symmetric about y = ¢/2 (with no nodes).
The only anti-symmetric modes (with one node) are associated
with the following eigenvalues of the optimal forms: m = 2in
the fourth, sixth, and last two rows, and m = 3 in the tenth
row. When the optimal solution is multimodal, any linear
combination of the individual buckling modes is also a solu-
tion of (11) and (12) at the buckling load.

The last column of Table 2 lists the ratio of the optimal
buckling load to that of the corresponding circular cylindrical
panel. The increase ranges from 8 percent for the first case to
95 percent for the last case.

During the buckling optimization procedure for a given
case, different initial designs sometimes led to different solu-
tions, In other words, there may be a number of local optima.
For example, in the case of clamped edges with ¢ = 1 and 32
= 500, the maximum buckling load is p;, = p, = 252.1. There
is another solution of the governing equations (25), (26), and
the optimality condition (27), for which p, = 359.8, p, = p;
= 248.5, and p, = 282.0. Hence, this suboptimal design is
also bimodal. Its form is similar to that in Fig. 5(c) except that
its values z(y) are somewhat higher.

An interesting feature occurred in the case of clamped edges
with ¢ = 2/3 and 82 = 500. The optimal solution is unimodal
with buckling load p; = 369.1. However, there is a subop-
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£) c=1.5;8%=1,000

Fig. 5 Optimal forms for maximum buckling load with straight edges
clamped

timal solution which is bimodal, with p, = 1392, p, = 483.8,
D1 = py = 364.8, ps = 413.1, and ps = 494.7. Its form lies
slightly above that shown in Fig. 5(z). This demonstrates that
it is possible to have a suboptimal design with higher modality
(i.e., a larger number of coincident eigenvalues) than the op-
timal design.

Concluding Remarks

We have considered the problems of maximizing the fun-
damental vibration frequency and the buckling load of a
shallow, cylindrical panel by varying its form. The boundary
conditions, material, thickness, and surface area of the panel
are specified. Numerical results are obtained for a number of
cases. The optimal solutions are unimodal, bimodal, or
trimodal. In comparison with the corresponding circular cylin-
drical panel, the increase in fundamental frequency is fairly
small (less than 12 percent in the examples), while the increase
in buckling load can be substantial (8-95 percent in the
examples).

When the straight edges of the panel are assumed to be
clamped, the optimal forms have zero slope there. In Figs. 2
and 3, for maximum fundamental frequency of natural vibra-
tions, the optimal panel lies above the base plane. In Figs. 4
and 5, for maximum buckling load, the optimal panels usually
lie below the base plane near the straight edges and above it in
the central region, and tend to resemble corrugated plates.

In the numerical solution procedure, we use a finite dif-
ference method to transform the differential equations into
nonlinear algebraic equations in the displacement, stress func-
tion, and design function. After some iterations, the equations
(including the optimality condition) are solved by a quasi-
Newton method. It appears that there are many local maxima,
especially in the buckling problem, By starting from a variety
of initial shapes, we have attempted to obtain the globally op-
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timal solution for each example. In some cases, the best solu-
tion does not have the highest modality of all the local

solutions.

We did not investigate the imperfection-sensitivity of the
optimal panels. For shells, small imperfections may either
decrease or increase natural vibration frequencies [23]. In the
buckling problem, when the optimal solutions are bimodal or
trimodal, we expect them to be more imperfection-sensitive
than the corresponding circular cylindrical panels [24].
However, the increase in buckling load may be more advan-
tageous than a greater sensitivity to imperfections.
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APPENDIX

The boundary conditions on the stress function along the
straight edges are derived in this Appendix.

We denote strains by ey, €y, yyy, midsurface displacements
by U, ¥, W, and stress resultants by Nyy, Nyy, Nyy. In the
buckling problem, these represent incremental quantities with
respect to the uniform prestressed state,

If Z(Y) is the form of the middle surface, the strain-
displacement relations are [19]

ex = Ux+ (W, x)? /2, ey = Viy + Z' W,y +(W,4)?/2,

Yxy = Uyy+ Vix +Z' W, x + W, W,y (28)
and the stress-strain relations are

€x = (Nyx —vNyy)/(Eh), ey = (Nyy —vNyx)/(Eh),

Yxy = 201+ »)Nxy/(Eh), (29)

where subscripts X, Y following a comma denote partial
derivatives. The Airy stress function £ is defined by

Nyx = F,yy.Nyy = Fixx.Nyy = —Fxy- (30)

At the straight edges Y = 0, b, we assume simply supported
or clamped boundary conditions, which implies

W=W,yw=000W=W,, =0, (€1}
respectively. For a third condition, we assume Ny, = 0,
which allows tangential displacements. Hence, from (30),

Foxy = 0. (32)
Finally, we assume there are no normal displacements, i.e., V
= 0.

It follows from V' = W = Othat V,y, = W,y = Oalong the
edges Y = 0, b. Since Ny, = 0 implies y,, = 0 from (29), we
then obtain U,y = 0 from (28), and thus U,y = 0. Now, if
we differentiate ey in (28) with respect to Y, we get de,,/3Y =
0. We then differentiate ey in (29) with respect to Y and use
(30) and the previous result, which leads to
(33)
Differentiating (32) with respect to X yields F, vy, = 0, and
(33) then furnishes the fourth boundary condition in the form

Fyyyy = 0. (34)

Foyyy~vFoxxy = 0.
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Introduction

The response of plates unilaterally supported by foun-
dations to transverse loading is complicated by the need to
determine the contact region as well as the equilibrating
reactions. In part this accounts for the scarcity of literature
pertaining to the matter, particularly for the case where the
foundation ‘‘simply’> supports the plate periphery. To
simplify matters, Keer and Mak (1981) treated an infinitely
extended plate under a concentrated load near a corner.
Unfortunately, their solution is not applicable to a centrally
loaded square plate because the load is not sufficiently near to
a corner. Dempsey, Keer, Patel, and Glasser (1984) provide a
complicated solution for a square plate under pressure (a
partial solution was presented by Dempsey, Keer, and Patel,
1983). Results are only given for the deflections, and it is not a
trivial matter to generate those for the shearing force. In the
aforementioned works, the methodology involves integral
equation and series formulations, and the lineal supports are
rigid. Although rigid support systems are commonly
associated with civil engineering, elastic support systems may
often be closer to reality and indeed applications cover a
spectrum of support stiffnesses, for example, gait devices in
biomechanical engineering, (i.e., Harris, Salamon, and
Weber, 1981).

The present paper is a numerical study of plates under
uniform pressure loads that are unilaterally supported around
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After demonstrating good agreement with a recent analytical work, the deflections
and shear fields are provided. The response mode changes dramatically as the
supports approach rigidity.

the periphery by discrete elastic springs. After formulating the
problem, it is demonstrated that results for plates on near-
rigid springs tally with those found by Dempsey et al., (1984).
Then the behavior of elastic systems is discussed. From these
discrete results extrapolations to continuously supported
systems are made. It is found that the response mode changes
dramatically as the elastic supports approach rigidity.
Moreover, the shear load varies considerably across the
supports. However, avenues are open to optimize the
distribution. The problem is important because liftoff will
occur even at low relative stiffnesses.

The Problem

Formulation. An iterative algorithm is used in conjunction
with the finite element method for linear systems. The
problem consists of a square plate of dimension L and
thickness ¢ resting on springs distributed about its periphery
with spacing @. The plate is discretized into classic plate
elements (called the ACM element in Cook, 1981) which are
four node squares of spacing a; the foundation springs are
linear with stiffness k,. If {w} contains the deflections {d}
and the rotations {4d,, 9, } T {R} is the vector of loads and m
is an increment counter, then upon assembly the linear system
can be written as

DK™ ]{w}" ={R]} 1)
provided that the stiffness matrix [K] posesses diagonal
elements associated with degree of freecedoms {d} of the form

ki=k;+a;(ks/D) 2
where «; = 1 or 0, depending on whether a spring is attached
to the ith degree of freedom or not. Here D = E*/12(1 — »?)
is the plate rigidity with Young’s modulus £ and Poisson’s
ratio ». The general k; are plate element stiffnesses with D

factored out and are functions of element size and ». Fur-
thermore, if foundation/plate combinations are chosen such
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Fig. 1
contact

Quarter of the plate modeled where ¢ denotes the haif-length of

that k,/D is the same, then the product {wD} is the same for
these combinations.

For foundation/plate combinations, further utility is
gained by considering the foundation as continuous and
including the plate geometry. In this way a nondimensional
relative stiffness « is defined as

k= (ks/a) (L*/D) 3

Hence [K'"™] = [K(», k ; a, L; m)] and in turn {wD}M, M the
last iteration, is a more general solution than equation (1) at
first glance implies. It may be noted that « is analogous to the
quantity (k,/4EIa)"* L, I the second moment of area and L
the beam length, which originates in the theory of beams on
elastic (springs) foundations.

In the initial state, one physically views the weightless plate
resting upon all of the springs. However for the simulation
not all springs need be attached; the procedure only requires
sufficient initial constraints, boundary conditions and spring
attachments, to avoid rigid body motion.

For any iteration m, the procedure solves (1 for {wD}
consistent with the current constraint prescription. As
described below, the next site i for a contact or separation is
chosen and «; set to 1 or 0, which updates [K ™ ] to [K("+D],
If i is null, there are no new sites, hence m = M and {wD}¥ is
the solution; otherwise the procedure repeats.

Since the springs are independent of each other, contacts
and separations are sensed kinematically directly from the
contents of {wD}. For the next event, site / is chosen by
satisfying the criterion

d;=Max(£d)), | =j<NC @)

where NC is the number of candidate sites, d; > 0 =
separation and d; < 0 = contact, and the + sign is used for
sites currently connected and the — sign for those currently
disconnected. Should several sites yield the same value d;, the
minimum value i is chosen.

Control of the procedure is maintained through a data
structure which keeps track of the contact status of each
candidate constraint and through a decision process enhanced
by theoretical precepts for receding contact problems,
Dundurs and Stippes (1970). A detailed discussion of the
algorithm as applied to the solution of beam and plate
problems is provided in a journal dedicated to numerical
methods by Mahmoud, Salamon, and Pawlak, (1985).

Numerical Model. One quarter of the square plate is
modeled, Fig. 1, using 81 elements to fill a 10 x 10 nodal
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Fig. 3 Deflections along edge for plates on rigid supports under
uniform pressure
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Fig. 4 Shear distributions along edge for plates on rigid supports
under uniform pressure

mesh. Symmetry is enforced at the centerlines by setting the
rotations #, = 0 along x and 6, = 0 along y. Springs underlie
the plate edges x = L/2 and y = L/2, but only those within
length ¢ remain in contact under load over each half-side.
Springs located at symmetry points (x,») = (0,L/2) and
(L/2,0) are connected initially and their stiffnesses halved.

The important field quantity generated by the computer is
the deflection d, whence along a side the contact half-length ¢
is computed as

c=(N-1Da+¢& 6)]
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Fig. 5 Deflections along edge for plates on elastic supports under
uniform pressure

where NV is the number of nodes along a half-side in contact,
and £ is a linearly interpolated extension of contact between
the last depressed spring and first lifted-off plate node, Fig. 2.
In turn the loads in compressed springs are determined and
converted into continuous shear distributions V by averaging
the spring loads across an element span a or half-span (a/2);
specifically at the centroid of the distribution

V=k,d/a 6)

except at the end-of-contact and £ < @/2; then it is taken as 2
kg d/a. In this form the shear force per unit of length provides
an approximation to the common case of continuous support.
However if the discrete values are desired, one need only
invert (6) or its end-of-contact counterpart to obtain the
concentrated reactions, e.g., solve for k,d.

Results

Two types of loading are studied: uniform pressure
distributed over the entire plate and a concentrated load P
located at the origin of coordinates (Fig. 1). In the subsequent
figures, discrete points are plotted as triangles and connected
together by a cubic spline curve-fit. Data points for shear are
located at the centroids of their distribution. The focus here is
on pressure loadings; a sequel will cover concentrated
loading.

Rigid Supports. The behavior of a plate on rigid supports is
approximated by setting the relative stiffness, and in effect the
spring stiffness, to a very large value; in the present case ¥ =
103, 1t should be noted that despite this extreme, the foun-
dation is not “‘infinitely’’ rigid and although the response to
load is small, it still retains its deformable character. With the
plate size, element discretization, and relative stiffness set, the
deflection profiles and shear distributions along the plate edge
are computed for the range of Poisson’s ratio0 < » < 0.5.

Figures 3 and 4 show the deflection profiles and shear
distributions generated by a uniform pressure load g. The
deflections for » = 0.3 and 0.5 are seen to agree very well with
those provided by Dempsey et al. (1984), that for » = 0.1
agrees equally well, but is not shown because it spoils the
figure arrangement. ’

The effect of increasing Poisson’s ratio is to stiffen the
plate and in turn extend the length of contact (Fig. 3). Yet
even with » = 0.5 almost half the plate edge (= 45 percent)
lifts off the supports. Although the displacement profiles
illustrate the behavior, the shear distributions elucidate it. By
concentrating upon the values of shear load near the ends-of-
contact in Fig. 4, one can extract the following: (§) for » = 0

Journal of Applied Mechanics

o
oo

o
o

V/qL

o
N

o
E-
Lo el ey iiiis

o
o

o
o
o
-
o
N
o
w
o
ES
o
n

x/L

Fig. 6 Shear distributions along edge for plates on elastic supports
under uniform pressure

the plate bears down hard on the last contacting support,
however for » = 0.1 the plate stiffens sufficiently to extend
the contact and bear down lightly upon the next suppport; (i)
for v increasing to 0.3, pressure increases on this new support
until with »=0.4 the plate siffness increases sufficiently to
again cause the contact to grow and the process repeats.

Elastic Supports. In order to view the role relative stiffness
plays in the behavior of the plate, the Poisson’s ratio is set to
0.3. Then values for « are selected from a range such that the
contact length varies from least to full extent. In the figures
for the shear distributions, those for intermediate values of «
are extrapolated from the last datum point to zero using
dashed lines.

The deflections and shear distributions along an edge of the
plate are shown in Figs. 5 and 6. For very soft (relative)
support the plate is in full contact, but incipient liftoff occurs
when « = 135. With increasing « plate liftoff grows asymp-
totically (as will be discussed subsequently) to a maximum
limit. The shear distributions illustrate the increased burden
sustained by inboard supports as the contact length decreases,
displaying a maximum at « = 3000. But for greater values of
the distribution goes through a transition characterized by a
decrease in shear near the midside of the plate and a com-
pensatory increase near the end-of-contact; for x = 10* the
increase reverses, tapering to zero as the plate lifts off of the
supports, however for x = 10 the increase appears singular
(but its finiteness is clearly visible in Fig. 4). Hence when the
foundation is relatively very stiff the last support in contact
bears the brunt of the load. On the other hand, for relatively
soft foundations, greater load is borne by the inboard sup-
ports. Clearly near-rigid and rigid supports markedly change
the character of the shear distribution.

Extent of Contact

The growth of contact for a discrete system occurs in jumps
or steps with respect to continuous change of an influential
parameter. This is clearly conveyed by changes in the lengths
over which the shear is distributed in Fig. 4. The subsequent
sections, with the exception of that on incipient liftoff, are
concerned with the extent of contact with respect to change in
either relative stiffness or Poisson’s ratio; it is convenient, and
perhaps more relevant, to present these results as continuous
phenomena. Hence they are approximations for the problem
of plates on continuous support. Where the extent of contact
involves many discrete supports, the accuracy should be good,
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otherwise in this context it should be held suspect. Clearly
improved accuracy will result from use of higher densities of
discrete supports.

Incipient Liftoff. It is of particular interest to know
whether or not liftoff will occur because if it does not the
problem is a linear one. The objective then is to find relative
stiffness thresholds, denoted by «,, for the incipience of plate
liftoff. This is done by iterating with respect to « for each of
five different Poisson’s ratios. It turns out that the data can
be approximated by simple polynomials to an accuracy of
three digits.

Incipient liftoff will occur for pressure loading if

ko =97.0 (1.0+ v+ 2) Q)

Although «, is nicely behaved with respect to », the contact
length is very sensitive to changes in « in this ‘‘soft support>
regime as will be seen in the next section. Hence the deter-
mination of (7) required considerable effort.

Effect of Relative Stiffness. In situations where ¥ > «,
liftoff will occur and the problem becomes nonlinear.
However it is helpful if the contact length is known. To this
end Fig. 7 provides an estimate of the extent of contact with
respect to the relative stiffness but, however, does so only for
Poisson’s ratio equal to 0.3.

From the figure it is seen that near the liftoff threshold
(c/ (L/2) = 1) the contact length is very sensitive to changes in
relative stiffness. Alternatively as « approaches the condition
of rigid support (x — o), contact length decreases to an
asymptotic value; ¢/ (L/2) = 0.444 for pressure load and, for
comparison, 0.222 for the concentrated load. Furthermore
these asymptotes are reached when « = 5 x 10°% for the
pressure load and k = 5 X 10° for the concentrated load. A
simple expression to fit the data was not found; the rather
extensive range of relative stiffness is a contributing reason.

Effect of Poisson’s Ratio: Rigid Support. For the im-
portant case when the supports can be considered rigid, it is
possible to set bounds upon the contact length as a function of
Poisson’s ratio. This is done by using information from Figs.
4 and 6 together with the following argument: for continuous
support the contact length will be greater than that achieved
for values of Poisson’s ratio that produce maximum values of
shear force (for example, at » = 0.0, 0.3, 0.5 in Fig. 4).
Alternatively the contact length will be less than that achieved
for values of Poisson’s ratio that produces minimum values of

shear force (e.g., at » = 0.1 and 0.4 Fig 4). Taken in this -

manner, the extracted data are found to vary almost linearly
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in agreement with the results for pressure load given by
Dempsey et al. (1984).

The data are easily fit to linear expressions.
pressure load, these are

¢ 0.370v+ 0.408 (upper bound)
Lz~

For the

,0=»=<0.5 (8)
0.429»+0.326 (lower bound)

A linear fit to the data of Dempsey et al (1984) gives
¢/(L/2)=0.4150+0.343,0=<»=<0.5 ®

so that indeed (8) brackets (9) and the maximum error be-
tween (8) and (9) is 5 percent for the lower and 19 percent for
the upper bounds; the lower bound of (8) yields a maximum
error of 4.4 percent with their exact data.

Conclusion

The results generated for plates on independent elastic
supports are sufficiently general to permit design optimization
of such systems. The results demonstrate accuracy to
problems involving rigid support and provide insight into
those involving elastic support. It is also possible to project
the effect of continuous, lineal support.

Optimal design of unilaterally supported systems is
achieved through rational location of supports and
prescription of system properties. On the one hand, for
simply-supported plates, particular advantage can be gained if
the relative stiffness is large. Then high singular-like shear
loads may be avoided by shifting support locations; alter-
natively, the shear load may be more evenly distributed by
varying the Poisson’s ratio of the plate. While the former is
readily possible, the latter is not impracticable especially if
one considers the plate to be of a designable composite
material. On the other hand, if the relative stiffness is not
large, optimal distribution of shear may be achieved by
tailoring the stiffness of individual supports as well as by
varying the spacing between them.

The importance of the effects of elastic support resides with
the low value of relative sitffness necessary for full contact.
Hence a wide range of practical problems exist for which it
would be rather unusual for plate liftoff to tend not to occur.
One interesting effect not directly portrayed in the results is
that the curvature of the plate changes sign for high values of
relative stiffness. As viewed on edge, for stiff supports the
curvature at midside is convex (frowning) and at the ends
concave (smiling), whereas for softer supports it is concave all
along the edge. The implication is that the prescription of
ideal, infinitely rigid supports prevents this natural mode of
behavior and contributes to the generation of a mathematical
singularity.

It is possible to project the effect of continuous, lineal
support upon the system. Discontinuous jumps in contact
length with changes in Poisson’s ratio or relative stiffness
inherent in the discrete system will be eliminated; the
relationships will be smooth and monotonic. Moreover for
large values of relative stiffness, the shear distribution along
the edge would rise from moderate values at midside to a peak
and smoothly, albeit sharply, drop to zero at the ends-of-
contact. In contrast, if the continuous support is infinitely
rigid as described above, the reaction fields would display a

- singular behavior at the ends-of-contact as discussed by

Dempsey et al (1984).

The effect of a centrally located, concentrated load are
similar in form to that for pressure, but considerably different
in magnitude and the extent of resulting distributions. This is
evident in Fig. 7 by the short extent of contact for large values
of relative stiffness. Further details will be discussed in a-
sequel to this paper.
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The corners of a simply supported, laterally loaded rectangular plate must be an-
chored to prevent them from lifting off the supports. If no such anchors are

provided, and the supports are unilateral or capable of exerting forces in one
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direction only, parts of the plate will bend away from the supports upon loading.
The loss of contact when uplift of laterally loaded rectangular plates is not
prevented is examined in this paper. Arbitrary centrally symmetric loading is
considered. Finite integral transforms convert the coupled dual-series equations

that result from the Levy-Nadai approach to two coupled singular integral
equations. Different solution methods are applicable for sagged and unsagged
supports; these two numerical approaches are discussed in detail.

Introduction

The corners of a simply supported, laterally loaded rec-
tangular plate must be anchored to prevent them from lifting
off the supports (Timoshenko and Woinowsky-Krieger,
1959). If no such anchors are provided, and the simple
supports are unilateral or capable of exerting forces in one
direction only, parts of the plate near the corners will bend
away from the supports upon loading. The tendency of a
laterally loaded, unilaterally constrained, rectangular plate to
separate from its simple supports motivates one to consider
the actual extent of contact.

The present paper examines the natural contact of centrally
loaded rectangular plates resting on unilateral supports; each
support is viewed as a unilateral constraint allowing only
upward motion of the plate. It is assumed that two opposite
supports have sagged by equal amounts. The amount of sag is
taken as uniform, so that the sagged supports lie in a plane
parallel to the other supports. The plate will touch the sagged
supports only when the loading has reached a certain level. If
the loading is increased further, the contact between the plate
and the sagged supports will spread or advance. With no
anchors at the corners, the contact between the plate and the
unsagged supports will decrease with increasing load. The
contact problem for the case of sagged supports is therefore
one of advancing contact (Dundurs and Stippes, 1970). For
the case of a zero amount of sag, the extent of contact will
diminish immediately upon loading; it therefore follows that
this contact problem is one of receding contact and hence the
extent of contact between the plate and the supports is in-
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Fig. 1 Rectangular plate on unilateral edge supports

dependent of the level of loading and the support reactions are
proportional to the load. While both types of contact problem
are treated here within the same formulation, the
aforementioned characteristics mean that a different solution
method applies for the case of a finite amount of sag than for
the case of a zero amount of sag.

The plate geometry and coordinate system are shown in
Fig. 1. The coordinates and dimensions shown are scaled by
the factor w/a, where a is the actual plate length in the x-
direction. The actual (barred) coordinates are, for instance, x
= gx/n and y = ay/w. Without loss of generality it is

- assumed that the two sagged edge supports are those parallel

to the x-axis. The amount of sag between these supports and
the undeformed plate is defined by the constant distance §. On
contact, each simple support rigidly resists displacement in the
positive z-direction only. The loading distributed over the
surface of the plate is assumed to be symmetric about x =
w/2, y = b and, in terms of the transformed coordinates, is
given here by the expression
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qxy) =0 ), b

where Q is an appropriate load factor for the particular
loading being treated; a,,, = 0 for m or n even. Because of the
symmetry of the deflection function that results, there are
only two unknown contact lengths: e, and e, (Fig. 1). The
above loading is supplied in the positive z-direction, with the
corresponding deflection given by w(x, y). The differential
equation for the deflection of the plate is

Dviw=gq(a/m)*, D=ER/12(1 ) (2a,b)

the moments and supplemented, or Kirchhoff, shearing forces
are given by

Qe SIN (mx ) sin{nmwy/2b) (1)

M,=—(x/a)2D(W,y +oW,,,) 3)

M, =—(n/a) D (W,,, +W,5) 4)
M,y = =My = (/a)*D(1 - 1) Wy, ®)
Ve=~(1/a)*D(W, 0 + (2= 1) W,3,) 6)
Vy=—~(m/@PD(W,y, + (2= 1) W,y ), @i

while the corner force at x = 0, y = 01is given by
R=2M,ry|x:0'y=0 ®)

The bending of partially supported uniformly loaded
rectangular plates with anchored corners has been considered
by Kiattikomol et al. (1974) and Dundurs et al. (1974) for
simple support conditions involving unsagged and sagged
supports, respectively. The loss of contact in the vicinity of a
right-angled unanchored corner for a simply supported
uniformly loaded quarter infinite plate has been examined by
Keer and Mak (1981). The extent of contact between a
uniformly loaded square plate resting on simple supports was
solved by Dempsey et al. (1984). The solution technique and
mathematical manipulations used here overlap, to a large
extent, those used in the latter paper. In order to avoid undue
duplication of many expressions, the results in the foregoing
work will be cited freely.

The approach used in the present paper gives rise to four
coupled series equations that are solved using finite integral
transforms. The particular type of transform used is governed
by the strength of the singularity to be allowed at each point
where the simple support changes to a free edge (hereafter
called a transition point). The nature of the singularities in the
bending fields at these points was first revealed by Williams
(1952). Although this analysis treats finite plates, the infinite
plate solution by Keer and Mak (1981) provides the correct
singularity to be used in the vicinity of the mixed condition.
The local behavior at the transition point must be the same for
both finite and infinite plates, as the solution by Dempsey et
al. (1984) verified. In conclusion, if the plate seeks its natural
contact with either unsagged or sagged supports, no
singularity in the moments can be allowed at the transition
points,

Formulation

Because of the symmetry of the lateral load considered in
(1), boundary conditions need only be written on one
quadrant: y = 0andy = b,0 =x=<a/2;x = 0andx = #/2,
O<y=<b (Fig. 1)

w=W, tx=0,y=0 )
w,, =0, w=35 1 y=0,e,sx=<7/2 (10a,b)
V,=0 1. y=0,0sx<e, (10c)
M, = cy=0,0sx=<7/2 (10d)
V,=0,w,,=0 ry=b,0sx=<7/2 (11a,b)

Journal of Applied Mechanics

w,,=0,w=0 : x=0,e,<y=<b (12a,b)
V,= 1 x=0,0=sy<e, (12¢)
M, = 1 x=0,0=y<b (12d)
V,=0,w,,=0 tx=7/2,0<y=<b (13a,b)

In (9), W. is the deflection of the corner and is to be deter-
mined. Furthermore, since the corners are unanchored and
corner forces are therefore not permitted, (8) and (5) give

14)
Utilizing the Levy-Nadai approach (Timoshenko and

Woinowsky-Krieger, 1959), the lateral deflection satisfying
(2a) and (9) is taken as

W,y =0: x=0,y=0

4 o
w(x,y) = il Y R +WRe+ W, (15)
2D m=13,...
where
W (u,0) =X (v) + Y (v) Isin(mu) (16)
and
PXE ()= Y, G (m}+n}) “Zsin(nu) amn
n=13,...
Y0 (u) = ALY cosh(mu) + BYY mu sinh(myu)
+C{¥ sinh(mu) + D myu cosh(mu) (18)
my=m, my=mu/2b, ny=nxn/2b, n,=n (19)

Boundary conditions (10d), (11a,b) and (12d), (13a,b) lead
to the following relations for k = 1 and k = 2, respectively

B =~ (1-p)AR /2 (20)
CH) =[Bysech?(By) —2(1 = ») ~'tanh(B,) 11 = ») A /2 (21)
D) =tanh(B,) (1—v) A /2 22)

where
By =mb, B, =my(n/2) (23a,b)

The boundary conditions in (10a,¢) and (12a,c), mixed as
they are with respect to slope and shear, give rise to four
coupled series equations. Following the same procedure used
in a related analysis by Dempsey et al. (1984), (10c) and (12¢)
are integrated with respect to x and y, respectively, to give
symbolically [V, (x,0)dx+C,] and [[V,(0,y)dy+C,]); C,
and C, are constants of integration. To determine C, and C,
it suffices to first add and then subtract the two equations
obtained by letting x = 0 and y = 0 in the latter equations,
respectively. The expressions for C, and C, are simplified by
using an identity given by the corner force condition in (14).
Equations (104), (12a), [[V, (x,0)dx+C,] and [[V,(0,y) + C,]
give finally, after substituting (15-23) and simplifying, the
following coupled series equations

s

Y, mPPcos(mx)=0, e, <x=m/2 4
m=173,...
E myP@Pcos(m,y) =0, e;<y=<b 25)
m=13, ...
Y, mAPY{(+FD)cos(m, x) — e}
m=13, ...
—m3PP {8 (x) —cP}]
= Y [Hcostm,x) — T (x) —dD(0) + dP(0)]
m=13, ...
0=x<e, (26)
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Y [-mIPRSD (y) —c)
m=13,...
+miPD (1 +F@)cos(m,y) —cP ]

- ¥

[H cos(m,y) — T4 () +di(0) - dP(0)]

m=13, ...
O0=<y<e, 27
where
PP =(1-v)AP /2 (28)
1+ F =tanh(8,) —nBisech?(B), n=(1-»/(3+)
(29a,b)
S (1) = nsech(B, ) B, sech(By)cosh(m,u)
—myu cosh(B, —mu) +sinh(B8, —m u)] (30)
¢ =2 tanh(B;) (3 +») 3n
HP =dF(0)+nb ik (0) (32)
T (u) =dif () —nbfE (u) — gt (u) + g4 (0) (33)
and
B+vyrimdiP (u)
= ) A (mh4nd) “tcos(neu) (34)
n=13,...
TP (Wy=my Y Guan(mind) “Feos(mu)  (35)
n=13,...
G+ mimgd (W)= Y,  duni'costuu) (36

n=13,...

Equations (15-23), (28), and (35), together with (14) give the
following expression for the corner force condition used in the
derivation of (26) and (27)

o

Y mPPa) + miPQaR]

m=1.3,...
= ), PO +bR0)] 37)
m=13,...
where
(1-»)aiP =1 + »)tanh(By ) — (1 —»)Bisech?(B;) (38)

The remaining boundary conditions (10b) and (12b) are
satisfied at a later stage. The problem is therefore reduced to
the determination of the constants P$¥ (k=1,2) such that the
four coupled series (24-27) are satisfied. In this respect, the
constant 1 in each of (26) and (27) serves to isolate the
singularities at x = e, and y = e,, respectively, since as m — o
the functions F{¥ ~e 26 (k= 1,2).

Singular Integral Equations

The coupled equations (24-27) may be reduced to two
coupled singular integral equations by representing the
unknown coefficients P{¥ in (28) by finite Fourier transforms

ek
miP) = So &y (t)sin(my t)dt (k=1,2) 39
in which the auxiliary functions, ¢, (¢) (k=1,2), remain to be
determined. .

The same procedure outlined by Dempsey et al. (1984) in an
analysis of the contact between a uniformly loaded square
plate and unilateral supports is now followed. It is readily
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shown that the above definitions for P{) and P identically
satisfy the two uncoupled equations (24) and (25), respec-
tively. The remaining coupled equations (26) and (27) can be
reduced to coupled singular integral equations of the first
kind

1.5‘91( 1
T Jo \r—x

e

1 i
s aod+ | mwne o

t+x
] Natsn 6 (de=£, (), 0x<e, “0)
1 (2 i 1 e
- So (m‘*m)(ﬁz(f)dt"rgo N@,1) ¢, (1) dt
+ |7 M0 9a0di=1,0), 0=y <es @

where (j=1,2)
wM; (u,t) = (w/l;) /sinlw (t—u) /] = 1/(t—u)
+ (w/L;) /sinfw(t+u) /L] - 1/(¢+u)

-

+va(n/l)y Y, [FY cos(mu) ~c Isin(m;1)
m=13, ...

42)

AN (u,t) = =4/l Y, ISY (w) —cisin(m;0)  (43)

m=13, ...

o

wfi(x)=4 Y, [H®cos(m,x) — T (x) —dP(0) +d2(0)]
m=13,...

(44)

nfy () =4(x/l) Y, [HPcos(myy) — T (») +dP(0)

m=1,3, ...
~dP(0)] 45)
and

11=7T, [2=2b (46a,b)

The corner force condition in (37) together with (39)
becomes

[ Ris a7 R s (0a=8 &)
where
Re(w)= Y, aPsin(mu) (k=12 (48a)
m=1.3,...
B= E (b (0) +b2,(0)) (48b)
m=13, ...

Equations (40) and (41) both reduce to the corner force
condition in (47) for x = 0 and y = 0, respectively.
Physical Quantities

The edge displacements the plate undergoes near each
corner as it lifts off the supports, using (15) together with

(20-22) and (28), are given by

D -»)w(x,00=2Qa* Y, PWsin(m,x)

m=13,...

+ W, 0=sx=<w/2 (49)

-D(1 - »)w(0,y) =2Qa* E P@sin(m,y) + W,.: 0<sy=<b

m=13,...

(50)
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The edge displacements in (49) and (50), together with (39)
can be used to determine W, and then expressions for the edge
displacements on those parts of the plate that lose contact.
That is .

4D(1 - ») w(x,0) = TQa* S:l 61 (f) (x—1t)dt

+4(1—»)8D: 0<x<e, (51)

2D(1 - »)w(0,y) =an4S:2 o () (y—H)dr: O0sy<e, (52)

Compatibility of displacements in (51), (52) imposes an
additional condition on the solution to the coupled equations
(40) and (41), since w(x—0, 0) should equal w(0, y—0). It
follows that

e

2] 2
(w/z)SO tqb,(t)dt——bgo

The supplemented, or Kirchhoff, shearing forces V, and V,
at the contact with the two supports y = 0, ¢, <x<w/2 and x
= 0, e, <y=b, respectively, are

t,(t)dt=2(1 — ») 6D/ Qa* (53)

oo

V,(e, <x=<m/2,y=0)= —m>Qa(3/2+v/2) ),

m=13, ...

{mIPO(L+ FD)sin(m, x) + m3PPS2, (x)

—m, H,(,,”sm(m,x) - T(m?x (x)} (54)
Ve (x=0,e, <y<b) = —m*Qa(3/2+v/2) Y,
m=13,...
{m3PYSY, (v) + miPP(1 + FP)sin(m,y)
—myHPsin(m,y) = T, (») ) (55)

Preliminary to discussing the solution of the coupled in-
tegral equations in (40), (41) and the additional condition in
(53), it is necessary to clarify the end-point behavior of the
auxiliary functions, ¢, (¢) (k=1,2), in (39). It follows from
(15-28) that

D(l - V) [ w)xx;w)yy] |y=0

o

=Qa*{ — 1;»} E m2PWsin(m, x) (56)
m=13,...
D(l - V) I w’xx;wyyyl 'x:O
=Qd*(n—1) ), m3P@sin(m,y) (57)

m=13,...

for 0=sx=<x/2 and O0<y=<b, respectively. Given the identity
(Gorman, 1982)

2 E sin(mwt/2)sin(mnu/2)=6(u—1)

m=13,...
equations (56), (57) together with (39) provide that
M, (x,0); M, (0,y) = (1+»)Qa*7?{7¢,(x); 2bd,(y)}/4
(59a,b)

Clearly, the auxiliary functions ¢, (x) and ¢,(y) have the
same behavioratx = e;, ¥y = 0andx = 0,y = e,, respec-
tively, as do the moments there. The foregoing relationships
establish that M, (x, 0)~¢,(x) and M0, y)~9¢,(»);
boundary conditions (10d) and (12d) quickly determine,
therefore, that ¢,(0) = 0 (k = 1, 2). As discussed in the in-
troduction, the moments are bounded at the transition points.
The shearing forces in (54) and (55) should therefore be
singular as the inverse square root with distance from x = e,

= 0 and x = 0, y = e,; only the terms involving the con-

(38
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stant 1 in these expressions contribute to the singularities at
e, e,. Using (39) together with (54) and (55), expressions
analogous to that obtained by Dempsey et al. (1984) in (44) of
that paper (in which a factor of 1/2 is missing) are found.
It follows that V,(x, O)~ (x—e)™"2 and V,.(0, y)

~(y—e) Y as x, y — ef, eF, respectlvely, as long as
dr (1) ~(ex ~1)? (k=1,2). As expected, the moments are
bounded at the transition points from simple support to no
contact. Furthermore, although each supplemented shearing
force is singular at the ends of each contact interval, each is
integrable because the singularities are of the inverse square-
root type.

Numerical Analysis

Equations (40), (41), and (53) are prepared for numerical
analysis by first extending the ranges of integration to
—e) <x<ej, —e, <y<e,;itis useful to note also that M (u,
¢ty and N;(lul, t) are odd in f but even in u. The functions
S (u) are also even in u. If it is assumed that the functions
¢; () (j=1, 2) are odd functions, the above equations can be
written in the form

L ofer ¢ (7) 1
=15

dt+ — Se' M, (x,1) 6, (¢) dt
.
1 (22
s> 7 monswa=no),
2 J-e

t—x 2

—e; <x<e (60)
1 (2 ¢,(f) 1 e
; S—ez T——;dt-'- 75‘“9] Nl(lyl,t)qSl(t)dt
1t
v |7 monena=p0),
2 J-e
—e<y<e, 61)
(7r/2)SEl z‘<1>1(t)dt—br2 to,(1)dt=4(1—-v)6D/Qa* (62)
—e —e
Similarly, (47) can be written
" rosat|” Rwena=28 (63)
—e —e

The Gauss-Chebyshev integration formulae (Erdogan et al.,
1973) are applied to equations (60-63). First, however, let

t=eu, x=e;s, ¢, (1) =0, (u)v1-u? (64a)
1=ew, y=ez, ¢, (1) =0, (v)VI-0v? (64b)

where 8, (4) and §, (v) are regular at + 1. The foregoing

definitions of ¢, (¢) imply that the moments are bounded at ¢

= e, e; for k = 1, 2, respectively. Equations (60-62) can

thus be written in the following form

E (l—uj [ 01(uj)
n+1

j=1 uj—s;

T _
+ 761M1(€1Si,€1uj)01(uj)

+ —;r'ezNz(el |si|y62vj)9-2(vj)] =fi(es;) (65)
S A-u) [ h) T .
j:El — [ e DUICTARTALIC
T ~
3 eZMZ(eZZirezvj)oz(vj)] =/2(e,2;) (66)
E ) (1 +1,) [(7/2)€30, (1))
=1
—be}dy(u;)] = 4(1 ~ »)8D/Qa* ©67)
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where
u;=v;=cosljr/(n+1)], j=12,...,n (68a)
s;=z;=cos[(2i— Dn/2(n+ 1], i=1,2,...,n+1 (68b)
Equation (63) becomes
N (1 —u?) _
jg 'T*_“{—[elRl (equ;) 6, (u;)
+«ezR2(62Uj)é2(Uj)]:2.B (69)

Unsagged Supports. For the case of unsagged supports
(6=0) a receding contact problem results. That is, the extent
of contact is independent of the load level but the support
reactions are proportional to the load. For 6 = 0 in (67), the
solution method is as follows. There are (2n+3) equations
arising from (65-67) from which we wish to solve for n values
each of 4,(u;), 8,(v;) and one value each of e, and e,. For x
= y = 0 each of (60), (61) reduces to the corner force con-
dition (63); the associated collocation points in (65), (66) are
for i=n/2+ 1. The procedure is to solve the 2n equations in
(65), (66) obtained by disregarding the two i/ = n/2+1
equations and by first assuming values for e; and e,.
Equation (67) and the corner force condition (69) then provide
checking equations. A series of values of e, and e, are tried
until the correct ones that simultaneously satisfy the checking
equations are found.

Sagged Supports. For sagged supports (§#0) an advancing
‘contact problem results for a load level greater than Q°,
where Q° denotes the load at which the plates starts to touch
the sagged supports (in which case e; =#/2). In advancing
contact problems the extent of contact depends upon the level
of loading. The amount of sag 6 and the intensity Q of the
distributed loading determine for a given plate the extent of
contact defined by e;, e,. As pointed out by Dundurs et al.
(1974) it is more convenient to view e, and Q, rather than &
and Q, as the independent parameters. The solution
procedure is to first set e; at some value, then solve the 2n
equations in (65), (66) obtained by once again disregarding the
two i = n/2+ 1 equations after assuming a value for e,. The
corner force condition (69) then provides a checking equation;
a series of values of e, are tried until one that satisfies the
checking equation to the desired accuracy is determined.

The load intensity at which the plate first touches the
sagged supports Q° is found by setting ¢, = «/2. For Q >

150/ Vol. 53, MARCH 1986

Q°, e, < w/2. An examination of (65), (66), and (69) reveals
that for a given aspect ratio (2b/7), e, is a function solely of
e, . It then follows that (67) can be written in the form

6="(e;b)Qa*/D (70)

where the definition of the function y(e,;b) is obvious from
(67). For a given aspect ratio and contact length e, therefore,
the ratio Q/Q° is independent of the amount of sag 6 since

Q/Q° =vy(n/2;b)/v(e1;b) (71)

The edge displacements, on the other hand, are directly
proportional to 8, given b and e, ; the latter observation can be
verified by substituting (71) in (51) and (52).

Conclusions

The theory and solution methods required to determine the
natural contact of rectangular plates resting on unilateral edge
supports and subjected to centrally symmetric but otherwise
arbitrary loading have been presented. The possibility that
two opposite supports may have sagged was treated. The
influence of different factors such as aspect ratio, amount of
sag, and Poisson’s ratio remain to be examined for a range of
loading distributions and levels.
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Rectangular plates in unilateral contact with sagged and unsagged supports laterally
loaded by centrally concentrated loads and uniform pressure are examined. The loss
of contact and the redistribution of deflections, moments, and support reactions are

presented. Computer implementation aspects are discussed.

Introduction

In a companion paper Dempsey and Li (1986) presented the
theory and solution methods required to determine the
natural contact of centrally but otherwise arbitrarily laterally
loaded rectangular plates on unilateral edge supports. In this
paper, computer implementation aspects and two numerical
examples, concentrated and uniform loading, are presented.
Results for the loss of contact, uplift, and redistribution of
deflections, moments, and support reactions are provided.
The loadings chosen provide upper and lower bounds on the
unilateral contact behavior that would result for intermediate
classes of loading, such as circular or patch loads.

The plate geometry and coordinate system are shown in
Fig. 1. The actual (barred) coordinates are given by X=ax/,
y=ay/w, b=ab/w, etc. Without loss of generality it is
assumed that the two sagged edge supports are those parallel
to the x-axis. The amount of sag between these supports and
the undeformed plate is defined by the distance 6. The support
conditions are defined by (Fig. 1).

(1a)
(10)

As revealed by (1), each support is level. Also each edge
support rigidly resists displacement in the positive z-direction
only. The loading treated in the companion paper (Dempsey
and Li, 1986) is assumed to be symmetric about x= /2, y=5b
and, in terms of the transformed coordinates, is given there by
the expression

" w,,=0,w=0:y=0and y=2b,e, =x=s71—¢
w,,=0,w=0:x=0andx=7,e,<ys2b—e,

g =0 ), Y, dumsin@mx)sin(nry/2b) @

m=13,... n=13,...

Contributed by the Applied Mechanics Division and presented at the Winter
Annual Meeting, Miami Beach, Fla., November 17-22, 1985, of THE AMERICAN
SocieTy OF MECHANICAL ENGINEERS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Sireet, New York, N.Y,
10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS, Manuscript received by ASME
Applied Mechanics Division, March, 1985; final revision, June, 1985. Paper
No. 85-WA/APM-24.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject(t:cg)gglulgncens

Fig.1 Rectangular piate on unilateral edge supports

where Q is an appropriate load factor for the particular
loading being treated.

Further details concerning the theory and numerical
analysis are provided in the companion paper (Dempsey and
Li, 1986). Equations in the latter paper will be cited freely and
referred to using the notation (D:). It suffices to note here that
the auxiliary functions ¢,(#), ¢,(f) introduced in (D:39) are
solved for numerically from (D:65-D:69). By substituting
these functions into (D:39), then (D:28) and (D:20-D:22) for
A% and B®, CW, D® | respectively, and into (D:51) for W,
the deflection function w(x,y) given in (D:15) can be deter-
mined for any position in the plate and so can the moments
and shear forces.

Concentrated and Uniform Loading

For a uniform load of intensity ¢, the expansion in (2) is
valid for

(3a,b)

for even m or n, a,,=0. The numerical solution of

Q=q,a,,=16/7>mn (m or nodd)

MARCH 1986, Vol. 53/151
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Fig. 3 Deflections w{x,0), w(x,x), and w(x,s/2) for square plate on
unsagged unilateral (u.s.) and simple (s.s) supports (» = 0.3): (a) uniform
pressure; (b) concentrated load
fem — = = — e em e
k8| N0 Y m e QNN O S D000
. . ) N, Q1 8ERERBRS| |RSISLESS
(D:65-D:69) requires the summation of three expressions TRlogegcgos| |osSscses
involving (3). Using Hansen (1975), it is found that -
(D:34-D:36) become, for — [, /2<u<l,/2 (I, =m,l, =2b)
(3 + ) m . mid®(u) = 4sech(B,)sinh(B, —my lul) 4)
&
. (=] (=]
lmibip) (u) =2sech(B)lsinh(B, — my lul) 3223|2283
+my lulcosh(B, — m lul)
— Bysech(By)cosh(m, w)] 5)
B+t lmig® W) =48, —m,\ul) 6)
In terms of the actual coordinates and dimensions, a
concentrated load at the center of the plate can be expressed as
q(x,y)=Pd(x—a/2)6(y —ab/=w); in terms of the transformed
coordinates, the same load is given by
152/ Vol. 53, MARCH 1986 Transactions of the ASME
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Table2 Square plate on unsagged supportse; =¢, =¢

v e'/n e/w
0.1 0.300 0.434
0.3 - 0.262 0.400
0.5 0.218 0.353

u=uniform pressure
¢ = concentrated load
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Fig.4 Moments M, (x,x), M (x,x), M, (x, x/2) and M, (x, x/2}for a square & 3
plate on unsagged unilateral (u.s.) and simple (s.s) Supports (»=0.3): (a) &
uniform pressure, (b) concentrated load it
n‘ ~~
q(x,y) = P(n/a)* 6(x — ©/2)6(y — b) @) S |3 gmoooq:rr,: gw\o_\o-un gmgﬂ:it\l
— Ll e Nagl o on <t <t - o <
The equivalent double Fourier sine series in (2) is valid for - 2
%3
Q=P/a%,a,,, =4(x/2b)sin(mn/2)sin(nz/2) Ba,b) 7
S
Equations (D:34-D:36) together with (8b) give, using Hansen 7,
(1975), =4 = N 000\ RSt won A -
. B 3y mas=dg] InavaSal xMmneey
B+ 7 dP (u) =m~'sin(mn/2)sech(B)cosh(mu) (9 & E4 A inhdahii QoA gemany
. 2
i mib® () = (n/2b)sin(mn/2) B, [Bitanh(8,)cosh(m 1) =
— m usinh(m u)] (10) e
-]
. L — OO O OO RN = OO O
B+ mig® () =2(n/2b)sin(m/2)By an % |g|, |n§2888| |cBEEs88| |gEEsss
The closed-form expressions in (4-6), (9-11) may now be used k3 n cf Te°° T g ? cee TITT°
to define (D:32), (D:33), (D:37), and then (D:44), (D:45),
(D:48b) and, finally, (D:65-D:69).
Implementation xle IS33338 SSa338 358338
The foregoing numerical analysis requires the summation
of 58 different series. The authors established a uniform error
tolerance for each summation. A global check on the accuracy
was obtained by using the fact that the support reactions are
integrable and that therefore the total load must balance. The
final results are believed to be accurate to three significant
digits. ) :
Several of the series converge very slowly, Examples include
Journal of Applied Mechanics MARCH 1986, Vol. 53/153
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Table 5 Square plate on sagged supports: uniform pressure

r=0.3
ey/n ey/m —-W/6 q/q°
0.500 <1074 <1074 1.00
0.475 <1074 <1074 1.67
0.450 0.021 <1074 2.16
0.425 0.065 0.00229 2.73
0.400 0.102 0.0118 3.47
0.375 0.135 0.0368 4.50
0.350 0.166 0.0943 6.08
0.325 0.195 0.228 8.82
0.300 0.222 0.590 15.0
0.275 0.248 2.48 43.9
2.0 | v/Qa
v= 5|31 v=1]3|.5
- =p/a?
1.0 | (a) Q=g (b) Q=P/a
——— 8.8,
] \\\\ us.
.
™.,
/’_/" \\
// v=.3 r=3 \\
-~ >~
' 1 1 Sl
0.0 05 X/ 1.0

Fig. 5 Support reaction V,{(x,0) for a square plate on unsagged
unilateral (u.s.) and simple (s.s) supports: (a) uniform pressure, (b)
concentrated load

> sin(mx)/m?, & x"/m?, % e " /m?, The
m=13, ... m=13,... m=13, ...
first was summed by noting that (Hansen, 1975)
ad in(mx x/2
y, Sintmo - | Vingannar (12)
m 0

m=13, ..

In(tanf) can then be expanded into a Taylor series (using
MACSYMA). The second and third pose difficulties when
x—1" and x—07", respectively.

Many different methods that accelerate the convergence of
series were tried; often, these methods worked well in special
instances. However, crude term by term summation was used
in most cases, with all possible check cases being evaluated to
verify accuracy. The latter approach, unavoidably, led to
undesirably lengthy computer runs.

Unsagged Supports. Rectangular plates in unilateral
contact with unsagged edge supports subjected to either
uniform pressure or concentrated lateral loads were examined
as described above. In Figs. 2(a,b) the resulting auxiliary
functions, ¢,(f) (k=1,2), introduced in (D:39), and solved for
in (D:65-D:67), are plotted. The requirements that ¢,(0)=0
and ¢,(f) ~ (e, — )" as t—e;, are clearly satisfied. In Table
1, the extent of contact ¢, and e,, the magnitude of corner
uplift W, the maximum displacement w,,, = w(7/2,b), the
maximum moments (M )p.c=M,(7/2,b) and
(M) max =M (7/2,b), the mid-side support reactions
(Vdmia = V(0,0) and (V,)piq =V, (1/2,0), are tabulated for
different aspect ratios. Poisson’s ratio is taken as 0.3.

The values in parentheses in the columns of Table 1 for
Whax» (Mx)mam (My).max’ (Vx)mid and (Vy)mid COI'I'CSpOIld to the
associated simply supported solution provided by
Timoshenko and Woinowsky-Krieger (1959) in Section 30 and
Table 8, p. 120. In the simply supported solution, uplift is
prevented, and concentrated reactions at each corner result.
The magnitude of these corner reactions R are bracketed
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Fig. 6 Extent of unilateral contact versus level of ioading given dif-
ferent amounts of sag for a uniformly loaded square plate on sagged
supports (»=0.3): (a) e; and e, versus qlq°, (b)e4 and e, versus q
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Fig. 7 The edge displacements near the corner for a unilaterally
supported uniformly loaded square plate on sagged supports (» = 0.3)

below the values for e, /7 in Table 1. The contact length e, is
normalized first with respect to = and then 2b; from the
former values it is clear that the extent to which the plate loses
contact with the supports remains unchanged for aspect ratios
greater than 3.0.

From Table 1 it is obvious that, for aspect ratios 2b/7=3
the maximum deflection, moments, and (V,),,q rapidly
approach the values calculated for a simply supported rec-
tangular plate. The loss of contact, however, is significant.
Also, the support reaction (V,) 4 differs significantly from
the simple support solution. In the case of the concentrated
loading, (M, ). and (M,)n,, are infinite, for all aspect
ratios.

For the particular use of a square plate, the redistribution in
deflections, moments and support reactions caused by
allowing plate uplift is shown in Figs. 3, 4, and 5 respectively.
The variation in contact lengths with Poisson’s ratio is shown
in Table 2; for a square plate e, =e, =e. The variation in
selected deflections, moments and support reactions with
Poisson’s ratio is given in Table 3 for a uniformly loaded
square plate. The behavior of the latter physical quantities for
a square plate loaded by a concentrated load with »=0.3 is
tabulated in Table 4.

Recently, Salamon et al. (1985) investigated, using the finite
element method, the behavior of square plates resting on
discrete elastic springs at the edges and subjected to uniform
and concentrated loadings. The results of the latter paper are
rather approximate for the case of infinitely rigid continuous
supports, but qualitative agreement is obtained with the
results in Table 2 and Fig. 5.

Sagged Supports.' A uniformly loaded square plate in
unilateral contact with sagged supports is examined in this
section. The dependence of the extent of contact on the load

Journal of Applied Mechanics

Table 6 Square plate on unsagged supports loaded by a

combination of uniform and concentrated pressure
(e,=¢;=¢)
r=0.3
P/qa* 0 1 3 10 oo
e/ 0.262 0.294 0.326 0.344 0.400

Table7 Uniformly loaded square plate on unsagged
supports: amplification of central moments (»=0.3)

2b/w k Vx Yy
1.0 1.36 1.06 1.06
1.5 1.22 1.05 1.03
2.0 1.12 1.03 1.00
3.0 1.05 1.00 1.00

intensity for differing amounts of sag is shown in Figs. 6(a,b).
The contact lengths e, and e, are plotted versus ¢/¢° in Fig.
6(a); selected values are tabulated in Table 5. The load in-
tensity at which the plate starts to touch the sagged supports is
given by ¢°, in which case e, =7/2 and e,=0 (in this
problem). The ratio g/q° is independent of the amount of sag,
8, as revealed by the expression in (D:71). In Fig. 6(b) the
contact lengths e, and e, are plotted versus g for different
values of é. Clearly, as the amount of sag decreases, the loss
of contact stabilizes for lower load levels. In the limit as §—0,
e, and e, tend to the values indicated in Table 1 for the square
plate on unsagged supports, which do not depend on the load
level g. The latter observation is consistent, since the un-
sagged support problem is a receding contact problem.

The dependence of the edge displacements normalized with
respect to the amount of sag, w(x,0)/6 and w(0,y)/8, for
different values of the ratio g/q°, is shown in Fig. 7. The
variation of W./8=w(0,0)/6 with ¢/¢° and e, e, is indicated
in Table 5. The numerical results in this study are all for the
square plate geometry and Poisson’s ratio equal to 0.3.

Combined Loading

To model concentrated loading on plates including the self
weight of the plates, combined loading is examined briefly.
For a square plate on unsagged supports and Poisson’s ratio
equal to 0.3, the variation in the extent of contact with dif-
ferent values for the ratio P/ga? is indicated in Table 6. From
these numbers, it can be seen that the distributed load exerts a
major influence on the extent of contact.

Conclusions

The clamping effect in the vicinity of the corners of a
uniformly loaded simply supported square plate is plainly
illustrated by the distribution of bending moments M, (x,x)
and M,(x,x) (Fig. 4(a)). If the corners of the plate are only
partially secured against lifting, the clamping becomes
ineffective and the bending moments in the outer portion of
the plate increase accordingly. The amplification for
unilateral edge supports with no restraint against lifting is
evident in Table 1, where the simply supported and
unilaterally supported values for (M), and (M), are
presented. The German Code for Reinforced Concrete (1943)
(see Timoshenko and Woinowsky-Krieger, 1959, p. 123)
recommended that the simply supported values for
(M) ix and (M,)55 be multiplied by the factor k>1,
where (using the current notation)

k 3714 — 5722 + 48h* 3
3w — 10w b? +48p° (13)

In this paper, let
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Yo = (M max/ (M Diiax Yy = (M) dmax (M) )i - (14)
For different aspect ratios, the values for & and v,, v, are
presented in Table 7. Clearly, the approximate expression in
(13) is always conservative; for the case of a square plate, the
bending moments are overestimated by roughly 25 percent.

It is important to recognize that (D:15) can be expressed in
the form

Qa*

wlx,yy= Dt

m=13,... n=1,3

sin(mx)sin(nwy/2b)/[m? + (nw/ 2b)2-]2
4 L]
+ Qa E [YO )sin(mx) + Y (x)sin(mny/2b)]

+ W, (15)

The first term corresponds to the deflection of a simply
supported rectangular plate. The remaining terms give rise to
the expressions involving the auxiliary ¢,(¢f) functions; they
occur solely because the restraint on upward deflection has
been removed.

The unilateral contact behavior associated with uniform

156/ Vol. 53, MARCH 1986

pressure and concentrated loading, and combinations of the
latter loadings, have been examined. The influence of the
level of loading, the aspect ratio, the amoung of sag, and
Poisson’s ratio has been determined. As a general guideline,
the simply supported deflections and moments portray the
unilaterally supported behavior reasonably accurately except
neadr the corners of the plate.
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Transient Gas or Liquid Flow
Along a Preexisting or
Hydraulically-Induced Fracture in
a Permeable Medium

Similarity solutions are derived for the transient two-dimensional flow of a gas or li-
quid along an isolated fracture in a permeable medium. The driving pressure at the
Sfracture inlet is constant, and the confining stress is uniform. Two different cases
are considered, preexisting fractures with uniform aperture as well as hydraulic frac-
tures with a variable aperture proportional to the local overpressure (fluid pressure
less confining stress). The evolution of the pressure distribution is de-
scribed by a set of four asymptotic solutions, each having a self-similar form. At
early times the flow in the fracture is turbulent, and Darcian seepage losses into the
porous surroundings are negligible. At late times the flow in the fracture is laminar,
and seepage losses become a dominant consideration. At intermediate times there
are two alternative asymptotes, depending upon the physical parameters. The
mathematical model also describes the flow along a fracture which is filled with
high-permeability porous material as well as the flow in an assemblage of porous
blocks.

R. H . Nilson

S-CUBED,
La Jolla, CA 92038

F. A. Morrison, Jr.

Lawrence Livermore National Laboratory,
Livermore, CA 94550

I Introduction

Flow along narrow channels or fractures having permeable
or impermeable walls is important in a number of engineering
technologies. Most notable are the geologic energy-extraction
applications involving gas or liquid flows in naturally frac-
tured [1} or hydraulically fractured media [2]. The particular
application which motivates the present study is the contain-
ment evaluation of underground nuclear tests where radioac-
tive gasses may flow outward from the cavity along a number
of possible paths, including: preexisting or explosion-induced
fractures, hydraulically-driven fractures, rubblized frac-
ture/block media, permeable stemming column, and grouted
or bundled electrical cables. In each instance there is a pre-
ferred channel or pathway through a permeable surrounding.

In the two-dimensional configuration of Fig. 1, a preex-
isting fracture (or high-permeability porous layer) penetrates
from the boundary into the interior of a permeable medium,
Transient fluid motion is induced by an abrupt change in the

Fig. 1 Preexisting fracture with uniform aperture, w. Domain extends
to infinity in the x and y directions. Height in the z direction is iarge com-

pressure at the entrance to the channel. Such flows have been  pared to w.

previously studied in petroleum applications [3, 4] where it is

usually presumed that the fluid has a small and constant com- Ramey [5] using Laplace transforms and numerical
pressibility, as appropriate for a liquid, but not for a gas.  techniques.

Also, it is usually presumed that the flow along the fracture is
laminar or Darcian, although the non-Darcy flow of a liquid
has been previously addressed by Guppy, Cinco-Ley, and
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Creation of a flow channel by the action of internal pressure
is commonly referred to as hydraulic fracturing. The most
familiar applications are stimulation of oil and gas wells [2]
and blasting of rock formations [6]. The fracture geometry is
often presumed to be planar, as illustrated in Fig. 2, where the
fracture height is fixed and the length increases with time. If
the fracture length is shorter than the height, the local aperture
at any cross section depends upon the pressure distribution
along the entire fracture, as assumed in the analyses of
Geertsma and DeKlerk [7], Daneshy {8], and Nilson [9]. If,
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Fig.2 Hydraulically-driven fracture with fixed height, H, and increasing
length, L(t). Cross section is elliptical with maximum opening displace-

ment, w,,, proportional to local excess of internal fluid pressure over

confining stress.

however, the fracture length is considerably greater than the
height, the local aperture depends mainly on the local pressure
at any cross section, as assumed in the model of Perkins and
Kern [10] and Nordgren [11] and in the present paper.

Although the geometries considered here have been
previously investigated by petroleum engineers, the present
nuclear containment application requires a different class of
solutions. Here, the driving pressure is prescribed, rather than
the flow rate. The fluid may be either an ideal gas or a liquid,
the friction may be laminar or turbulent, the fracture may be
either preexisting or hydraulically induced, and the Darcian
leakage into the walls of the fracture may be either a dominant
or a negligible consideration. Of this very broad class of
problems, only a small subset has been previously explored.
Moreover, the comprehensive results reported here allow
direct comparison among solutions which exercise a diversity
of physical mechanisms. Also, the present solution procedure
represents a somewhat different and relatively general ap-
proach which is currently being extended to more complex
problems, such as evaporating and condensing flows of
steam/water/air in fractured, permeable media.

The evolution of the transient flow is described as a se-
quence of distinct asymptotic domains in which different
physical mechanisms are dominant.

1 At early times the seepage losses from the fracture into
the porous medium are negligible; at late times these losses are
dominant.

2 At early times the fracture flow has a large Reynolds
number and inertial or turbulent resistance is therefore domi-
nant; at late times the Reynolds number is small and molecular
or laminar friction is dominant,

Within each of the four possible flow regimes (lossless/tur-
bulent, lossless/laminar, loss-dominated/turbulent, loss-
dominated/laminar) the two-dimensional time-dependent
solutions P(x,y,t) possesses a self-similar form P(0(x,?), n(»,0)
which simplifies the computation and facilitates a comprehen-
sive presentation of results. The present nonlinear solutions
with density variation and non-Darcy friction reduce to the
known linear solutions [5, 12] when the pressure ratio is near
unity and the Reynolds number is small.

II Formulation

The two related geometries illustrated in Figs. 1 and 2 will
be analyzed in a parallel fashion. For either geometry the flow
along the fracture is assumed to be one-dimensional in the x-

direction, and the Darcian seepage into the surroundings is -

assumed to be two-dimensional in the xy-plane, as appropriate

158/ Vol. 53, MARCH 1986

when the fracture height, H, is large compared to the aperture,
w.

The preexisting fracture of Fig. 1 has a prescribed aperture
which is uniform along the fracture and invarient in time. The
aperture could, however, vary in the z-direction (as in the
hydrofracture geometry of Fig. 2) in which case an effective
aperture or hydraulic diameter should be used in the one-
dimensional flow analysis. The preexisting fracture may be
either an open channel or, alternatively, it may be filled with a
high-permeability porous material.

The hydraulically-driven fracture of Fig. 2 has a variable
aperture which depends linearly on the local overpressure,
P(x) —o, as in the Perkins/Kern/Nordgren model where the
maximum displacement at the center of the channel, the cross-
sectional area, and the effective aperture are, respectively,
given by [10, 11]

1—-v)H T T
(——(—;—)—[P(x) —a], A =—4—w,,,H, W= Wn ey
in which G and » are the shear modulus and Poisson’s ratio, o
is the confining stress acting normal to the fracture plane, and
H is the height of the fracture which is presumed to be known
and constant. Thus the normalized aperture and area, w* and
A*, are each proportional to the normalized overpressure P*,
such that

Wy, (X) =

w*=A*=P* )
where
A P—
wi= g pro 0 )
W, A, P,—0

in which the subscript zero refers to the inlet of the channel
(x=0) where the pressure is known, and hence the local chan-
nel dimensions, w, and A, can be readily calculated from the
formulas given in (1). The normalized geometric relationships
(2, 3) are generally applicable in any situation where a flow
channel is created by displacements, either compressions or
tensions, which are proportional to local overpressure.

The one-dimensional transient flow within a permeable-
walled channel is governed by the conservation of mass and
momentum [13]

a a
begr(Ap)+——(Apu) = = Cpv, @
ad d aP
— — 2) = — —
m (Apu) + o (Apu?) A ( I +pF) %)

in which A and C are the cross-sectional area and cir-
cumference of the channel, P is pressure, p is density, u is
longitudinal velocity, v, is transverse velocity into the
permeable walls of the channel, and F embodies the frictional
effects in the fluid. Note that A ~ Hw may vary with x, while
C~2H is always constant.

The frictional forces can be expressed by the following
linear combination which has the correct asymptotic behavior
both for small and for large values of the Reynolds number
(Re = pud/p)
pu?

d
These equations (4-6) apply equally well in either of the
following circumstances, provided that the channel porosity,

U
pF=Crog+C, ©)

- ¢., the length scale, d, and the dimensionless coefficients, C;

and C,, are appropriately defined.
1 For flow in an open channel

¢ = 1 (Ta)
d = w = effective channel aperture (7b)
C; = 12 for preexisting fracture 7o)

1t

44 for hydraulic fracture [7]
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C, = a(e/w)? (7d)
in which C,; =12 is based on the laminar Poiseuille flow, C, is
based on experimental results for turbulent flow in geologic
fractures ([14]; @=0.1, b=0.5), and ¢ is roughness height of
the channel wall.

2 For flow in a channel which is packed with a permeable
material (e.g., propped hydrofrac or high permeability
stratigraphic layer)

¢. = porosity of channel material (8a)
d = characteristic microscale dimension

(e.g., pore dimaeter or particle size) (8h)

C, = d?/K,=180(1 — ¢.)*/ 3 (8¢c)

C, = N/K =2(1-¢.)/$} (84)

in which C, is based on Darcy’s law, K, is the permeability of
the channel, and A is Ergun’s constant which is a measurable
macroscopic property of the pore structure. Roughly, K, =d?
$2/180(1 —¢,)? and A=0.012 d/(1 - ¢.) [15] as noted in (8¢)
and (84d). In many geological applications, the conventional
friction models described above can only be viewed as crude
approximations, particularly when the roughness height is
comparable to the fracture aperture and the expected behavior
lies somewhere between the extremes of channel flow and
porous flow.

The lateral loss-velocity, v,, in (4), accounts for the seepage
losses from the channel. It can be determined by consideration
of the two-dimensional transient flow field within the sur-
rounding porous medium, as governed by conservation of
mass and by Darcy’s law, respectively,

ol 4 7 (o) =0 ©
ot B
- Km
V= — vP (10)
"

in which ¢,, and K, are porosity and permeability of the sur-
rounding medium. Since K,, << K,, the superficial velocity,
v, is presumed small enough to neglect the high-Re non-Darcy
effects which were retained in the channel flow. Equation (10)
implies that the seepage-loss velocity v,, in (4) is related to the
lateral pressure gradient at the fracture wall, i.e., v, =
—(K,,/u)aP/dy on y=0.

The barotropic equation of state, p=p(P) is often ap-
propriate, both in gas flows and in liquid flows. Ideal gas
flows (o =P/RT) are often nearly isothermal because the am-
bient temperature of the matrix cannot be substantially per-
turbed by the through-flow of a gas which has a relatively
small specific heat. Liquid flows are usually characterized as
having a small (and constant) compressibility, «, even in
nonisothermal circumstances. In either instance, liquid or gas,
the time derivative of the density can be replaced as follows

dp opP

a "ot (1
in which the product p« is essentially a constant (for the gas,
pa=p/P=1/RT).

The flow is induced by an abrupt change in the pressure
along the boundary at x=0, as described by the initial/boun-
dary conditions.

P(x,y,0)=Py; POy,0)=P, (12)

where P, is the ambient pore pressure in the permeable
medium. For a preexisting fracture, the internal pressure with-
in the fracture approaches P, as x— oo, and the fluid velocity
may be either positive (¥ >0) or negative (u <0) depending on
whether P,>P, or P,<P,. For a hydraulic fracture,
however, the internal pressure approaches ¢ at the leading
edge, and it is necessary that P,>¢ for the fracture to be

Journal of Applied Mechanics

open, in which case #>0. In general, P, might be greater or
less than o, but the former case (P, > o) is unstable in the
sense that fracture propagation can occur spontaneously,
without the imposition of the disturbance pressure, P,, at the
boundary. So, here we restrict to the latter case (P, < o) which
is far more common in the applications.

At very early times the inertial terms on the left side of the
momentum equation (5) are dominant, and the considered
channel flow resembles the flow in a shock tube. As the time
and length of run increase, the frictional, F, terms in (5) smear
out the shockwave and the inertial terms in equation (5)
become negligible (since u du/dx << u?/d in (5) and (6)).
After that, the friction dominated channel-flow gradually
slows down as the pressure gradient diminishes, and eventual-
ly the lateral seepage losses become a dominant consideration,
as described by the present analysis.

III Similarity Transformations

The transient solution of the stated problem can be de-
scribed by a set of four self-similar asymptotic solutions in
each of which the independent variables are

x Yy [ 2N ¢,pa,\ 2 t
0=, 9=2( ) IS (5
er(T) VEAN+1 Km Z
where the pore-fluid compressibility parameter, «,,, is either
the compressibility of a liquid or 1/P, for a gas. The depen-
dent variables are normalized as follows
:i, p*=L, u*r= u (19)
Po—Pr P urg(T)
The time-functions f(r) and g(r), which presently remain ar-
bitrary, will later be chosen such that P*, p* and u* depend
only upon 6 and » within the four distinct, self-similar time
regimes.
The reference scales of length, velocity, time and density are
chosen such that P*, p*, and u* are always positive, regardless
of whether the flow is inward or outward (% below for u=1)

P )+ p(P, C
_ (P +o(P)) " LM )

P*

T "7 Ted, G
L, 2N
L, = ___A_% t, = — —— ¢, AP (15)
u,uC u, N+1

in which p(P,) and p(P,) are the fluid densities at pressures P,
and P,, respectively, and the quantities d, and C, are
evaluated at the inlet of a hydrofracture. The reference
pressure, P,, is taken as the pressure at the leading edge of the
channel flow, so that

P, =P, for a preexisting fracture (16a)
or
(16b)

In either case, the characteristic pressure difference along the
fracture and the corresponding pressure ratio are defined as

AP= |P,—P,l and N=P,/P, amn
The compressibility parameter of the channel, «,, appearing
in the timie scale, ¢,, is taken as either

P, =¢ for a hydraulic fracture

o, = a,, for a preexisting fracture (18a)

or

o, = 1/AP for a hydraulic fracture (18b)

The lateral seepage flow is driven by the difference between

the fracture pressure and the ambient pore pressure, as
measured by

AP, P,-P,

AP,=P,—P, or AP¥=—""~—

LTol e 19
AP P,—P, (19)
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For a preexisting fracture AP¥=1, since P,=P,, in that cir-
cumstance. However, for a hydraulic fracture AP¥ might be
greater than unity if the pore pressure, P,,, were less than the
confining stress, o= P,. .

Under the transformations stated just above, the space and
time derivatives can be replaced by

3 1 9 9 1 ( fo 1 a>
ax Lf a0 o .\ " fa8 "2ron
whereupon the problem statement (4-6, 9-12) transforms into

the following format in which () represents differentiation
with respect to 7

© IN+1 3A* N—1\" dp*
-+ 0[ ot () A ]
N 30

(20)

g 2N a6
N a( . *u*)_ R1/2 f . aP* (21)
30 P ITTAP o7 P Ty
aP* u* p*
*_éf)—zfgw*z +/g* B u* lu*| (22)
fooP* 1 aP* 3 <*ap*>
T =—\p
70 2"y o \ oy
T d aP*
+-——M—< * ——) 23
777 a0\’ Tag @3)
N [P*(l 1)+ 1] 4)
ENTI NN
with boundary conditions
P*(0,0,7)=1; P*(co,n,7) =P*(0,00,7) =1 — AP} 25)

Equations (21) and (22) describe the flow along the fracture,
while the nonlinear diffusion equation (23) describes the two-
dimensional seepage flow in the permeable surroundings. The
main difference between preexisting and hydraulic fractures is
that w* =A* =1 in the former case, whereas w*=A4* =P* in
the latter. Also the exponent # in (21) is either 0 or 1 for the
respective cases of preexisting and hydraulic fractures,
because of the scaling chosen in equation (18).

The lateral seepage-loss parameter which appears on the
right side of equation (21) is defined as follows:

R:K”’CI ¢mam |:( C ) LI‘ [SF)S:I2
beac 0

A d, AP (26)
in which (C/A), ~2/w, is the ratio of circumference to cross
sectional area at the fracture inlet. Note that the inertial terms
have been deleted from the momentum equation (22) as
discussed earlier. Furthermore, the longitudinal §-diffusion
term in (23) is negligible for all times of practical interest, since
M=C, ¢.a.K,,/(},0,d%) << 1[12]. Finally, note that in the
limit as N—1 the ideal gas equation of state (24) also describes
a slightly compressible liquid (for which p* =1), so that the
liquid-flow results for all pressure ratios are recoverable as a
degenerate case of the gas-flow results [16].

The self-similar regimes will now be identified by choosing
f(7) and g(7) such that the problem statement (21-25) becomes
independent of 7 within specified ranges (early, intermediate,
late) of 7. The results for each self-similar regime will first be
presented, thereafter giving consideration to the transition
behavior.

o

IV Lossless Regimes

At sufficiently early times (= << 1/R), the lateral fluid loss
from the fracture is insignificant, and the pressure wave
penetrates into the fracture almost as though its walls were im-
permeable. The appropriate transformations for these quasi-
lossless regimes are listed below for the separate cases of
laminar and turbulent flow.
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Fig. 3 Pressure distribution along preexisting and hydraulically-driven
fractures for lossless flow with laminar friction

1 For laminar flow, let f=g/2 and fz =1 such that

f= 7.1/2, g=17" 12 (27)
x 2N ¢ o.uCp\ /2
:7177<N+1 d,? ) 28)
and the momentum equation (22) becomes
_ﬁ_ u* prurw(1-0) B u* for
30 w2 ( 7172 )“ ) T>>1 (29
2 For turbulent flow, let f=2g/3 and fg* = 1 such that
f=13, g=7"173 (30)
=i[( 2N )2 d)CZOtCZAP C,P,] 173 (31)
23 I\ N+1 d,
and the momentum equation (22) becomes
aP*  p*u* lu*| 7173
T D) ( + p*u*w*(l—b))
=£*—M for r<<1 (32)
WD)

Thus, the momentum equation becomes independent of 7,
both for 7 >> 1 and for 7 << 1. In either case, the continuity
equation (21) takes the following form in which 8=1/2 or 2/3
for laminar and turbulent cases, respectively.

60[ N+1 o, 6A*+<N——1>"A* ap*]+ D avoru)

_ R u

N P T N 36 1 ap " P
=(RT)I/2F: 5, =0 for Rr<<1 (33)

It is seen that the lateral loss term is negligible and the con-
tinuity equation becomes independent of 7 so long as 7 <<
1/R, and for those early times the channel flow is essentially
uncoupled from the flow in the surrounding medium.

- To facilitate a numerical solution, the expressions for
w*(P*) p*(P*), and u*(dP*/d@, w*) from equations (2, 24)
and (29) or (32) are all substituted into the continuity equation
(33) to obtain a second-order ordinary differential equation
for P*(6) subject to the boundary conditions P*(0)=1 and
P*(0)=0. The derivative operators are then replaced by

central-differences on a discrete grid, and the resulting equa-

tions for P;*(f;) are linearlized to obtain a tridiagonal
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Fig. 4 Pressure distribution along preexisting and hydraulically-driven
fractures for lossless flow with turbuient friction

algebraic system which is solved by the algorithm of Thomas.
Iterations are continued until the P;* used in the linearization
are in close agreement with the P;* which satisfy the linearized
equations.

Laminar solutions with negligible seepage losses are il-
lustrated in Fig. 3 for various values of the pressure ratio, N,
which is the only parameter appearing in the problem state-
ment. The lossless flow along a preexisting fracture with
w* = A*=1 is mathematically equivalent to one-dimensional
flow in a permeable medium [16, 17, 18]; these solutions are
reproduced here as a check on the present finite-difference
method and for comparison with the hydrofracture results.
The pressure profiles for preexisting fractures (N=P,/P,)
generally exhibit a gradual exponential approach to the far
field pressure as ¢ tends to infinity, whereas the profiles for
hydraulic fractures (N = P,/0) drive abruptly to P* =0 (P=0)
at a finite 8 near unity. The curves in Fig. 3 also describe the
shape of a hydrofracture, since w* = P* when local displace-
ment is proportional to local over-pressure. Hydrofracture
solutions exist only for N> 1, since P, must be greater than o
for the fracture to be open, whereas rarefaction or
““‘drawdown’’ solutions with N<1 are obtainable for a pre-
existing fracture with fixed aperture.

The leading edge of the hydrofracture occurs at a finite
location, 6*, where P* goes to zero. Behind that point P* >0,
or equivalently P> ¢, and the channel is open. Further ahead,
the channel is closed. Right at the leading edge, the fluid
velocity must be the same as the propagation velocity of the
hydrofracture, requiring that

dx N+1
— * * — A%
"= Lor” B0 ( IN > atf=0
Otherwise there would be fluid passing through the front of
the fracture. Recalling that the fluid speed depends upon the
aperature and the pressure gradient, the local pressure gra-
dient is theoretically infinite at the leading edge. For a laminar
flow,

(34

(35

dapP* 0* /N+1
= - ( > at 6*
do 2w*2 \ 2N
where w* (= P*) goes to zero. This equation implies that the
pressure has a cube root singularity at the leading edge of a
laminar flow. Care was therefore taken to accommodate the
appropriate singular behavior in the numerical algorithm.
Turbulent flow solutions with negligible seepage losses are
illustrated in Fig. 4. As in laminar flow, the disturbance ex-
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bulent friction. Pressure ratio is near unity (N—1).

tends to infinity along a preexisting fracture, whereas a
hydrofracture disturbance is limited to a finite domain. As
before, there is a theoretically-infinite pressure gradient at the
leading edge of a hydrofracture, but the singularity is now
somewhat weaker, particularly when N is large.

The lossless solutions for preexisting versus hydraulic frac-
tures are very nearly the same, provided that the fluid is a gas
and the pressure ratio is large. When N is large, the similarity
variables for the two types of fractures are virtually identical,
because in that limit the compressibility parameter,
o, =1/AP, used in scaling hydrofractures is equivalent to the
a, = 1/P, used in scaling preexisting fractures. Of course, the
penetration depth is always somewhat shorter for a hydraulic
fracture, compared to a preexisting fracture having the same
inlet aperture. But the difference in penetration depth and
fluid speed is only a factor of two, or so, when NV is large. The
two families of solutions are very different, however, when
the pressure ratio is small or the fluid is a liquid, because their
scaling is then quite different. The penetration depth along
preexisting fractures is proportional to (1/a.)” ~P? where
m=1/3 or 2/3 for laminar or turbulent flows; whereas for
hydraulic fractures the penetration is only proportional to
(1/a.)™ ~AP™. So, when AP/P, << 1 (i.e., N~1), the fluid
penetrates into a hydraulic fracture much more slowly than a
preexisting fracture, both having the same aperture at the
inlet.

This qualitative difference is a consequence of the very dif-
ferent capacitance mechanisms which are operative in the two
types of fractures. For a hydrofracture, there are two
capacitance mechanisms, fluid compression (~w* Ap*) and
solid deformation (~ p* Aw*); the latter mechanism always re-
mains of order one, even in the limit as N—1 and Ap*—0.
Conversely, for a preexisting fracture the only capacitive
mechanism is fluid compression (~w* Ap*) which is of the
order Ap* =(N-1)/N, and hence very small for N near unity
or for an “‘incompressible’’ liquid. That is the primary dif-
ference in the physical processes and the reasoning behind the
difference in scaling. At large N, this distinction is of no im-
portance because Ap* is then comparable to AP*, and hence
fluid compressibility effects are of order unity for both types
of fractures.

Although seepage losses do not significantly influence the
early-time flow along the channel, the pressure disturbance
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does penetrate into the surrounding porous medium, in the
manner described by the following partial differential equa-
tion (from (23) with 8=1/2 or 2/3 for laminar and turbulent
flow, respectively)

80 aP* 1 9P* 9 < . 6P*>

30 2" 8y o\ oy

For laminar flow in a preexisting fracture, the isobars are
simply straight lines which intersect the 8-axis at a 7/4 angle.
This can be verified by introducing the independent variable
£ =0+ which reduces all of the equations (29, 33, 36) to a
single ordinary differential equation, £P*' +2(p*P*’)’ =0;
hence, P* is a function of £ alone. Under more general cir-
cumstances the isobars are determined by numerically solving
the field equation (36), as outlined in the next section, using
the channel flow solutions as boundary data on the fracture
(i.e., on 5=0). In the typical results of Fig. 5 the lateral -
penetration and the longitudinal §-penetration are both of
order one.

(36)

IV Loss-Dominated Regimes

As the penetration depth increases, the lateral seepage losses
become progressively more important. At sufficiently late
times (r >> 1/R), the longitudinal through-flow in the chan-
nel is almost entirely consumed by the seepage losses, and the
fluid capacitance within the channel becomes negligible. The
appropriate transformations for these loss-dominated regimes
are listed below for the separate cases of laminar (= >> 1) and
turbulent (7 << 1) flow along the fracture.

1 For laminar flow, let f=g(7/R)'? and fg= 1 such that

f=@/R)\V4, g=(/R)~1%, 37

_X 2N d)mam KmC]2 APS 2 C 2 1/4
- [N+1 d,? <AP> (-——A )0] (38)
and the momentum equation (22) becomes

aP*  u*

_W:W for r>>1

2 For turbulent flow, let f=g(7/R)"? and fg? = | such that
S=(/R)V}, g=(7/R)~V¢ (40)

39)

X [ 2N o AP K,,,C,p,(APS)Z ( C )2]1/3(41)
T3 N+ mm d,u AP Ao
and the momentum equation (22) becomes
oP*
~5 =p*u* lu* lw*~1+9 for r< <1 (42)

In either case, the continuity equation (21) takes the following
form

9 p* 3P* N+1  ad*
Z(Arorut)—— — AR —1/2[___ *
a0 AT = g, = BORY IN P a8
+(N_1>"A *ap*] 0 for Rr>>1 (43
—_ — | = T
N 30 T )

It is seen that the capacitance term on the right becomes
negligible when 7>> 1/R, and in that limit the equation
becomes independent of 7. But, in contrast to the early lossless
regime, dP*/dy now appears in the channel-flow equations, so
they must now be solved in conjunction with the porous-flow

equation, (36), in which 8=1/4 or 1/3 for the laminar and tur-

bulent cases, respectively.

Finite-difference solutions are obtained by successive itera-
tions of a two step procedure. First, the pressure variation
along the fracture is calculated by solving the continuity equa-
tion (43) together with the friction equation, (39) or (42), and
the usual expressions for p*(P*), w*(P*), and A*(P*). The

numerical approach is basically the same as in the lossless case

described previously, except that the lateral seepage term,
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Fig. 7 Pressure distribution along preexisting and hydraulically-driven
fractures tor loss-dominated flow with turbulent friction

aP*/dn in (43), is evaluated using most recent estimates of the
pore-pressure distribution in the fracture wall. In the second
step, the pore-pressure field in the permeable surroundings is
calculated from the parabolic partial differential equation,
(36). The integration algorithm marches inward toward the
origin in the time-like negative-6 direction. Using backward
differences for aP*/98 and central differences for the %-
derivatives, we obtain a tri-diagonal algebraic system for the
pressures on each successive line of constant 6. The sweep is
initiated by letting P* =1— AP} along a remote line, 6§ =6,,,.
The most recent calculation of the fracture flow provides
boundary data on =0, and it is also required that
P*=1- AP} along a remote line, n=17,,,. As §—0, the partial
differential equation degenerates into an ordinary differential
equation in the y-variable. As explained in [12], the present
solutions are ‘‘outer solutions’’ which do not satisfy the boun-
dary conditions along =0, except at the point (0,0). There is
a thin boundary-layer along 0 =0, wherein 3*P*/36? must be
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Fig. 8 Pressure distribution along hydraulically-driven fractures for
loss-dominated tiow with laminar friction. Pore pressure P, Is equal to
or less than confining stress, ¢. Pressure ratio is near unity (N—1).

retained and the equation becomes elliptic. However, the pre-
sent outer solutions remain valid until the very late times
noted in the summary of this paper.

Laminar and turbulent solutions are illustrated in Figs. 6
and 7, respectively. Each figure shows the pressure variation
along the channel for various values of the longitudinal
pressure ratio, N=P, /P, or N=P,/o, for preexisting or
hydraulic fractures, respectively. Recall, from equations (16)
and (19), that the pore pressure parameter AP is always unity
for preexisting fractures. Thus, in the comparative hydrofrac-
ture solutions of Figs. 6 and 7, the pore pressure P, is chosen
to be the same as the confining stress o, such that AP}=1. The
disturbance extends to infinity along a preexisting fracture;
whereas the length of a hydrofracture is finite, and the
pressure gradient is very steep near the leading edge. It is no
longer true that the fluid velocity must match the propagation
velocity near the tip of the hydrofracture, but rather that the
longitudinal flow be in balance with the seepage losses, which
still requires that the pressure gradient become infinite as the
width of the channel goes to zero. The turbulent hydrofracture
solutions in Fig. 7 have a curious appearance near the leading
edge, so particular care was taken to ensure adequate resolu-
tion of the detailed structure at the toe of the profile.

In the loss-dominated regimes, the fluid penetration depth
along preexisting versus hydraulic fractures is quite com-
parable, regardless of the pressure ratio N, since the only
capacitance mechanism is the fluid storage in the surrounding
porous medium. Thus, the similarity variable now depends on
the pore-fluid compressibility, o, which is the same for
preexisting and hydrofractures, rather than o, which differs
between the two.

The ambient pore pressure might, in general, be less than
the confining stress and this would increase the seepage losses
from the fracture. However, this consideration has been ac-
counted for, in a first order fashion, by the scaling of the
equations. Thus, as seen in Fig. 8, the pressure profile and the
normalized length of the fracture are almost insensitive to the
pore-pressure parameter AP¥=(P,—P,)/(P,—0). The il-
lustrative results are for laminar flow and a worst-case condi-
tion in which N~1. In reality, the pressure ratio N must
always be greater than unity, and the maximum possible value
of the pore-pressure is AP¥=P,/(P,—0) = N/(N-1), cor-
responding to a pore pressure of zero.
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Fig. 9 lIsobars for loss-dominated tlow along a hydraulically-driven
fracture with laminar friction. Pore pressure is the same as confining
stress (AP} = 1), and pressure ratio is near unity (N—1).

The pressure field within the porous medium is illustrated in
Figs. 9 and 10 for AP¥=1 and AP}= 10, respectively. Both
plots apply to the incompressible case with N~ 1. In Fig. 9, the
longitudinal pressure difference AP is the same as the lateral
pressure difference AP, and the isobars are inclined at about
45 deg, as in the comparable pressure plot of Fig. 5. In Fig. 10,
however, the pressure variation AP along the channel is almost
negligible compared to the lateral pressure difference. So, in
essence, the channel appears to be a high pressure isobar, and
all of the other isobars are nearly parallel to it, except at the
leading edge of the channel where all of the isobars converge
to a square-root singularity, as in the related heat-transfer
problem of a hot isothermal plate moving through a cold, con-
ducting medium.

The infinite gradients near the tip of a hydrofracture are
more of a computational annoyance than a physical reality.
There will always be some longitudinal diffusion near the tip
of the fracture, and this will weaken the gradients predicted by
our parabolized equations. Also, the driving fluid will
probably stand back a slight distance behind the tip of the
fracture, because of the difficulties of moving into the nar-
rowest part of the channel. In reality, the fluid need not
penetrate all the way to the tip in order to drive the fracture
ahead, because shear forces within the solid transmit pressure
loads into the region ahead of the fluid front [9]. Despite these
local departures from reality, the overall character of the solu-
tion seems quite reasonable, and there is every expectation
that the adjustments required to remove the singularities
should have only a moderate influence on the quantities of
engineering interest, such as fracture length and flow rate at
the inlet.

V Summary

Transient isothermal fluid flow along an isolated fracture in
a porous medium has been analyzed. Two different cases were
considered, a preexisting fracture with uniform aperture (Fig.
1) as well as a hydraulically-induced fracture with local aper-
ture proportional to local overpressure (Fig. 2). The pre-
existing fracture could be either open or, alternatively, filled
with a high-permeability material. A one-dimensional
laminar/turbulent model of the flow within the fracture was
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coupled with a two-dimensional Darcian model of the seepage
into the surrounding permeable medium. The problem was
formulated such that the pressure ratio N was the only impor-
tant parameter: N> 1 for ideal gas injection; N<1 for ideal
gas withdrawal; and N—1 describes the flow of a constant-
compressibility liquid. Reported results span the full range
from N—0 through N—oo, -

Four different similarity solutions were derived, each hav-
ing asymptotic validity within a particular range of time. The
flow along the fracture becomes either fully turbulent or fully
laminar in the limits as 7 << 1 and 7 >> 1, respectively. Tur-
bulent/laminar transition occurs at roughly r=1. Lateral
seepage into the permeable fracture walls becomes either a
negligible or a dominant consideration in the limits as Rt <<
1 and R7 >> 1, respectively. The transition occurs at roughly
Rr=1.

The propagation of a pressure disturbance along a fracture
can be viewed as a sequence of asymptotic flow regimes.

1 At very early times a shock wave propagates down the
fracture; frictional effects rapidly smear the wave front.

2 At early times (r<1 and Rr< 1) the flow along the frac-
ture is turbulent and the lateral losses are negligible. The
results of Fig. 4 are then applicable.

3 At intermediate times there are three possible scenarios,
depending upon the magnitude of the seepage-interaction
parameser, R.

a If R<1, the turbulent/laminar transition occurs
first. The results of Fig. 3 are then applicable in the in-
termediate time period 1 <7<1/R.

b If R>1, the negligible-seepage/dominant-seepage
transition occurs first. The results of Fig. 7 are then ap-
plicable in the intermediate time period 1/R<7<1.

¢ If R=1, the transitions occur simultaneously and
there is no intermediate asymptotic flow. Transition
passes directly from stage (2) to stage (4).

4 At late times (r>1 and Rr>1) the channel flow is
laminar and losses are dominant, The results of Fig. 6 are then
applicable. .

5 At very late times (¢>> ¢, uc, w/K3,) longitudinal dif-

fusion within the porous medium eventually becomes impor-

tant, as described in {12] for the case N—1.
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Transitions from one asymptotic regime to another can be
computed by two-dimensional time-dependent numerical pro-
cedures, as already demonstrated for some special cases [5, 12,
16}.

The reported similarity solutions are useful in several
respects. First, they allow a convenient and comprehensive
presentation of the results, for all values of the parameters.
Secondly, computation is simpler and more reliable with two
instead of three independent variables, so the similarity solu-
tions may be viewed as benchmark solutions for verification
of generalized computer codes. This computational advantage
becomes more important in the multiphase {(evaporating or
condensing) extensions of the considered problem. Finally, a
knowledge of the self-similar asymptotes is usually a sufficient
basis for engineering calculations, particularly in the geologic
applications where property data is only known within order-
of-magnitude estimates. A number of example calculations
are reported in reference [19] which concerns the containment
analysis of underground nuclear tests.
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APPENDIX

Comparison With Nordgren’s Hydrofracture Solutions

The present results for laminar liquid flow along a hydraulic
fracture driven by a constant inlet pressure can be compared
with Nordgren’s results [11] for the same configuration driven
by a constant flow rate, Q. In the early-time lossless regime,
Nordgren’s solution is [7]

GQ3 1 1/5
L(t — d[ ] 4/5 ‘A
(0 e B 4)
(L-»Q%]
m O’I = [ :I 13 A
w,,(0,7) e CH t (A2)
a [G3QuLT V4
AP() = —[———] A3
0 = Gy (43)
which can be algebraically combined to obtain
d7/8 4 AP 2172
L= <_172_ __) [__l‘i._] 172 (A4)
ea T u

in which d=0.68, e=2.50, a=2.75, and 4/« is the ratio be-
tween midheight aperture, w,,, and effective aperture, w, at
the fracture inlet (see equation (1)). The corresponding expres-
sion from equation (28) of the present paper is (with N—1,
¢.=1,a,=1/4P, C/=4m,d,=w,)

L= <§_*_.__) [APWDZ} 172 tl/Z
2rir2 L

in which 0* ~0.87 at the leading edge of the fracture (see Fig.
3). Thus, the dependence on physical parameters is identical.
The only difference is that the premultiplier constant in curved
brackets has the values 0.22 versus 0.25, respectively, for
Nordgren versus the present.

In the late-time loss-dominated regime, Nordgren’s solution
is [7]

(45)

1 Q [1/2
x HC

(46)
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(A7)

=<
|

2\ /4
= 4 (_3) {#(1 — V)Q2]1/4tl/8
K

4(_%_) 1/4 [ “G3Q2 ] 174 tl/s
7 H(1-v’C

in which the fluid seepage velocity into the fracture walls is
assumed to obey the Carter equation

v=C/(t—7)2 (A9

in which ¢ — 7 is the elapsed time since the exposure of the sur-
face. From the one-dimensional error-function solution for
transient liquid flow driven by constant pressure
v=AP (K, ¢ a,/nr(t—-1))""2, so that C=AP,
(Kpypihm/cyw)’?. Combination of the above relationships
yields

1 3/4 w 6 AP 2 1/4
v=(a) e Ge) |
47r Km¢mam/"' APS
which is comparable to the present equation (38) for N—1,
Ci=4n,d,=w,, (C/A),=2/w,

1 1/2 W6 AP 2 174
L=0'(5-) [ﬁ’ﬁ(Ap)] (Al
m m m S

in which #*~1.06 from Fig. 6. Again, the dependence on
physical parameters is identical, but the premultipliers are now
0.15 versus 0.21, respectively, for Nordgren versus present.

It is somewhat surprising but reassuring to find reasonably
good agreement (withing 10 percent and 40 percent, respec-
tively, for the lossless and loss-dominated cases) between the
solutions for constant driving pressure versus constant flow
rate. At any given instant they compare fairly well, despite the
difference in their prior histories of flow rate and pressure.
The fracture driven by constant pressure is understandably
longer since it has been previously subjected to greater flow
rates and higher early-time pressures than its constant-flow
counterpart. To this same level of approximation, the present
constant-pressure solutions could presumably be applied to
gas flows and/or turbulent flows along preexisting or
hydraulically-driven fractures subjected to injection at a cons-
tant or variable flow rate.

AP = (A8)

(A10)
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When a flexible rotor is partially filled with liquid, the motion is unstable over some
operating range. The extent of this operating range depends on various system
parameters such as rotor damping, fluid viscosity, the amount of fluid present, etc.
If the rotor is arranged so that it must tlt as it vibrates (as in the clamped-free con-
Sfiguration) then the tilt of the rotor greatly complicates the stability analysis. The
source of the complication is that the fluid motion becomes three-dimensional. A

three-dimensional stability theory is developed here and applied to a simple
clamped-free rotor. The results show that the stability boundaries are influenced by

both rotor and fluid ‘‘gyroscopic stiffening”

also reported.

Introduction

When a flexible rotor is partially filled with liquid, the mo-
tion is unstable over a certain range of operating speeds. This
unstable resonance occurs when the empty rotor vibration fre-
quency approaches the frequency of surface waves in the
liquid.

This instability was noted experimentally by Kollmann
(1962) and explained analytically by Kuipers (1964) and Wolfe
(1968) who analyzed an undamped rotor partially filled with
an inviscid liquid. Kuipers (1964) added an external damper to
the rotor and was surprised by analytical results that predicted
the instability of the rotor-liquid system over all spin speeds
(contrary to experimental evidence [Kollman 1962 and later
Wolfe 1968]). He attributed this anomaly to the linearization
process and hoped that a full nonlinear analysis would
alleviate the discrepancy. Hendricks (1981) proved that a
damped rotor-inviscid liquid system was indeed unstable over
all operating regions, however by including the viscosity of the
entrapped fluid in the analysis, physically realistic results are
predicted by the linear theory (Hendricks and Morton 1979).
Hendricks and Morton (1979) showed how the unstable region
around the system resonance was affected by the rotor damp-
ing, fluid viscosity, mass ratio, fill ratio, and rotor spin speed.
A more recent paper (Hendricks and Klauber 1984) shows how
an optimal control algorithm can be used to calculate a control
force which will stabilize a two-mass rotor containing liquid.

All analyses mentioned so far have analyzed a rigid hollow
circular cylinder which is forced to rotate around its axis of
symmetry at a constant spin rate. The cylinder is mounted in
the middle of an elastic shaft so that the spin axis can be
displaced parallel to itself without tilting. Such a system ex-
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effects. Brief experimental results are

hibits no gyroscopic effects and does not couple with any axial
motion in the fluid.

This paper will analyze a rigid hollow circular cylinder (cup)
mounted on the free end of a massless clamped-free elastic
shaft. The cup is partially filled with a viscous incompressible
fluid and the resulting system is investigated for stability. The
aim of this research is to understand how rotor gyroscopics
and axial waves in the fluid affect the stability boundaries.

Rotor Dynamics

Consider a hollow circular cup (mass m, radius a, height L)
mounted on the free end of a massless clamped shaft (length
). A linear damper (damping coefficient C) is attached to the
bottom of the cup. The center of gravity (G) of the empty cup
is located a distance d above the bottom of the cup (Fig. 1).

The equations of motion for the rotor are developed using
Lagranges Equations. Define three coordinate systems: (I J
K) inertially fixed; g, J, k) spinning with angular speed {; (d1 R
d,, d3) fixed in the cup. The following relationships exist.

i cosCir sinir 0 i
f = | —sinflt cos@r © ¥ (1)
k 0 0 1 K
(il 1 0 0 cos¢, 0 —sing, i
d, - =] 0 cose, sing, 0 1 0 i
63 0 —sing, cosg, sing, 0 cosg, k
&)

The Euler Angles ¢, and ¢, are used to orient the cup-fixed
coordinate system. The motion of the shaft is described using
the two coordinates X(¢,7), y(f,Z) where 7 is measured from
the point B (bottom of the cup, see Fig. 1). The deflection of a
point on the shaft is thus given by

R(2) =%(4,5)i+ 7 (L,5)] ?3)
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Fig. 1 Clamped-free single critical rotor and coordinate systems

The temporal and spatial variables can be separated

X(1,2) =F ()Y (2) (4a)

(4, =F () (D) (4b)
where ¢ (Z) is the mode shape of the shaft (to be determined
from a simple beam theory) which will be normalized so that
¥ (Z = 0) = 1 and thus the position vector that locates point B
is

Ry =R(Z=0)=%()i+5(D] ©)
The cup can be oriented by examining the unit vector d; which
can be found from equation (3) by differentiating.
IR (2}]

0z i=0

The parameter & = dy(£)/dZ ;- is a slope constant that
measures how much the cup tilts as it runs out. Since this

paper specifically examines the effect of tilt on the dynamics
of the system, € is a key parameter. From equation (2)

d,~ =exi+ ey +k (6)

&3 = sing,cos¢, 1~ sing,j + cose, cose, k )
For small angles
dy=¢ri—¢j+k ®)
and the Euler angles are identified as
b =EX %a)
=&y (9b)
The angular velocity of the cup is
w=0k+¢,j+¢,d, (10)

Keeping terms to second order the angular velocity can be
written in the cup fixed coordinate system as

w=—e(F+08)d, +e(F-0p)d,

Journal of Applied Mechanics

+ [Q (1 - %2[;22 + )72]> + €2)?)7] d,
The position and velocity of the center of mass (point G, Fig.
1) are
Ry =X+ jj +dd, = (1 + éd)i + j (1 + éd)§ + dk (12a)
R; =[(%—0p)i+ (§+ 00§10 +&d) (12b)
For future reference the velocity and acceleration of point B
are now listed.
Ry = (¥={y)i+ (F+ Q0] (13a)
Ry = (X-205 - 2%)i+ (F+ 205 -027)] (13b)
The kinetic energy, dissipation function, and potential energy
are

(1

1 . 1

T=T m R;Rg +-—2— welew (14a)
| .

Dz___2 2°Rp (14D)
1

V=T kRg Ry (14¢)

where 1 is the inertia dyadic of the cup about the center of
gravity and k is the spring constant which results from the
bending of the shaft. The unit vectors (d,, d,, d;) are oriented
along the principal axis of the cup, and the cup is symmetrical
about d,. The inertial dyadic can be written in matrix notation

700
I=10 70 (15)
00 J
The rotor equations of motion are
d s oT oT aD v
() =0, (160
dt \ 3% ox ox 0x
d s oT aT oD vV
a .>_ =0, (16b)
dr\ 55 ay 3y ay

where Q, and Q, are the forces on the rotor due to the fluid.
These forces will be developed shortly, after the empty rotor
equations (i.e., Q, = Q, = 0) are examined. In order to
highlight the important terms, the following nondimensional
quantities are introduced.

Q=0/0, (17a)
C=C2M,w, 17b)
J=Je/M, (17¢)
where
M, =M(1 +&d)? +1& (18a)
w, = (k/M)\2 (18b)

the nondimensional equivalents of equations (16a, 16b) for the
empty rotor are

1 0] (% 2 (J-2)Q x}
+
PR B g P
( 1+(J- 102 -200
+

[}
20Q 1+~ 1Q? y

where x = X/a and y = J/a are the nondimensional rotor
variables.

The fact that the cup tilts as it vibrates is incorporated in the
nondimensional term J which measures the polar moment of
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inertia of the cup weighted by the slope parameter . To see
how J affects the undamped empty rotor, the eigenvalue pro-
blem associated with equation (19) (setting C = 0) is for-
mulated. This leads to the following characteristic equation
for the vibration frequency S.

S2+@2-DNAS—[1+ (- 1)922]=0 (20)

Equation (20) can be solved for the two vibration frequencies
(given in the rotating reference frame)

JQ JQ 2 172
S=—-Q+T:t[l+<—§—) ] @1
or if the gyroscopic term (J) is small (the usual case)
S S L W @
2 2 2

The first term in equation (22) arises because we are work-
ing in a rotating reference frame, the next term represents the
natural frequency of the system without the gyroscopic term
(i.e., J = 0), and the last two terms represents the gyroscopic
“‘stiffening’’. These last terms are present because the spinn-
ing cup acts as a gyroscope in that the spinning system resists
any change in its angular momentum. This resistance to tilt
manifests itself by stiffening the effective spring constant and
thereby raising the natural frequency of the system. As we
shall see later this gyroscopic stiffening has a predictable in-
fluence on the liquid-rotor stability problem.

When the rotor contains a fluid, Q, and Q, are not zero
since the fluid pushes on the rotor wall. Here we examine the
effect that an entrapped inviscid fluid has on the motion of the

. cup. Later we will need to add the viscosity of the fluid in
order to complete the stability analysis. For a thin fluid layer,
the forces on the top and bottom of the cup may be neglected
and only those on the side wall will be considered. Thus Q,,,
Q, are given by

L p2n 0 -
Q,= E S — R,,«P(F=a,0,Z,t)radbd? (23a)
0J0 09X
L p2n a -
Q,= S S — R, *P(F=a,0,Z,t)fadfd? (23b)
0 J0 gy
where P(F, 6, %, t) is the pressure in the fluid,
R, =%(O)i+F(0)j+7d, + af (24)
is a vector which locates a point on the wall, and
f=cosd, + sinfd, (25)

is a unit vector pointing in the radial direction.

Equations (23a), (23b) represent the net force on the rotor
due to the pressure {(a normal distributed force) integrated
over the surface of the rotor. The formulation of the govern-
ing equations is now completed by developing the fluid
equations.

Fluid Equations

The governing equations for the fluid are the equations
which conserve mass (the continuity equation) and momentum
(the Navier-Stokes equations). Written in a reference frame at-
tached to and moving with the cup (d,, d,, d), these equa-
tions are:

VeV=0 (26a)
VH(VeVIVHRy + e xr+w x(w x 1)
) S
+20xV+— VP=0 (26b)

o
where

V is the fluid velocity vector
P is the fluid pressure
p is the fluid density
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and to first order

w=—e(F+05)d, +e(i-0p)d, (27a)
a= —e(3+05)d, +e(X-05)d, (27b)
r=7rf 27¢)

‘Equation (260) is just the usual momentum equations with
four extra acceleration terms due to the motion of the coor-
dinate system (attached to the cup). To linearize these equa-
tions let

ﬁ:% o2~ bY) + P(M,w2/a) (28)
where b is the radius of the nominal free surface. The first
term on the right hand side of equation (28) represents the
pressure due to the solid-body rotation of the fluid and the se-
cond is a small perturbation due to any waves that develop. P
is the nondimensional pressure perturbation. The fluid veloci-

ty can be written as
V= (ur + v+ wi)aw, (29)

where (¢, v, w) is the nondimensional velocity in the (radial,
azimuthal, axial) direction,

0= —sind, + cosbd, (30)
is a unit vector in the azimuthal direction, and
i=d, 31
is a unit vector in the axial direction.
The following additional nondimensional terms and

variables are now introduced:

f=b/a, a fill ratio that measures how much fluid is
present
p=mpa’L/M,, a mass ratio
z,=1L/a, an aspect ratio
e=éa, nondimensional tilt variable
r=F/a, nondimensional radial distance
z=7%/a, nondimensional axial distance

Equations (26a), (26b) written in nondimensional, linearized,
scalar form are:

u ou 1 ov aw

¥ 2 =0 32
r+6r+r 69+az (32a)
apP
i—200+ =20 2 L Avf=0 (32b)
or
aP X
o+ 20u+ 22 XL Ai=0 (32¢)
ur 00
P
Mo O L Ai=0 (32d)
uo 0z

where the rotor motion is incorporated through the term
A=(1+e)[(X— 20y —Q%x)cosf + (J+ 20x — Q%y)sind|F
+(1 +e2)[(J + 20% — Q2p)sind — (X¥—20y — Q2x)cosb]d (33)
—er[(J + Q%y)sing + (X + Q%x)cosblZ

It is now easy to see why tilt in the rotor greatly complicates
the analysis. If we do not allow the rotor to tilt (i.e., set ¢ = 0)
then the last term in equation (32d) is zero and one solution is
that the axial velocity (w) is identically zero and the pressure

“does not depend on the axial coordinate z. The flow then

becomes two dimensional (all fluid variables depend only on r
and 6 but not z). If the rotor tilts (¢ # 0) then the acceleration
of the rotor drives the axial velocity through the last term in
equation (32d). The rotor acceleration terms in the radial and
azimuthal momentum equations (32 b,c¢) also introduce varia-

- tions in the axial direction (z) for the case e # 0. The flow is

no longer two-dimensional but must be analyzed as a three-
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dimensional flow (i.e., all fluid variables depend on r, 8, and

z).
To complete the fluid analysis the boundary conditions
must be specified. These are:

1. The fluid velocity must be zero normal to all solid

surfaces.
2. The total pressure at the free surface must be zero and
the surface radial velocity must match the fluid radial velocity.

The first condition requires that

u{r=10,z,t) =0 (34a)
w(r,0z=0,t) =0 (34b)
w(r,8,z=2,,)=0 (34¢)

The second boundary condition needs to be massaged into a
useful form. The nondimensional pressure is (compare equa-
tion (28))

1 02
pressure =—— —— (22— f*) + P (35)
2 2o
The free surface of the fluid wave is located at
r=f+n(6,z,t) (36)

where A represents the perturbation from the nominal free sur-
face. Using equation (36) in equation (35), dropping the
nonlinear term, and setting ¥ = A, the second boundary con-
dition becomes

u(r=£,0,z,t) = - sz P(r=£0,2,t) (37

The system is now completely described mathematically; on
to the solution.

Solution

The dynamics of the liquid-rotor system are incorporated in
the rotor equations (16a, 16b) augmented with the fluid forces
(23a, 23b) together with the fluid equations (32a-32d) and
boundary conditions (34a-34c, 37). The rotor coordinates
(x,y) depend only on time while the fluid variables (u,v,w,P)
depend on the three spatial variables (r,8,z) as well as time. To
solve this set of mixed equations a solution of the following
form is assumed.

x(t) = xe S0t (38a)
y(t) =ye—iSwot (38b)
u(r,0,z,t) = E u (r)cos(”jz>e’("‘5“’o” (38¢)
[
0(r,8,2,1) = E v, (r)cos(";“)effo—sw (38d)
o
w(r,d,z,t) = 2 W (r)sm(mwz)e""‘s“’v” (38¢)
m=0
M mwzy oo
P(rb,z,t)= E P,,,(r)cos( p )e" wol) (389
m=0 o

All variables are given the same time dependence (parameter
8). It is the object of the solution process to determine S. By
expanding the axial dependence of the axial velocity (w) in sine
terms we have implicitly satisfied the boundary conditions at
the top and bottom of the cup. The only azimuthal (§) mode
that is considered is the mode that has exactly one node. All
other azimuthal modes produce no net force on the rotor and
can be left out of the analysis without any loss. The axial ex-
pansion will necessarily be truncated at some finite number of
terms introducing an approximation into the solution process;

Journal of Applied Mechanics

however, if enough terms are included in the series, the solu-
tion will retain sufficient accuracy. With expansions
(38a-38f), the governing equations can be written in the
following nondimensional form.

1+ (- 1)Q2~82-2iCS —2CQ—iSQ(J-2) } {x}
200 +iSQ(J—2) 1+ (J-1)2%2 - S?-2iCS y
M 1
=72, E Pn (r= I)Qn { } (39a>
n=0 1
n 0 A 0 (395
m T m Ly .
r ar " A Win )
: 72z, d 2ge
—iSu,, —2Quv,, +—= a P+ (S+D*x—iy)D,,=0 (39c)
—iSv,, +2Qu,, + % P,,, +i(S+Q*(x—iy)D,, =0 (394d)
ur
—iSw,, — - - x—iy)E,, =0 (39%)
where
( 1+ez,/2 n=20
Q.= < —2ez,/(nm)? nodd (40a)
L 0 neven # 0
(1
—T(l+ezo/2) m=20
D, = J 2ez,/ (mm)? m odd (40b)
L 0 m even #0
—2¢/mw m odd
E,= (40c)
0 m even
The boundary conditions are
u, (r=1)=0 (41a)
inz,S
um(r:ﬂz_;—ﬂzi‘prm(rzﬂ (4Ib)

Equations (394-41b) must now be manipulated to yield an
eigenvalue problem for the parameter S (which determines the
frequency and stability of the motion). To accomplish this
task x,y,u,,v,, and w, are eliminated from equations
(39a-e). After much algebra the result is a set of M + 1 second
order ordinary differential equations for P,,,.

d*P 1 dP, 1
R (o LS LA e
42)
where
T (402 — 5H2 3)

- a
and 3,,, represents an array containing rotor and kinematic in-
formation. This array is defined in the appendix.

Equation (42) is just a set of Bessel’s equations which are
coupled by the driving term that depends on the pressure at the
rotor wall. The solution to equation (42) is
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1
A,r+B, — m=0
,
Pm (r)= Alrlml) (mxr) +B,,;m2) (m«r)
(44)
M
+r26”mP”(1) m#=Q

n=0

where H{ and HP represent Hankel functions of the first and
second kind of order 1. Hankel functions must be used for the
calculation instead of the more common Bessel functions since
the latter are not numerically independent in the range of in-
terest. Applying the boundary conditions leads to an equation
of the form

[F1{Y}=0 (45)

where { Y} isa 2M + 2 vector that contains the coefficients A4;
and B; and [F] is a matrix (defined in the appendix) that con-
tains all of the system dynamics. Embedded in the matrix [F] is
the parameter S. In order to have a nontrivial solution of
equation (45) we must have

det[F]=0 (46)

Equation (46) is the characteristic equation which deter-
mines S. Using a root solving technique one can now search
for a value of S which makes the determinant zero. This will
be one of the 2M + 2 system eigenvalues. The real part of S
represents one of the ‘‘natural’’ frequencies of the rotor-liquid
system. If all of the system eigenvalues have negative im-
aginary parts, the system will be stable. If any of the eigen-
values has a positive imaginary part, the system will be
unstable. Once an eigenvalue has been found, the corre-
sponding eigenvector of [F] can be used to determine the mode
shape of the system.

Stability Analysis

The inviscid analysis developed in the preceding sections can
be used to predict frequencies and mode shapes of the system.
Unfortunately the analysis presented so far is not complete
enough to yield stability information. The inviscid theory
predicts the rotor to be unstable at any spin speed. In order to
complete the stability analysis it is necessary to include the
viscosity of the entrapped fluid. The viscous theory has been
completed (Hendricks 1979) but the analysis is only briefly
sketched here due to the complexity of the equations.

If the fluid is viscous then in addition to a normal force
(pressure) on the rotor wall there will be shear forces (drag).
Thus the first update to the preceeding analysis will be the ad-
dition of axial and azimuthal drag terms in equations (23a,
23b). In the fluid equations it will be necessary to add the
usual viscous diffusion term to the Navier-Stokes equation
(26b). This has the effect of raising the order of the differen-
tial equations and significantly complicating the solution. The
fluid boundary conditions must now include the no-slip condi-
tion at the solid surfaces.

The viscous problem may be solved by using a technique
common when working with rotating fluids (Greenspan 1965).
The procedure involves an asymptotic expansion in terms of a
suitable Reynolds’ number. In this problem the natural
Reynold’s number is

Re=a%w,/v

where » is the kinematic viscosity of the fluid. The problem
then separates into three parts: an inviscid core; a boundary
layer; and a viscous correction. The inviscid core is just the
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Fig.2 Typical stability map (x = 0.63,C = 0.01,Re = 2.0 x 105,zo =
1.68,¢ = 0,J = 0)

analysis presented in the earlier part of this paper. The solu-
tion to the inviscid problem provides input for the boundary
layer analysis. The solution to the boundary layer is used to
calculate a ‘‘viscous correction’’. The complete solution is
then accurate to O(Re~1/2) which is sufficient to determine
stability. The analysis ignores viscous dissipation at the top
and bottom of the cup (Ekman layers) and thereby is valid
only for thin liquid layers.

Results and Experiment

The system depends on the following eight nondimensional
parameters

Q=rotor spin speed

Sf=fill ratio (f = 0 corresponds to a full rotor, f = 1 cor-
responds to an empty rotor) .

w=mass ratio that measures the fluid mass density

C=rotor damping constant (C = 1 corresponds to critical
damping)

Re = Reynolds number that measures fluid viscosity

Z, = aspect ratio that measure the length of the cup

e =tilt parameter that measures how much the rotor tilts as
it vibrates

J=polar moment of inertia of the cup weighted by the tilt
parameter

A typical stability calculation consists of defining these
eight parameters for the particular system of interest, choos-
ing a starting guess for S, then iterating until equation (46) is
satisfied. The viscous correction is then calculated and the
complete eigenvalue is checked to see if the eigenvalue has a
negative imaginary part. This process is repeated until all
eigenvalues have been found. If all of the eigenvalues have
negative imaginary parts, the system is stable; otherwise the
system is unstable. The results of a stability calculation are
conveniently shown on a stabilty map (stability boundaries
plotted on the Q, f plane). Figure 2 shows a typical stability
map. For a given amount of fluid (f), the system is stable at

-low spin speeds. As the spin speed () increases, the system en-

counters an unstable region. At higher spin speeds the system
is again stable. As more liquid is added, the region of instabili-
ty expands. Since the analysis is based on a boundary layer
theory, it cannot be used to predict stability boundaries if the
fluid layer is thinner than the boundary thickness. A correct

- analysis for a very thin layer would require different boundary

conditions than those used here. For this reason the stability
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Fig. 4 Stability map (x = 1.1, C = 0.013,Re = 1.6 x 105, J = 0.15)

boundaries of Fig. 2 cannot be extended directly to the limit f
= 1.

The effect of the first five parameters on the stability map is
reported in Hendricks and Morton (1979). The purpose of this
paper is to discover the effect that rotor tilt has on the stability
boundaries. The tilt of the rotor is manifested in two ways:
first the polar moment of inertia (J) becomes important in the
rotor equations (we have already seen how this parameter
gyroscopically stiffens the rotor); second the fluid now is
driven axially by the motion of the rotor. To separate these
two effects, stability maps were generated using only the first
term in each of the axial fluid expansions. This has the ar-
tificial effect of restricting the fluid motion to two dimensions
allowing us to separately examine the effect of the rotor
gyroscopic term. Figure 3 shows the effect that changing J has
on the stability map. As J increases, the lower stability boun-
dary is slightly raised while the upper stability boundary shows
a much greater increase. This is a reasonable result since the
gryroscopic “‘stiffening’’ effect is more pronounced at higher
spin speeds.

Figure 4 shows stability maps using first the two-
dimensional theory and then the three-dimensional theory
(with ten terms in each axial fluid expansion). The three-
dimensional theory allows the fluid to move axially. The axial
motion of the fluid has an effect similar to the rotor

Journal of Applied Mechanics
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Fig. 5 Fluid pressure distribution

gyroscopic stiffening. The lower stability boundary is slightly
raised while the upper stability boundary shows a much
greater increase. Figure 5 is a plot of the fluid mode shape
which corresponds to the unstable eigenvalue in the three-
dimensional calculation. Note that the fluid has aligned itself
to create a restoring torque that resists rotor runout. The fluid
thus adds a gyroscopic stiffening effect in addition to the ef-
fect produced by the polar moment of inertia of the cup.

Also shown in Fig. 4 are some experimental points obtained
by Dr. M. A. Shaddy, Jr. in an experiment described in Hen-
dricks (1979). The lower stability boundaries show good agree-
ment with the experiment. The three-dimensional upper
stability boundary agrees with experiment for thin fluid layers,
however, the slope of the upper stability boundaries are dif-
ferent. There are two possible explanations for the discrepan-
¢y in the slope. First the simple damper used in the experiment
may be providing more damping at higher spin speeds. A more
plausible explanation is that the Ekman boundary layers at the
top and bottom of the cup may significantly add damping to
the system as more fluid is added to this relatively short ex-
perimental rotor.

Conclusions

When a viscous liquid is introduced into a flexible rotor
there are regions of unstable motion. If the rotor motion is
such that the rotor must tilt as it vibrates then there are two
gyroscopic stiffening effects that raise both the lower and up-
per stability boundaries. The first effect is just the usual stif-
fening due to the polar moment of inertia of the rotor. The se-
cond effect arises because the fluid moves so as to create a tor-
que opposing the tilt bf the rotor. Both of these effects act to
stiffen the rotor and raise the effective natural frequency of
the system. The three dimensional theory presented here is
necessary in order to accurately predict stability boundaries
for a clampled-free rotor (or any rotor where tilt is important).
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APPENDIX

The characteristics equation which determines S for the
three-dimensional analysis is equation (46). Written out in
more detail, this equation is

Faaal Foobl Fola_l Falbl Au
Fooaz FoobZ Folal Fole Bo =0
Fmoal Fmobl leal lebl Al

m=1 ,M I=1 ’M
F, moa2 F, mob2 F, mia2 F, mib2 Bl

I=1,M

The following (M + 1] X [M + 1}) matrices are defined

M
Fon =(20~S) Y, a0, Cy HO (1)

n=1

S+Q72 A &
FoanZ(ZQ_S) ([T] t g, + E Zaoncnlﬁlo)
) n=1 =1

Q% + 208~ §? A U
oob2 ={20+3) (—Tzf‘zﬁ"> + (ZQ“S) Cloo + E Z O‘oncnlﬁlo>
n=11=1
Falal =Falal
Fopa =Foyp)

M M
Fmaal = (ZQ—S) O + 6»10 + Z E [o‘mn + 6mn]CnlﬂIo)

n=11=1

Friony =Fpon

Fpar = 1QQ+ SYHW (mx) — meSHP (mr)18,,,
M
+ (29 ) E (amn + an )Cnlml)(lK)
n=1
Fopr = [2Q+ S) HP (mk) — meSHP (mx)18,,

M
+Q20=8) Y3 (g + Byn) Cu HP ()

n=1

[N

S+ 2 ul
mez2=(29_S)[amo+( Q ) Bmo+ E

n=

(o

1

Oy = p(S+ Q2D @, /11 = (S+ Q)2 — (2IC—J) (S + Q)] m,n=(0,M)
Bun = w(S* = QYmnE, Q, /11— (S+ W~ 2iC—J) (S+ Q)] m,n=(0,M)

where Q,, D,, and E, are given in equations (40a-c). The
following (M X M) matrix is also needed

(Conl= [8,n Bl 'm,n= (L,M)
where §,,, is the usual Kronecker delta.

The elements of the [F] matrix are now constructed ac-
cording to the following definitions:

M M
Fooal = (ZQ*S) (1 + oy, + E E aoncnlﬁlo>

n=1l1=1

M M
Foop =(22+S) + (20—5) <a00 + 3y ao,,C,,l,Blo>

n=1 l=1

M
Folal = (29 - S) E Xop C)xlml)(IK)

n=1
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28] ) cus]

F mov2 = F, moa2

208 + 5028 - 83
Foygp = [(——QEf——)HED(me) - (mKS)HS,I)(mK/)](Sml

+00-5) 33 (aue+ [222] .0) i

20° + 5028 - S?
Foipn = [ <—7fh—> HP (mxf) —mxSHP (mxf)] S

+(2Q2 —»s.) f:l <oz,,,,, + [S; Q] ’ B,,,,,) C,,,Hﬁ?)(lx)
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Pipe Bend Analysis by Thin Shell

Theory

J. F. Whatham

Australian Atomic Energy Commission,
Research Establishment,

Sutherland, NSW, 2232, Australia
Mem. ASME

Thin shell theory is applied to pipe bends terminated by flanges or flange-ended
tangent pipes and subjected to any end loading, either in-plane or out-of-plane.
Graphs of flexibility factor versus pipe bend characteristic are presented for in-

plane bending of a wide range of pipe elbows terminated by flanges or short flange-
ended tangents. Experimental results verify the thin shell solutions for in-plane and
out-of-plane bending of a flanged pipe elbow. The capabilities of a computer pro-
gram BENDPAC are also described.

Introduction

The general linear shell equations for analyzing straight
pipes or circular cylindrical shells are well known (Sanders,
1983) and an attempt is now made to present equivalent equa-
tions for analyzing pipe bends or discontinuous toroidal
shells—because of this discontinuity a pipe bend is more akin
to part of a spiral than part of a torus. The pipe bend loading
is by force or moment in any direction on the ends, the pipe
bend being terminated by rigid flanges or tangent pipes.

The equations of Novozhilov (1970) are used because they
represent a consistent linear theory and the reciprocal theorem
holds; that is, the flange-ended pipe bend flexibility matrix is
symmetrical and hence a useful check on calculations
(Whatham, 1982). The review of pipe bend analysis of
Axelrad and Emmerling (1984) indicates that the application
of thin shell theory usually involves some simplifying assump-
tions; no approximations are made here other than those in-
herent in the theory, so the solutions are exact.

Governing Equations

A segment of curved pipe is represented in Fig. 1 by its mid-
dle surface, acted upon by stress resultants to produce
displacements u, v, w and a rotation ¥ about axis u; there are
rotations about the other axes but these do not enter the
analysis.

From the Novozhilov equations we obtain:

(i) Equilibrium Equations

] sin ¢ apP*
— (T3 + M)+ —— (T + M)+ =0
a6 (73 7 0 (T 7 an
d sin 6 ]
—(T? +M}) ———P* +—(8P*) - Q* =0 1
an(”+M”) ; +80( )—¢Q 1)
3% cos 0 sin @ OM*  8Q*
0T ——(8M} MRy -
Uy (6Mg)+ » (T, ) P, o

where P*=Ty+Mpy
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1L roM) @
0[5 g M+ ov |
T} =T,/Et, M} =M, /rEt
cos 6
p=R/r,6=1+

(ii) Stress-Strain Equations

1 yr
T =——(eg+ve,) My

-2 P =Ty et )

Fig. 1

Pipe bend middle surface
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Fig. 2 Spiral pipe configuration

1 /0y sin 0( ow ))
= - 3
S5\ o Vas Y ®

1 du sind 1 a9y
— (o ) +

5r2 \ oy o r 00
1 d%
= +
8 3P 1
1 0 ad
where !//———-——( cos ———W——>
r P dn

Strains A and B require some explanation; they represent the
twist and out-of-plane curvature given to the pipe wall by
warping of the pipe cross-section—iy should be sin ¢ in 8 but
is small. The four strains ¢,, &5, N, 3 completely describe the
distortion of the pipe cross-section and therefore must be con-
tinuous along a stressed pipe; it is more convenient to equate
them than the displacements across the junction of two pipes.

It is interesting that, allowing for the different notation, the
Novozhilov equations are identical to earlier equations of
Love (1944) except in expressions for 7 and 77. Thus, if shear
is zero, as in the pure in-plane bending of a curved pipe ne-
glecting end effects, the Love equations give the same solution

1 yr as those of Novozhilov. Furthermore, in his classic paper,
T:=‘1—_-2*(6,7+V€g) M::TZ_f_T(K”+VK9) Love (1888) had given the 7 eguation of Novozhilov, so,
v (=% overall, the only difference is in the expressions for T%; Love
1 o % had
o 4 Moy=MF =T
Wy Ot e Me=Mi = @) o ]
Tg,=Ty= 20 4
where y= (¢/r)2. +v)
. . . which causes the flanged pipe bend flexibility matrix to lose
(iii) Strain-Displacement Equations symmetry.
1/ ou ' Combining equations (1), (2) and (3), we obtain eight gov-
602_( % +w) erning equations
r
d
1 /8v sin cos 0 —678 =Af Q)
. =——<~—~ u+ w)
or \ dn p o where
1 /du sing 1 dv 0 A,
w’??( P v) T A= =8 x 8 matrix
A, 0
1 ov Y
Am—m— — E=(u/r,w/r,M:, T*, v/r, ¢, P*, O%).
roa6 00 ey ¥, P, Q0"
2
ng—l-—(ﬂ-—- Fw ) Submatrices A, and A,, involving differentials in 6 only,
r2 60 392 are:
Ay
u w .
Ea 7 My T
smG_Vai _cose_w3 0 (1 - )5
0 a0 o
sin @ a sing @ a? 12(1 —v?)
— 95 — - — b — =% 0
o a0 p 00 06? ¥
¥\ @ i a3 v 3? sin ¢ a sin 0 d
~(1 ——>——(5~—) ——<5——5——> LA P,
<+12 a0 \° 39 30 \° 12 ° 52 . Vo ) > Ve ©)
a vy 9 ( ] > v 3 3? > d /sin @ 92 cos 6
§———r — (6 — St — —1{8 — —-——( )— ——(8 +v8
30 12 67 \" 30 12 02 \" 962 0\ o v ) PR
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file://-/-w~v

—_ * *
- 12 P 0
_sing 3 a vy 0 6(1+v)6 0
0 3+y 90 3+y 90 3+
cos 0
-6 0 0
0
14 i<5_a_> _x 9 9 ) v 9 () 5
2(1+2)(3+v) 00 a0 2(1+v)(3+~) 06 a0 34y 00
—y i(a_ﬁ_) ¥ i( ] > sin @ 3 6(6) cos 0
2(1+2)(3+v) o6 a0 20 +v)(3+v) 00 00 p 3+ 00 P

Kalnins (1969) used equations similar to (5) with the same
eight variables to calculate the stresses in a particular pipe
elbow terminated by tangent pipes and subjected to in-plane
and out-of-plane bending. The stress-strain relations were
more elaborate than equations (2) and the govering equations
were solved by step-by-step integration along the pipe with
finite difference equations in ¢. Nevertheless, the solutions ob-
tained compare well with the closed form solutions of the pre-
sent work.

Spiral Analogy

Analyzing a pipe bend under the minimum number of
loadings, to cover every loading case by superposition of solu-
tions and neglecting end effects, is equivalent to analyzing a
spiral tube under the four loadings, F,, M, F, M shown in
Fig. 2. The spiral is conceived as having zero pitch, the turns
being coincident but not interfering with each other.

Each of the four load/displacement combinations is
decoupled—for example, force F, only produces displace-
ment §,—so that the four cases are solved independently; a
pipe bend taken from a quarter of a turn of the spiral would be
loaded as shown in Fig. 3.

Consider the solution to equation (5) as the sum of four
vectors:

E=E+EHE+Ey ©)

where £,=(0,0,0,77,,0,0,PF,0)
éb:(ub/r’wb/r’ ;b7 ;b’vb/r’wbsP;’Ql;k)
E.=(u/r,w,/r,0,0,v./r,y,,0,0)
£q=(ug/r, Wd/r’M;d’ T;d’ Va/rs Y PJs Q)

Vector £, consists of the known elements of the pro-
blem—two stress resultants 7., P—which are in equilibrium
with one of the spiral loadings F,, M,, F or M, The stress
resultant distributions required are the simplest to give the
loading.

Vector £, is a complete set of stress resultants and
displacements; the stress resultants are self-equilibrating, pro-
ducing no net forces or moments on the pipe cross-section,
while the displacements are repeated each turn of the spiral as
in a torus. The vector components are in two groups for their
¢ dependence; u,, /1, w,/r, My, Tr, vary as Th,, and v,/1, ¢,
P}, Qf vary as P;.

Vector £, consists of displacement components which in-
crease with each turn of the spiral. They are compatible with
the relevant spiral end displacement §,, v,, 6 or v but the
strains they generate must be repeated in each turn of the

Journal of Applied Mechanics

spiral. It happens that these displacements do not distort the
pipe cross-section nor do they affect the spiral diameter; the
deflected shape for §, is a series of loops.

Vector £, represents end effects and, like vector £,, consists
of self-equilibrating stress resultants and displacements. All
components decay with distance from the pipe end, satisfying
the equation

ai £4=A L, )
"

Solving Without End Effects
Subtracting the end effects from equation (5)

B e, v i) = A EyHE.
an

Rearranging

(A—I—(%-)Eb+ (A—I;n—)gcz —( —13677— & ®

where I=unit diagonal matrix.

To derive the £, components, we refer to Fig. 1 and note
that the net forces and moments acting on the pipe cross-
section, from the spiral end loading, equal the stress resultants
integrated around the circumference:

F Ma

a o

. ( 6 Q.
FgRsina

In -plane Out-of- pluﬁe

Fig. 3 Spiral loads on a pipe bend
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i s
(F,rsin(a+¢) A F.r . T N
7
—F rcos(ae+¢) Fyr )
—P* sin 84+ Q* cos 0
—~Fr Fr 2r P* cos 0+ Q* sin ¢
< R & =4 =r2EtS < &dﬁ. (9)
M, sin(a+¢) + FR M, 0 P*
— M, cos(a+¢) M, A (M} +T})sin ¢
\F,Rsin(e+¢)—M | (M, = (MF+T}F) cos § J
In matrix form:
2 The components of re th
"ZEtSO Bex df—F (10) e components of £, are then

where B=6X4 matrix operator
x= (M}, T),P*,Q%)
F=(Fr,F,r,Fr,M, M, M,).
The dimensionless stress resultants are divided into two

1s:
parts X=X, 4, an

2m
where SO Bex, di=F/r*Et

2r
SO Bex, d6=0.

The self-equilibrating condition for x,, is easily satisfiedin a
round pipe if x, components are expressed as Fourier series.
As an aside, if the governing equations had been in terms of
variables ¢, kg, M,, T, \, 8, P, Q (Whatham 1981 b) then the
displacement u, v, w, ¥ would have been continuous around
the pipe if

2w
So By d6=0 (12)

where y=(_€g, Ko, }\:B)'

As with vector x,, this condition is easily satisfied in a
round pipe.

From equations (9) the simplest x, components are

T, = (% F,r+M,sin0—M, cos 0) /7’ Et

Pr=(% M,—F, rsin0+F, rcosf)/xr*Et

Ty, =F}sin(a+¢) (V2 —pcosb),
—Mcos(a+¢)sind or M*cosf
P} =F} cos(ae+¢) sinf,

YoM ¥sin(ae+¢) or F*(%~cos 0)

where F*, F* = (F,,
M) /wrEt.

To derive the £, components we again refer to Fig. 1, where
the displacements and rotations 6, 6,, 8., v,, vy, v, represent
rigid body movements of the pipe cross-section; their relation-
ships to the spiral end displacements resemble equations (9)

Fy/arEt and MY, M* = (M,

«?

( yire sin(a+¢) h (’y_\,r“
—varg cos(e+ o) Yy
—’;*Nb Y
. o= T 15)
Sard sinfla+¢)+y*Re b,
—bsrd cos(a+¢) o,
L YiRo sin(a+¢) —5*r¢ J Lo, J

where 62, §* = (8,, 8)/2wrn, vX, ¥* = (v, ¥)/27n, n =
number of spiral turns.
From the geometry of Fig. 1

U ="y —08; sin 0+6,cos §

w,=6,c0s §+8,sin 4

V=08, +7,rsinf—vy,rcosé

(16)

My =07 =0. (13) ¥, =7,sin 6 —v,cos .
LO 1 T T T ' T 1 77T
30 n
20 + N
* i ! <
%= Thin shell theory, ¢ =05
10+ 2 4
I £ = 16400 + 41360+ ?‘50 forh>0.2
f 8 }. 14400+536aZ+q
B f,=a forh <02
6
L v =03
/3 (1-v?
L u=———3“h\"=%ASME
i
z -
1 ) 1 ! N I DU WU O I
0-01 01 o2 05 1 2

h

Fig. 4 Flexibility of pipe bends without end effects
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Table 1 Flexibility factors

(Refer Fig. 4)

v = 0.3 Thin shell theory
n az £ £ Z-o0.01] 005 | 0.1
0.1 273 - 16.523 16.518 16.491 -
0.2] 68.25] 8.2623 | 8.2614 8.2739 | 8.2627 | 8.2082
0.5 10.92 | 3.1287 - 3,1288 | 3.1310 | 3.1375
1.0 2.731 1.6352 - 1.6353 | 1.6359 | 1.6378

Table 2 Straight pipe solutions

| ©- T 2 I e
| o hE el
n= €lr
t ((2+V)”r]—%13+v*®—r52—{:55in9MZZE?V)FM sing -“(::_*IV"T
\%' \':E_E —<2+V)T]-2‘3> |é—zlfgcose “nzzrg cos®
M;] —Y:]Zré?cose %tose
TT’]‘ "l% -%;—Fscose LEMTCOSG
¥ <2+v- %2) —EZTFS os© T‘T_:Ij;—qcose
p* 14+ 6Y(1v+v)) E_Z;:ssine -Bg%ﬂ
Q| -%’% cos©
1 e t1ed) et wrt(1s )

The components of £, are then
u/r=>0}¢ cos(a+¢)sing, ~yiésin(a+¢)(1+pcosd)
or —&*pcosf

we/r=—8)¢p cos(a+¢)cosd, yiosin(a+¢)psind
or —&*¢sind

v./r=5%p sin(fa+¢), —viodcos(a+o)sind
or ¥*¢ (p + cosf)

Vo= —vrpcos(a+¢)sind or F*¢cosé.

Note that by equations (3), the distortion strains ey, kg, Ac»
B, are zero and all strains from £, are repeated each turn of the
spiral.

We are now in a position to solve equation (8). The result of
(A—1(3/d7))E&, is the vector —£./p¢ whose components are
repeated each turn of the spiral; it has only one unknown,
namely the spiral end displacement for the particular loading.
The ¢ terms cancel out leaving equation (8) in § only; there are
eight equations for F,, or M, loading and four equations for
or M loading, with F only involving submatrix 4, and M only
involving A,. Expressing the variables as truncated Fourier
series with appropriate parity, and equating the coefficients of
like terms (Fourier analysis) gives a series of simultaneous
equations which then provide the solution.

Pipe Bend Flexibility Without End Effects

Pipe bend flexibility is a major factor in determining the
forces transmitted by pipe networks and the ASME (1980)
code recommends a formula for in-plane bending which
neglects end effects. The formula has, however, proved effec-
tive on pipe bends contiguous with tangent pipes.

amn
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@ BN+3 In-plane eigenvalues v=03 R/r=5
o BN-1 Out-of-plane eigenvalues N=&  t/r =01

6 T T T T T T T T T T T A T

B \\ 7 .
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n N / )3 |
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Fig. 5 Typical pipe bend eigenvalues

Consider the spiral loaded by M, equivalent to pure in-plane
bending of a curved pipe neglecting end effects; the end rota-
tion is
MR
EI
where flexibility factor faccounts for increased rotation, com-
pared to that from elastic line theory, because the pipe cross-
section flattens. Flexibility factor versus pipe bend
characteristic (# = Rt/r?) is plotted in Fig. 4 with some
numerical values given in Table 1; Poisson’s ratio was
assumed to be 0.3.

When ¢ < 8 and ¢/r < 0.05, the exact thin shell calculations
verify the second approximation formula of von Ké&rman
(1911):

y=f 2mn (18)

_ 14400 + 413642 + 35a*

- 19
U 14400 + 53642 + @* 19

except that

a=+3(1 —»?)/h (Clark and Reissner, 1951)
instead of

a=v3/h (von Karman).

For a > 8, the formula of Beskin (1945) applies
fr=a. (20)

The ASME code effectively recommends equation (20) if we
assume that » = 0.3,

Most pipe bend research concerns in-plane bending because
flattening of the pipe cross-section has such a significant effect
on bend flexibility and stress distribution. Now consider the
out-of-plane loading of the spiral by force F; the resulting
displacement, by both thin shell theory and elastic line theory
neglecting the direct shear component, is

- FR?
o=27n
™ar,

G=E/2(1+v)andl, = 21

there being no flattening of the pipe cross-section. For small
radius bends (R < 5r), the thin shell deflection would be ex-
pected to exceed that given by equation (21) because of the in-
creased importance of the direct shear component, but, in
fact, the thin shell deflection was less (Whatham, 1981a).

Straight Pipes

The solutions for straight pipes with various end loads are
given in Table 2; the pipe cross-section remains circular for all

1)

where
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Fig. 6 Flexibility versus tangent length

loadings, despite the fact that F, and M produce a cos §
distribution of hoop strain, so that beam theory applies. The
moment of inertia of a round tube is exactly
I=7r3t(1+~/4) (22)
but solving the problems by thin shell theory gave the slightly
different expressions in the bottom row for apparent moments
of inertia.
In the case of F, loading, the deflection has a shear compo-
nent which thin shell theory gave as
rF;
. 23
i (23)
This compares with a finding by Cowper (1966) from a
strength of materials analysis, if I = 7r’t

rF,

2ET

6shear = (2 + V)"’

24

6shear = (4 + 3”)"7

Incorporation of End Effects

We now turn our attention to the pipe bend terminations.
Having obtained particular solutions to equation (8) which
neglect end effects, we add sufficient complementary solutions
from the homogeneous equation (7) to satisfy pipe end condi-
tions. Vector £, is a function of 8, » but, in seeking a separable
solution, let

Ea=E(0) eM (25)
Substituting in equation (7)
AE)=0£(0). (26)

This is an eigenvalue problem; the variables were expressed
by Fourier series truncated to N terms and, by Fourier
analysis, 8N + 3 equations were obtained for in-plane F,, or M
loading or 8N — 1 equations for out-of-plane M, or Floading;
the resulting equations have been published (Whatham, 1983).
Eigenvalues and eigenvectors of equation (26) are all complex
and can be obtained by a standard subroutine such as
EBOSAD (Hopper, 1973); a typical eigenvalue spectrum is
shown in Fig. 5 where only those eigenvalues with negative
real parts are required since end effects decay with distance
from the end.

The three eigenvalues with zero real parts arise from the

1781 Vol. 53, MARCH 1986

components of u, v, w, ¢, which displace the pipe cross-
section as a rigid body. Had these components been neglected,
or the governing equations written in terms of variables ¢,, xy,
M,, T,, \, 8, P, Q, the three eigenvalues would not have been
generated but then the rigid body displacements would have
had to be calculated separately for the pipe bend deflection.
Combining eigenvectors for the total end effect

J
£,=Re Y, C; £,(0) eV @n
j=1

where
{ZN (in-plane loading)

- 2N — 1 (out-of-plane loading)

C, =coefficient for jth eigenvector, determined from the
end conditions

Since C;, £;(0) and ; are all complex, the end effect is
described along the pipe by Fourier series with exponentially
decaying coefficients.

Two curved pipe terminations are considered—a rigid
flange and a tangent pipe. To represent a rigid flange, the
distortion strains e, k5, A, 8 are made zero at the pipe end
whereas, for the tangent pipe, the stress resultants and distor-
tion strains are equated across the junction and thus values of
C; are obtained; these end conditions are discussed further by
Whatham and Thompson (1979) and Whatham (1982).

Pipe Bend Flexibility With End Effects

Flexibility factors, derived for a typical pipe elbow and U
bend with equal length flange-ended tangents, are plotted ver-
sus tangent length in Fig. 6. Obviously the shorter the
tangents, the greater is the restriction to pipe cross-section

- flattening and the less is the flexibility. For the pipe dimension

ratios shown, long tangents reduced the flexibility of the
elbow and the U bend by 11.5 and 5.5 percent, respectively,
compared to their flexibilities if end effects were neglected.
Flexibility factors are plotted versus bend characteristic / in
Figs. 7 and 8 for pipe elbows with flanged ends or with short

. (L/r = 1) tangents with flanged ends under in-plane bending;

additional graphs for other tangent lengths on U bends as well
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Fig. 8 Flexibilty of short tangent elbows

as pipe elbows have been presented (Whatham and Thomp-
son, 1979) and values tabulated (Whatham, 1982-1985).

Verification by Experiment

In-plane and out-of-plane bending moments were applied to
a cast steel pipe elbow of 125 mm bore, 375 mm radius of cur-
vature and 12.5 mm wall thickness, which had flanges of 400
mm diameter and 90 mm thickness to provide sufficient stiff-
ness at the ends.

Deflections matched those calculated by thin shell theory
but stress distribution is a more sensitive indicator. Hoop
stresses derived from strain gauge measurements taken on the
outer surface midway between the elbow ends, and thin shell
solutions with and without flanges, are plotted in Figs. 9 and
10; they verify the analysis and show the significant stress
reduction effected by the flanges. ’

The BENDPAC Computer Program

A computer program package, BENDPAC, written in the
FORTRAN IV and ASSEMBLER languages for an IBM3033
computer, is available from either the Australian Atomic
Energy Commission or the National Energy Software Center,
Argonne National Laboratory. Pipe bends with any loading or

Journal of Applied Mechanics

end condition shown in Fig. 11 may be analyzed for overall
flexibility, stresses and cross-section distortion. Wall thickness
should be between one and ten percent of the pipe radius, or
may be as high as thirty percent for pure in-plane bending
(Whatham, 1981a), but there is no restriction on the bend
radius, bend angle, or tangent length; the interactions of ef-
fects from opposite ends of the curved pipe and tangents are
taken into account. As far as computation is concerned, a
bend angle may be several hundred degrees; this would be
used, for example, if examining the end effect on a curved
pipe without interference from the opposite end.

Tables have been published (Whatham, 1982-1985) giving
the complete stress state, the cross-section distortion and the
flexibility of a range of pipe elbows (R/r = 2,3, 5and ¢/r =
0.01-0.1) with flanged ends under in-plane or out-of-plane
forces or bending moments, also with tangent pipe ends under
in-plane or out-of-plane bending moments only,

Conclusions

Equations and solving procedure have been presented for
obtaining thin shell solutions in closed form for pipe bends
subjected to four particular end loadings, but, by superposi-
tion, solutions can then be obtained for any force or moment
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loading on the ends, either in-plane or out-of-plane. The
method of including pipe bend terminations, consisting of
rigid flanges or tangent pipes, was then described and the
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stresses, calculated in a flange ended pipe elbow from in-plane

and out-of-plane bending, were checked by experiment.
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Flow-Induced Vibrations Caused
by Roughness in Pipes Conveying
Fluid

This paper presents a theoretical investigation of self-excited vibrations of pipes
conveying fluid due to roughness. A model of a laminar friction, considered as the
excitation mechanism, is based on Prandtl’s universal velocity distribution for the
turbulent boundary layer and on Nikuradse’s experiments. The analysis has shown
that the friction characteristic has a negative slope in a certain range of fluid
velocities. This range is a function of pipe roughness and is shifted to lower flow
velocities due to roughness growth during pipe operation. It was found that the
differential operator of a piping loop motion based on the nonlinear restoring
characteristic coincides with the differential operator of Duffing’s equation for the
hardening system. The energy method was used to obtain the approximate closed-
Sorm solution for the amplitude of steady self-excited vibrations. The unstable
response with jump phenomena can appear due to interaction of small turbulent
disturbances in conveying fluid with a given nonlinear system.

A. Shulemovich

New York, NY
Mem. ASME

Introduction

Flow-induced vibrations of pipes conveying fluid have been
studied by many investigators. In the extensive review papers
of Chen [1, 2] there are numerous references pertaining to this
problem.

The particular interest of the present study is aimed at the
self-excited vibrations of piping loops conveying fluid, since
the mechanism of such vibrations is still not well understood.
Sustained axial vibrations with perceptible amplitudes (Fig. 1)
can be observed when a certain flow velocity threshold is
exceeded. A given problem may be classified as parallel-flow-
induced vibration of cylindrical, elastically supported
structures subjected to internal flow [2].

Three excitation mechanisms are usually adopted for the
analysis of flow-induced vibrations, namely: self-excited
vibration, parametric and combination resonances, and
forced vibrations. The self-excited vibration mechanism for
axial flow was considered by Burgreen et al. [3], Benjamin [4],
Quinn [5, 6] and by other researchers [, 2].

The parametric and combination resonances and forced
vibrations with periodically disturbed flow were considered by
Hopkins [7], Y. N. Chen [8], S. S. Chen {9], Ginsberg [10],
Paidoussis et al. [11, 12, 13, etc.], and by many other in-
vestigators for pipes with different boundary conditions and
different fluid flows: steady flow, pulsating flow and two-
phase flow.

The limited interest in the self-excited vibration for pipes
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subjected to axial flow may apparently be accounted for by
the relatively small amplitudes caused by this type of flow-
induced vibration. M. P. Paidoussis [14, 15] examined a
““tentative’’ analytical model of Quinn and found that a flow-
induced damping was not taken into account and concluded
that the forced vibration mechanism is the most appropriate
model for the transverse vibration of pipes immersed in axial
flow.

However, the self-excited mechanism combined with other
excitation can apparently play a substantial role in the ap-
pearance of considerable axial vibrations for piping loops
conveying fluid (Fig. 1).

The sustained flow-induced vibrations of piping loops and
elements of the attached equipment are often accompanied by
hysteresis effects (jump phenomenon). The jump
phenomenon was observed, for instance, for the upper parts
of actuators of regulating valves on feedwater lines (NSP
Prairie Island Nuclear Power Plant) and for a main steam line

N
/ O\
Ty ‘ \ 1,
TFlow L.W—L

Fig. 1

Model of the piping loop
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(Nebraska Cooper Nuclear Station) with average axial am-
plitudes in the range 4-7 mm.

The jump phenomenon is known for the forced vibrations
of lightly damped nonlinear .systems. If the amplitudes of
excitation are small, the hysteresis effects, owing to intrinsic
structural damping, do not appear. However, the hysteresis
effects may appear if the self-excited mechanism, neutralizing
structural damping, is involved in the excitation.

This paper deals with a model of the self-excited vibration
mechanism focused on the fluid-roughness interaction when
Reynolds numbers are very large (e.g., for the main steam line
of the Nebraska Cooper Nuclear Station, Re > 3 x 107). For
a given model the aforementioned flow velocity threshold is
apparently a function of the interaction between the pipe
surface and turbulent flow with the laminar sublayer.

The first mode of vibration (the long span of length /;
moves like a rigid body) will dominate in the dynamic motion,
and only this mode is considered to be important for
engineering purposes.

By analogy with a belt friction system, which exhibits self-
excited vibrations, it can be shown that the laminar friction
characteristic has a negative slope in a certain range of fluid
velocities. In view of this, it has to be noted that all existing
empirical and semiempirical theories have generally been
developed for determining the head loss value. By
Boussinesq’s introduction [16] the turbulent resistance is
expressed in analogy with the coefficient of viscosity in
Stokes law for laminar flow through the so-called ‘‘ap-
parent’’ or ‘‘virtual”’ (also ‘‘eddy’’) viscosity. The head loss
consisting of laminar and turbulent frictions is usually
calculated using a dimensionless resistance coefficient. The
latter one is obtained from the experiments of Nikuradse [17],
Bauer and Galavics [18], and other researchers. For instance,
a model of self-excited vibrations proposed by Quinn 5] is
based on the use of the total head loss. However, since
laminar and turbulent resistances are different in physical
nature, it is useful, for better understanding of self-excited
vibrations caused by roughness, to consider them separately.
Really, the laminar resistance is frictional and under certain
conditions can act opposite to the dissipative forces of the
piping loop. In turn, the turbulent resistance (uniform flow
without fluctuations), as it will be shown below, interacts with
the restoring elastic forces of the piping loop and, in case of
steady vibrations, is proportional to the static displacement of
the piping legs.

Self-exciting vibration occurs in an unconservative
mechanical system if the damping resistance is balanced or
exceeded by forces from some uniform source of power. For
the model under consideration, the laminar boundary
sublayer created by fluid flow represents such a source and
under certain conditions can convert the mechanical system
into a conservative one.

A diminution of the laminar friction can apparently be
explained as the result of a decrease in the laminar sublayer’s
thickness with an increase of the flow velocity and subsequent

interaction between the conveying fluid and the rough surface
of the pipe. As was shown by Nikuradse’s measurements, the
velocity gradient near a rough wall is less steep than that near
a smooth one. Actually, this effect originates in pipes con-
veying fluid when the thickness of a laminar sublayer becomes
less than the height of protrusions. The viscous sublayer finds
itself ““in the shadow of protrusions’’ and practically ceases to
exist. Thus a growth of the protrusion’s height during
operation or an increase of the flow velocity may eventually
lead to the aforementioned phenomenon. This tentative
model of the self-excited vibration mechanism based on the
fluid-roughness interaction is believed to be new.

After the onset of self-excited vibrations, the amplitude
increases until some nonlinear effects limit any further in-
crease. The nonlinear stiffness of piping loops originated by
geometric distortions of the elastic model is considered in the
capacity of the nonlinear effect. Asymptotic methods were
used for the analysis. Although for the pipes in operating the
data about damping and roughness values are questionable,
the theoretical results can be derived in a form which allows
one to determine all parameters of self-excited vibrations
caused by roughness with an accuracy sufficient for
engineering practice.

Laminar Friction in the Rough Pipe

If Reynolds numbers are large, the flow in pipes conveying
fluid may be treated as a turbulent flow with a laminar
sublayer. The shearing stress consists of a laminar (viscous)
contribution 7, and a turbulent contribution 7,. '

To=Ty+ 7,

7, denotes the shearing stress at the wall,
The viscous contribution in analogy with Stokes’s law for
laminar flow is introduced as

T, =pudu/dz

Here u, u, and z denote viscosity, fluid velocity and
distance from the wall, respectively.

For the explanation and analysis of the self-excited
vibration mechanism, it is important to conjecture that
feasible axial motions of the pipe with relatively small
velocities do not have any influence on the velocity profile in
the turbulent layer. All interactions occur within the laminar
sublayer, and an analysis of the laminar stress behavior
during transition from a hydraulically smooth regime to a
completely rough regime [19] may ascertain the assumed
analogy with the belt friction system.

The velocity distribution in the laminar sublayer is linear to
a good degree of approximation [19] and, therefore

7,(2=0)=17,(2=0) =pu(z=48)/6 )
Here 6 denotes a thickness of the laminar boundary sublayer.
The universal logarithmic velocity distribution from

Prandt!’s theory for large Reynolds numbers agrees well with
experimental data within the turbulent boundary layer and

Nomenclature
Y = 2.5Iné/k,—B
7, = laminar (viscous) con- n = v Kk/v w = frequency
tribution T = 3.14, .. © = phase angle
7, = turbulent contribution ¢ = angle 2
7o = shearing stress at the wall e = P/EI g(A) = j Sf(xXp) xdt
= viscosity £ = s/l °
6 = thickness of the laminar N = 1203EL/P o« = small, positive parameter
boundary sublayer ¢ = 1*/7.984(EI)? B = frequency of the stationary
v = kinematic viscosity of the L = symbol of summation random excitation in the
conveying fluid X = hg/m : neighborhood of
p = fluid density wh = Kg/m ¥ = phase of excitation
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can be used to compute the velocity u(z=24) at the top of the
laminar boundary sublayer. Schlichting [19] developed,
depending on the nature of the particular roughness, the
logarithmic velocity distribution which is represented in the
following form

u=v,2.5Inz/k;+B) 2)
where
ky=sand roughness height (average height of
protrusions)
B=B(n)="function of the roughness Reynolds number,
n=v,ks/v

v=kinematic viscosity of the conveying fluid
v, =friction velocity at the wall, v, =(7,/p)""?, (o-
fluid density).

Equation (1) combined with equation (2) gives

v
= "5* (2.5 Ind/k, + B) 3)

Equation (3) can also be written in the following form
k2o, fpv=k,q/ “

where
Y=2.51né/k;+B

B and é/k, are functions of the roughness Reynolds numbers.
The function B was plotted by Schlichting [19] in accordance
with Nikuradse’s experiments (Fig. 2).
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The effect of wall roughness on the thickness of the
boundary sublayer was also deduced and plotted by Rotta [20}]
from Nikuradse’s experiments on flow through circular pipes
(Fig. 3(a)). For convenient computation this curve was rebuilt
as shown in Fig. 3(6). Equation (4) was plotted as a function
of the Reynolds number 7 in semilogarithmic scale (Fig. 4). As
can be seen, the “‘crisis of the laminar friction’’ occurs when
17=29, i.e., in the transition region. The slope of the viscous
shearing stress takes varying negative values in the range
=29 to 38, and the onset of the self-excited vibration may be
expected in this range. The viscous shearing force F, induced
by the fluid flow may be defined as

FS=7'USIL7

where

S, = active internal pipe surface, S, =27R/; (Fig. 1)
R =internal pipe radius

For the laminar boundary sublayer, the friction velocity can
be expressed in the form of [19]

v, =2(wi/R)"2 )

where i denotes a mean velocity of the flow.
Using equation (5) and 5 =29, the threshold flow velocity 4,
corresponding to ‘‘crisis of laminar friction’’ can be found as

i, =210Rv/k? 6)

The conformable critical Reynolds number is Re =420R?/k2.

All of the aforementioned equations and relationships are
based on the roughness used by Nikuradse with sand of
maximum density. There is a correlation between the real
roughness of commercial pipes and the equivalent sand
roughness, for instance, that was plotted by Moody [21] and
other researchers. Apparently, these experimental results are
related to pipes used for industrial processes without intensive
corrosion and deposition of chemical components at the pipe
walls.

As can be seen from Fig. 4, within the region of the
decaying laminar friction, equation (3) can be approximated
for engineering applications by the following

T, = NCOSW )]
where
N=1,100ur/k%, w=0.1745(n—29)
The approximation in form of equation (7) is in tolerable
agreement with equation (3) in the range »=29 to 38, and is
convenient for further analysis.
Equation (7) will be used as a characterization of self-
excited vibrations. In view of the fact that apparently neither

the logarithmic velocity distribution nor any other simple
relationship can adequately describe velocity in the immediate
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neighborhood of the wall (6<k,, z= 6) some deviations from
equations (3) and (7) may be expected and further ex-
perimental and theoretical work for more accurate description
of the laminar friction behavior is required. However, it
seems questionable that reliable quantitative results can be
achieved. The general obstacle is that due to irregularities of
the wall the viscous flow in the hollows between protrusions is
not predictable. Nevertheless, for the complete rough regime,
¢, .. the viscous sublayer practically ceases to exist, while
the flow in immediate proximity to the wall consists entirely
of eddies, generated by the flow around the individual
protrusions’’ [22}. Thus, equation (7) reflects qualitatively the
existence of decaying laminar friction and can be used for the
explanation and understanding of the axial self-excited
vibration mechanism due to roughness in pipes conveying
fluid.

Nonlinear Stiffness of the Piping Loop

The piping loop contains two legs elastically deformed
during axial motion of the long span (Fig. 1). The stiffness of
the legs can be considered using the static model depicted in
Fig. 5. A similar problem was solved in [23].

The general differential equation of the beam elastic curve
is

2

v -3/2
[1 +(dv/dy) 2] =M/EI
dy?
M and ET denote a bending moment and a flexural rigidity of
the leg, respectively.
It is seen from Fig. 5 that M/EI=d¢/ds, dv/ds=sin¢g, and
one can show that

12
d*v/ds? = [1 - (dv/ds)z] M/EI

Taking into account the shift of the point B during
deformation of the leg, the bending moment is given by
M=—P(yp—y)+Mj;.

Mp = constant moment, providing zero angle at point B.
The differential of the value yz —y is

172
dscosp=ds [1 - (dv/ds)z]
Integrating from sto/
! ~12
Y5 ——y=S [1— (dv/ds)z] ds
5
Finally, the differential equation of the elastic curve may be
written as
d*v -1/2
2 [1 - (dv/ds)z] =

P i 172
_EIS [1—(dv/ds)2] ds+Mpy/El (8)

The nonlinear equation (8) may be solved by a perturbation
method. Representing the binomials of the equation (8) as
expansion series

v” [1 +0.5(' ¥ +0.375(w ) + . .. ] =

oo ©
=— —S [1—0.5(0')2-—0.125(U’)4— e ]dS+MB/EI

El Js

Here, v’ =dv/ds, v" =d*v/ds*. The solution of equation
(9) may be found in a power series of the parameter e

(10
The parameter e=P/EI corresponds to the dimensionless

parameter PI?/EI<1,
Introducing solution (10) into equation (9) and collecting

U=€U0+€2U1+€3U2+ o e

184/ Vol. 53, MARCH 1986

all terms of not higher than the fourth order in e gives the
equation

e + vl + v+ vy +0.56 v (v,) 2 +0.5¢4(w,) 2ol +
+etvlvivl= -—eS: [1 —0.56* ()2 - € v;v,;] ds+eMy/EI
"The constant moment M » can be represented as
My= E ' My
i =0
Equating the terms of equlal order in ¢ it can be found that

v)=s~I+M,/P
v, =0

:
vy +0.507(v,)? =O.5S (vy)*ds+M,/P

| 1n
ViV V(v = S v,v1ds

Since v, =0, it is obvious that v; =0. The first equation of

the system of equations (11) gives after integration
v,=0.55* - Is+ M, s/P+C,

v, =5/6—0.5ls* +0.5M,s*/P+C s+ C,

where C,, C, = integration constants.
For boundary conditions: s=0, v,=0, v, =0; s=1, v, =0,
the solution (12) may be written in the form of

V,=P£(0.25-£/6), v, =0.512E(£-1)
E=s/1

The third equation of the system (11) with regard to (13) is
as follows:

vy=—0.125(s— 1.5/) (s* - 6Is* + 91°5%)

(12)

(13)

/
+O.125S (s* —6Is® +9125%)ds + M,/ P
5

After analogous operations the second approximation gives
v;=—0.125£°(0.85 —4.5£% +5.25£% — 1.8£% + 0.28°)
v, = —0.,0625£207(0.85—2.25E2 + 2, 183 - 0.68* +0.067£°)
(14)
Thus the total displacement at the point £ =1 may be ob-
tained by combining the solutions (13) and (14)
vy =PI /12EI— P*' /98.51(EI)? (15)

The first part of the solution (15) represents a well-known
linear solution of the given problem and the second one
represents a small nonlinearity of the displacement.

In order to analyze self-excited vibration, the solution (15)
has to be expressed as P=P(vg). It can be done again by
means of the perturbation method.

The solution (15) may be presented as

P—Pi=)\ (16)
Here

N=120,EI/P;¢=1*/7.984(EI)?

The solution of equation (16) may be found in form of the
series

P=P,+ P, +P,+ ... amn
“ Substituting the solution (17) into equation (16)
P+ (P + PP+ oo =P+ P+ 8P+ .. )=\
and equating terms with equal power of ¢
P,=\ P, =P}=N\, P,=3P:P =3N (18)
. Therefore
19

P=x+ N
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It has been noted that A may be represented as
)\=KUB
where K = stiffness of the linear system. Hence solution (19)
is
PZKUB + §‘K3 U%} E
and represents the resistance of the single leg corresponding to

the displacement vp at point B. For a given piping loop with
two legs

P=K; +nyv},
Ky=K, +K;, ny=0K} + K3

where K|, K, = stiffness of the first and second legs,
respectively. The coefficient ny in equation (20) is a small
quantity.

(20)

Self-Excited Vibration of the Piping Loop

The equation of the piping loop motion with respect to the
solution (20) may be written in the following form

mx+cx+Kex+ngxd = F(4,i)

(1)
Here:
c=damping coefficient
m =mass of the piping loop’s longer run of length /;
(Fig. 1)
u =relative sliding velocity, ¥=v, —x

F(u,d) =induced force
and the dots above a letter indicate the derivatives with respect
to time.

At rest, the induced force F(u, #) equals the head loss and
the static displacement x, may be derived from the equation

KExo+n,;x3=F(u')=Sp'rv(v*)+F,(u) 22)
where

F(u) =head loss, calculated, for instance, with the use of
the Darcy equation
F, (u) =turbulent component of the head loss

The induced force F(u, ) may be presented as
F(u,u)=S,7,(d) +F, (1) (23)

For small oscillations of the relative sliding velocity # the
friction force S,7,(#), induced into the pipe, may be ex-
panded in Taylor’s series as

~ dr,(v,) . 1 dzrv(v ) .
S =S [ R L
7, () =S, |7, (v,) B rms, 2 AP,
1 dy(v,) ]
—— e r ¥y L
6 " difg,, @4
Substituting the expression (24) into equality (23)
o _ dr,(v,) . 1 d*r,(v,) .
F(u,i) =F(i)—S [#x— — e 52
v d =y, 2 dbﬂ(zi:u.)
+ i .M)&J - .. ]
6 dﬁa(u—=v‘)

Introducing a new variable x; =x—Xx,, taking into account
equations (1) and (7) and assuming that 3ngx,x, (X, +x,)is a
negligible quantity (x, <max x,)

R+ wlxy +xx3 = Gf (X)) (25)
where
wi=Ky/m, x=ny/m, G=0.1745S,Nk, /mv,
f(x;)=x,sinw—x,¢/mG—0.0875x2 k,cosw/»
—0.0051x%7 kZsinw/»? + . .. (26)

Equation (25) may be solved by different methods: Ritz

Journal of Applied Mechanics

method, perturbation method, Kryloff and Bogoliuboff’s
method, etc. In seeking a steady-state solution, the energy
method can be used with the same efficiency, but with a
simpler procedure. The energy method is based on an
assumption that friction forces have no influence on the shape
of the mode of vibration and, therefore, the solution of
equation (25) may be found in the form of the solution to the
Duffing’s equation for the hardening system.

The solution to the Duffing’s equation (27) may be derived
by Struble’s method [24] in the following form

x;(t) =Acos(wt—0,)

x A’ 2 2
+ (1 —21xA%/32w%)cos3(wt — 6,) —
32w2
—x2A%cosS(wt —0,) /1,024 +0(c’) (28)
w=w,(1 +3xA4%/8w? ~15x2A%4/256w) + 0(e*) 29)

O, = phase angle.

For a whole period of vibration, the net work done by
inertial and elastic forces equals zero and, hence, the net work
done by the friction force also equals zero. Therefore

2n/w
aay={"" rotohar=0 (30)

Substitution of the function f(x,), i.e., equation (26), and
x{(t) = Acos(wt—6,) into equation (30) and subsequent
integration give a first approximation for the amplitude of
self-excited vibrations

_16.2» [ sinw—c/mG] 172
)

It is self-evident that equation (31) is valid only in the range
sinw=c/mG.

Since the parameter x is assumed to be small, the
relationship (31) represents the amplitude of vibrations with
accuracy sufficient for engineering applications.

The highest feasible amplitude is (o= w,)

A=16.2v/kw, (32)

The numerical example can be presented, for instance, for
the main steam line (Nebraska Cooper Nuclear Station).

@31

sinw

steam: temperature 295°C (586K), pressure 0.8_16
.106kg/m?, corresponding kinematic viscosity
»=0.485-10"% m?/s

pipe:  inside diameter 0.61m, £,=0.001m, w,=0.3 Hz,
Re, =3.9-107

Using (32), max A = 4.2mm. It can be shown that
da(A)/0A<0

and, hence, in accordance with Liapunov’s theorem [25], the
regime x,(¢) =Acoswt with amplitude of vibration given by
(31) is stable.

Hitherto the flow was considered to be uniform without
disturbances whereas the real turbulent motion contains very
irregular fluctuations. A concise survey of experimental data
pertaining to the measurements of turbulent fluctuations is
given in [19]. Although the fluctuations of the pressure and
velocity do not exceed several percent, they may have a
substantial influence on the behavior of the system.

The irregular fluctuations presented in the form of random,
wide-band input are to be superimposed on a given nonlinear
self-oscillating system.

Since a system under consideration with single degree of
freedom acts as a narrow bandpass filter, the governing

equation may be written in the form
X; +wix; = ag(x,)+ Qcos(Bf+v) (33)

where
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o =small, positive parameter

QO =random amplitude of a given harmonic excitation

B=1frequency of the stationary random excitation in the
neighborhood of w,

v = phase of excitation

g = function specifying the nonlinearity of the system and
stipulating the existence of self-excited regimes. In the
given case g =Gf (x,)— xi.

The deterministic analysis of equation (33), using Kryloff
and Bogoliuboff’s procedure, has been made, for example, in
[26]. The response curve of this systém is typical for a lightly
damped, nonlinear system with peculiar hysteresis effects
(Gump phenomena) which appear with deviations of the
frequency of the excitation.

The survey of applications to random excitation of this
system is available, for instance, in [27].

The families of response curves may be calculated for
different levels of the excitation.

Discussion and Conclusion

A tentative mathematical model of flow-roughness in-
teractions, based on Prandtl’s universal velocity distribution
and on Nikuradse’s experimental data, has been employed for
the explanation of self-excited vibrations of piping loops
conveying fluid. The existence of the negative slope for the
friction characteristic gives every reason to assume an analogy
with a belt friction system. A mechanism of self-excited
vibrations of the belt friction system is well understood, and a
theoretical investigation has been carried out in a similar
manner.

Derived approximate closed-form solutions allow us to
predict the onset of self-excited vibrations and the steady-state
amplitude.

This study shows that the height of protrusions and
kinematic viscosity of the conveying fluid play the leading
part in the proposed mechanism of self-excited vibrations for
a piping loop. In general, the effect of increasing the con-
veying fluid temperature is to decrease kinematic viscosity
and, hence, to decrease the threshold flow velocity #,. The
effect of the roughness growth during pipe operation is also to
decrease #,.

Analytical results for steady-state regimes are in good
agreement with the observed average amplitudes of
oscillations.

An analysis of the system geometric nonlinearity has been
undertaken for the explanation of attendant hysteresis effects.
An additional excitation caused by turbulent disturbances
brings a given nonlinear system to the irregular transition
motions (jump phenomena). Due to complexity of the in-
terpretation of experimental data, the nonlinear response of
systems such as this is often treated as a linear one con-
taminated with noise. However, the importance of nonlinear
components for the proper mathematical modeling of real
systems is realized, and the method recently proposed [28] can
apparently be wuseful for recognizing the structural
nonlinearities.

The important role of the self-exciting mechanism is, also,
decreasing structural damping, to extend the resonant peak
further up the free vibration backbone, equation (29).

Thus the anticipated responses of the system under con-
sideration are: steady-state, self-excited vibrations with
relatively small stable amplitudes for the flow without con-
siderable fluctuations, and unstable forced vibrations ac-
companied by jump phenomena due to interaction of the self-
oscillating system with random excitation for the flow with

186/ Vol. 53, MARCH 1986

severe turbulent disturbances. The peak amplitudes of the
latter ones can be much greater than amplitudes of self-
excited vibrations,

In spite of relatively small amplitudes, the steady-state self-
excited vibrations can cause malfunctions and fatigue failure
of piping systems and attached equipment.

‘A given tentative model is not apparently the only one
which describes the dynamic behavior of piping loops con-
veying fluid. Similar responses can also be simulated based on
other suitable models.
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tube of circular cross section is examined. It is found that the relevant axisymmetric
disturbances in the oscillatory flow are more stable (i.e., have larger decay rates)
than the axisymmetric disturbances of the mean flow alone. This result holds for
values of the cross-sectional average oscillation velocity amplitude at least as large
as seven-tenths the average mean-flow velocity amplitude. Although the in-
stantaneous velocity profile contains generalized inflection rings for a substantial

portion of the oscillation period, the disturbances do not become instantaneously
unstable at any time, even for very low frequency oscillations.

1 Introduction

The flow in a tube of circular cross section which is driven
by the combination of a steady and a sinusoidally time-
varying axial pressure gradient is called oscillatory Hagen-
Poiseuille flow. Such a flow has many important applications.
Hence it seems important to examine its stability charac-
teristics.

It is well known that steady Hagen-Poiseuille flow is stable
to infinitesimal disturbances for all values of the Reynolds
number (Salwen and Grosch [1]). It would be interesting to
know what the effects of temporal oscillations are on these
stability characteristics. The simpler case of plane Poiseuille
flow has a critical value of Reynolds number above which the
flow is unstable. It was shown by von Kerczek [2] that the
sinusoidal oscillation of this flow stabilizes it for a range of
values of dimensionless frequency €. This range of values of
is less than four times and greater than one-tenth the value of
the frequency w, of the unstable disturbance mode of the
underlying mean flow. However, for very low-frequency
oscillations (2 < ,/10), plane Poiseuille flow is slightly
destabilized. In contrast to plane Poiseuille flow, it was shown
in reference {3} that at low values of Reynolds number plane
Couette flow is rendered less stable, although not
destabilized, by superimposed small-amplitude flow
oscillations driven by the channel walls. Plane Couette flow is
similar to Hagen-Poiseuille flow in the sense that it is also
stable to infinitesimal disturbances at all values of the
Reynolds number (Davey [4]).

The superimposed temporal variations of the pressure
gradient in oscillatory Hagen-Poiseuille flow causes the in-
stantaneous velocity profile to develop inflection rings at
some radial location within the tube during most of the
oscillation cycle. In axisymmetric flows, generalized in-
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flection rings (for satisfying the Rayleigh criterion) occur
when

-— =0 (1)

where U is the basic flow velocity and r is the radial coor-
dinate. Intuitions developed from the linear stability theory of
steady flows suggests that the oscillatory flow is highly un-
stable at least during the time interval in which the inflection
rings are present. In particular, this is expected for the cases
of low frequency imposed oscillations.

Four experimental investigations (Gilbrech and Combs [5],
Ramaprian and Tu [6], Sarpkaya [7], and Yellin [8]) to
measure the effects of low frequency flow oscillations on the
transition characteristics of Hagen-Poiseuille flow have
shown that these oscillations tend to suppress the development
and growth of turbulent spots. The linear stability theory has
no known relationship to the mechanics of transition to
turbulence because it predicts that steady Hagen-Poiseuille
flow is completely stable. However, the experiments do
suggest that the oscillations enhance Hagen-Poiseuille flow’s
stabilty. A measure of this enhancement of stability is defined
here as the relative change ¢ in the decay rates of disturbances
due to the imposed flow oscillation.

It is worthwhile to note that von Kerczek and Davis [9]
show that the Stokes layer by itself is not unstable. Similarly,
the linear stability theory shows purely oscillatory pipe flow
to be completely stable (Yang and Yih [10]), although such
flows do exhibit in experiments a kind of intermittent tran-
sition between laminar and turbulent flow (Hino et al. [11]).

The research described in this paper deals with the stability
of low-frequency, sinusoidally modulated Hagen-Poiseuille
flow. Only axisymmetric disturbances are analyzed. The full
time-dependent linear stability theory is analyzed by a
combination of numerical and high order perturbation
methods. The quasi-steady approximation to the full stability
theory is also examined numerically. Sections 2-5 contain,
respectively, the formulation of this stability problem; the
methods of solution of this problem; a discussion of the
computational results with a view toward interpreting the
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Fig. 1 Basic flow velocity profiles. HPF denotes the steady-flow
profile. For the unsteady profiles, 8 = 5.8,A = 0.5

experimental results of references [5-8] and some concluding
remarks.

2 Formulation

The flow of a homogeneous incompressible fluid through
an infinitely long tube of circular cross section is considered.
This flow is forced by the combined steady and unsteady axial
pressure gradient

a—aP?O = =p(Py+Qy coswl) )
where p is the fluid density, z is the axial coordinate, ¢ is time,
and  is the angular frequency. The flow is described in
cylindrical coordinates with r and 6 denoting radial and
azimuthal coordinates respectively. The radius of the tube is
denoted by a and » is the kinematic viscosity of the fluid. The
problem is made dimensionless by the length scale a, the
velocity scale U, = P, a’/4», and the time scale a/U,.
Henceforth, all variables are assumed to be appropriately
scaled.

The exact solution of the Navier-Stokes equation describing
oscillatory Hagen-Poiseuille flow is

V=(0,0, U(r,) (3a)
P=—2z(1+ AcosQ¢) (3b)
where
U(r,t) =U, (r) + AU, (r,t) (4a)
U (ry=1-r (4b)
U, (o) =Re{i[%%%) ~1]en] o)
A=0Q,/P, (4d)
Q=aw/U, (4e)
B=a(w/v)'? “4n
where
A=4A/2 (48)

The function J; (x) is the Bessel function of the zeroth order
(Abramowitz and Stegun [12]). The parameter 3 appearing in
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the velocity U, is of primary importance. It can be interpreted
as either a dimensionless frequency which is independent of
the mean-flow time scale or as the geometric parameter that
measures the ratio of tube radius to the Stokes layer thickness,
8, = (v/w)'?. The parameter A is the most convenient
measure of oscillation amplitude. It is approximately equal to
the ratio of the centerline oscillatory velocity amplitude to
mean centerline velocity and is almost always numerically
small. The relationship between A and the ratio, S, (used by
Sarpkaya [7]) of the cross-sectional average oscillation
velocity amplitude to the average mean-flow velocity is given

by
20 2 2D 27172
S:ZA[(I—F) +<F) ] (5a)

__ ber(B)bei’ (B) - bei(B)ber’ (8) b)

- ber2(B) + bei2(B)
and

bei(B)bei” (B) + ber(B)ber’ (8)
= 50

ber?(B) + bei?(B)

where ber(8) and bei(f) are Kelvin functions [12].

Figure 1 shows the distribution of the velocity U(r,?) at
various instants of time in one oscillation cycle. In this figure,
Ais 0.5 and B has the value of 5.8 (fairly low frequency). For
this value of 8, inflection rings occur somewhere within the
tube for the time intervals

0=<Qr=0.55 (A) (6)
1.296 <0 <3.691 (B)
4.438<01<6.283 (©)

during one cycle (0 = Q¢ < 27) of the oscillation. One ob-
jective of this investigation is to determine the relevance to the
stability characteristics of the existence of inflection rings
over such a substantial portion of the oscillation cycle.

The basic oscillatory flow (3) is disturbed by infinitesimal
axisymmetric disturbances of axial wave number «. The
resulting flow is assumed to be governed by the linearized
Navier-Stokes and continuity equations. Such disturbances
may be described by the Stokes stream function ¢(r,t)
exp(iaz) in such a way that the radial and axial components of
the disturbance velocity are obtained by the formulas

u= Re{ - _"rﬁ ¢ei°‘z} (7o)

1 a .
U=Re{—~ —¢ e"‘z}
r or

Accordingly, the linearized Navaier-Stokes equations can be
reduced to the single governing disturbance equation (see
Tozzi [13])

(7b)

a¢ o, . . N
£ ar = 7 Lp—iaULo+ialpLU+ a? U} (8a)
with the boundary conditions
a
6(0,0) = 22 (0,6) =0 (85)
ar
a
61,0 = 22 (1,1 =0 (80)
ar
where
92 1 9
L= e — 2
ar? roor ©)

and where R = Uya/vis the mean-flow Reynolds number.
Since the basic flow U(r,f) is 27/Q periodic in time, the
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Floquet Theorem (Coddington and Levinson [14]) is invoked
to calculate solutions of the form

o(r,t) =n(rit)eN (10)

where, 1(r,f + 27/Q) = n(r,f). The stability or instability of
the basic flow is governed by the sign of the real part of the
Floquet exponent A. It is worthwhile to observe that for
steady basic flows the solution (10) is also valid. In such a
case, n(r,?) is constant in time (hence trivially satisfying the
periodicity condition) and X is the usual stability exponent.
The next section deals with the procedure for obtaining the
solution (10) of the equations (8).

3 Methods of Solution

The stability problem (8) is solved in two ways. The first
way obtains the time-dependent solution (10) by a Chebyshev
spectral expansion in terms of the independent variable r and
a high order series expansion in terms of the parameter A. The
second way of solving equations (8) makes use of the quasi-
steady approximation to the equations and can be obtained as
a byproduct of the full time-dependent problem.

In the full time-dependent problem, the function ¢ (7,#) is
expanded in a Chebyshev polynomial series as follows:

N
$(r) = ) a, () Tu ()

(11)
n=1
where
F=2r—1 (12a)
and
T, (F) =cos(ncos “F) (12b)

The 7-method, as described by Gottlieb and Orszag [15], is
used to convert equations (8) into the system of ordinary
differential equations

da 1
. — = - P. oV iAW (1) - 13
Q T RP a+iaV-a+io (t).a (13)

where
a(t)=(al,a2,...,aN’)+ (14)

is the vector of Chebyshev coefficients and Q,P,V, and W are
N’ X N’ matrices, respectively representing the operators £,
£2, —U,L + £U, + o?U; and - U, & + LU, + o?U,
together with boundary conditions (86 and c¢), on the
Chebyshev basis T, n=0, ..., N'—1, N'=N-4, The
matrix W (¢) is 27 /Q time-periodic.

By invoking the Floquet Theorem, the vector a(¢) has the
form

a(t)=b(r)eM (15)

where b(r+27/Q) = b(¢) is the spectral expansion coef-
ficient vector of the function % (r,?).

For the value of A=0, equation (15) is the solution of the
steady Hagen —Poiseuille flow stability problem in which
b(¢#) =b,, a constant vector, and A = ), is the usual steady-
flow stability exponent. It is important to note that the steady
Hagen-Poiseuille flow stability problem has for each value of
o an infinite number of disturbance modes each of which is
described by a mode vector b, and characteristic value A,.
The eigenvalues A\, of the steady problem can be ordered
according to the value of their real parts. This ordering results
in a descending sequence that accumulates on — . Only the
first few values of the A\y’s are of interest. These values are
called the principal modes and have real parts clustered near
zero. The finite Chebyshev series expansion (11) produces N’
approximations to.these characteristic modes, but only a
number N*< <N’ are accurate approximations of the
principal modes. The unsteady flow stability problem has the
same features.

Journal of Applied Mechanics

A solution of problem (13) for A#0 is obtained by a
perturbation expansion about one of the steady-flow prin-
cipal modes as follows:

b(¢) =by+Ab, (£) +A%b, (£) +. . . . . (16a)
A=Ng+ AN F AN +. . . (16b)

The method described by von Kerczek [2] (see also Tozzi [13]
for a very detailed treatment), is used to calculate as many as
30 to 40 terms of the series (16). The solution a(¢) is the limit
of the sequence of partial sums of the series (16). This limit is
determined with the aid of the Shanks transformation
(Shanks [16]).

The quasi-steady approximation of the solution (15) is valid
in those cases in which the frequency ratio f = wy/Q, wy =
Im(}y), has a very large value. In such cases, the slow time
(parametric time) ¢, corresponds to fixed instants in the
oscillation time period [#;, ¢, +27/Q]. The fast time 7 ranges
over the characteristic time period 27/w, of the disturbance.
Hence the quasi-steady solution ¢(r, 7, #;) holds in the time
interval [ty —2em/wy, ty — 2em/w,] for some positive value of
€.

The quasi-steady approximate solution can be obtained
from the governing equation (13) by holding time in the
matrix W fixed at the value #;, and solving the resulting
equation as a steady stability problem. This procedure yields

a(7, y) =bo(fy)ero o a7
The eigenvector by(f,) and eigenvalue A\y(f,) are obtained
numerically by solving the algebraic eigenvalue problem
1
[—-)\o(to)Q+ §P+iaV+iaAW(t0)]-a=0 (18)
for each instant #,¢[0, 27/Q]. (EISPACK routines were used.
Smith et al. [17].)

4 Computational Results

There is no clear relationship between the disturbance wave
number « and the observed laminar to turbulent transition
because steady Hagen-Poiseuille flow is stable to infinitesimal
disturbances. Furthermore, the decay rates of disturbances
decrease monotonically with decreasing values of « for fixed
values of the Reynolds number R (Davey and Drazin [18]).
Thus, it is not clear which values of « to choose for examining
the effects of the flow oscillation on the stability of Hagen-
Poiseuille flow. In plane Poiseuille flow, the critical value c,
of o (made dimensionless by the half-channel width) is about
1.0 (reference [2]) and in the Blasius boundary layer «, is
about 0.35 (made dimensionless by the displacement
thickness) (Schlichting [19]). Hence, the range of values
0.35<a<1.0 is probably the most relevant to examine the
effects of flow oscillation on stability. In this study, attention
is focused on the value «=0.5; but other values of o were
examined also.

For a fixed value of « the infinite sequence of decaying
disturbance modes of steady Hagen-Poiseuille flow was
ordered in a descending sequence according to increasing
values of the decay rate. The mode with the smallest decay
rate is mode one. The first few modes can be classified as wall
and center modes. A center mode has a value of phase velocity
near 1.0 (the dimensionless centerline velocity of the mean
flow). A wall mode has a value of the phase velocity in the
range between 0.0 and about 0.5. This classification is based
mainly on the ideas of plane Poiseuille flow which does have a
critical disturbance mode whose phase velocity is associated
with the mean flow velocity at the critial layer (Lin [20]). The
mechanism that transfers mean-flow energy into disturbance
energy is active at the critical layer where mean-flow and
phase velocities are equal.

The wall modes have lower frequency than the center modes
although the wall modes are more heavily damped than the
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Table 1 The perturbation coefficients Re();) of series (16b).
Here R = 3000, 3=5.8, «=0.5, N=40, and the number of
terms in series (16) = 40.

_‘/; RCO\J)
0 —0.68519E — 1
2 —0.28563E — 1
4 —0.279538 — |
6 —0.14584E — 1
8 +0.86816E — |
10 +0.50027E00
12 +0.19262E +1
14 +0.21448E + 1
16 —0.24835E+2
18 —0.12196E +3
20 ~0.30939E +-3
22 +0.63828E +-2
24 —0.45441E+5
26 +0.47130E+7
28 —0.39114E+9
30 —0.23008E + 11
32 —0.30155E + 13
34 +0.56562E + 15
36 —0.36862E + 17
38 —0.79170E + 18
40 +0.10745E + 21
o x 107
a=0.5
) \
a=11.0
/
T T 1 T T T T T
0 T T T 44

A x10?

Fig. 2 Relative change o of least stable center mode versus a for B =
3000,5 = 5.8

center modes. However, it is expected that the wall modes are
more affected by the flow oscillation because their low
frequency places them closer to the oscillatory vorticity field
which is confined effectively within the Stokes layer. Hence
particular attention was focused on the effects of flow
oscillation on the stability characteristics of the wall modes.

It is not possible to examine the stability characteristics over
the entire range of values of R and 8. The experimental results
of Sarpkaya [7] indicate that the most interesting effects of
flow oscillation oceur for 2000 < R <6000 and for values of 8
in the range 4< B8 <8. The case of R=3000 and 8=5.8 is
typical of the behavior in these ranges and, thus, was chosen
for detailed investigation.

The primary results of the solution of the full time-
dependent equations (8) are the values of the perturbation
coefficients N;, j=0,2,4,...., of series (16b) for the
complex growth rate N of the disturbance. All the odd
coefficients of this series are zero because the basic coefficient
Ay is a simple eigenvalue of the underlying steady flow
stability problem about which the perturbation series (16) is
calculated and the flow modulation is sinusoidal. A sample
computational result for series (16b) is given in Table 1 for
the values R=3000, 8=5.8, and «=0.5. This case was
computed by taking N'=40 terms of the Chebyshev expansion
(11) (see Tozzi [13] for details).

Series (16b) is summed using the Shanks transformation
(Shanks [16]) on the partial sums. This procedure yields
converged values of X for values of A over three times as large
as the radius of convergence of series (16). For example the
radius of convergence of the series (16) for the case given in
Table 1 was experimentally determined to be about A=0.12.
However, accurate values of A for this case were obtained for
values of A up to 0.44 by use of the Shanks trans-

180/ Vol. 53, MARCH 1986

o

Fig. 3 Relative change ¢ of least stable wall mode versus 4 for R =
3000,8 = 5.8

formation. All calculations for the time-dependent stability
problem were made in this fashion.

The complex growth (decay) rate was computed for the
least stable center and wall modes for the cases R=3000,
$=5.8, and a number of values of «. These results are shown
plotted as a function of A in Figs. 2 and 3. In these figures, A
= Re(M\) and A,,=Re()\,) are the decay rates; and o is the
relative change of the decay rate, defined by

)\or - )\r

A0/‘

Figures 2 and 3 show that the relative changes in the decay
rates are all extremely small so that the mean effect of
oscillation is small. The oscillation tends to make the wall
modes more stable and the center modes slighlty less stable.
However, the overall effect is surprisingly small. Some large-
wave-number results (for «=35 and 11) were included only
because these have some relevance to the nonlinear stability
studies of Davey and Nguyen [21]. Their nonlinear theory for
the steady base flow predicts that disturbances with wave
number « about equal to 10 will be nonlinearly unstable. Yet,
the linear theory shows that these disturbances are almost
completely unaffected by base flow oscillations.

It is very significant that the imposed oscillation frequency
€ is very small compared to the disturbance frequency w, for
all the disturbances examined in Figs. 2 and 3. For the cases
0.4< « <1.0 the frequency ratio f= w,/Q is in the range 20 to
90. For the case o = 11, the value of fis over 150. Thus, the
quasi-steady theory should be valid; and one would think
that, for the extensive time in which the inflection ring
criterion is satisfied, inequalities (6), this flow might become
unstable. In this regard the instantaneous growth rate G,
defined by

19)

1 dllal

A ~Tal “ar
where llall is the Euclidean norm of the Chebyshev expansion
coefficients (14), was examined. Figures 4 and 5 show the
variations of G over one oscillation cycle for the case

20

"R=3000, 8=5.8, «=0.5, and various values of A. These

figures show that neither the first wall nor the first center
mode ever becomés instantaneously unstable, even though in
both cases the frequency ratio f is large. For the wall mode
J=23 and for the center mode f=41.

The graphs in Figs. 4 and 5 were computed both by the full

* time-dependent stability theory solution with equation (20)

and by the quasi-steady approximation (f— ) in which
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21

Fig. 4 Instantaneous growth rate versus time for least stable wall
mode. R = 3000,8 = 5.8

G=Re{N(t)) (21)

where A\y(;) is computed by equation (18). As expected, the
results of the two methods of calculation of G do not differ
significantly (Tozzi [13]).

Two features of the results of the calculation of the in-
stantaneous growth rate G are significant. The first and most
important feature concerns the wall mode in Fig. 4. The wall
mode is significantly affected by the instantaneous velocity
profile shape. However, in spite of the inflection ring criterion
(1), which is a necessary condition for the instability of steady
inviscid flows, the instantaneous profiles are even more stable
than the inflectionless steady-flow profile. Furthermore, the
stability increases with increasing values of A. This behavior
of the flow is in accord with experimental results of Gilbrech
and Combs [5] and Sarpkaya [7] up to certain values of A.

The second significant feature is displayed in Fig. 5 con-
cerning the center mode. The instantaneous growth rate G of
the center mode simply varies proportionately to the in-
stantaneous Reynolds number because the central part of the
instantaneous velocity profile retains its parabolic shape.

At this point it has been shown that, based on the wall
modes which are deemed most relevant, the enhancement of
the stability of the oscillatory flow is in accord with the ex-
perimental result that oscillations do delay transition. In order
to discern some quantitative relationship between this stability
theory and experimental transition studies, the following
interpretation is proposed. The threshold growth (or decay)
rate v is defined by

Y=Re{A=2A,} @2)

where A, is the steady flow complex growth rate for the given
value of « and the value of Reynolds number R, =2200.
Natural transition in normal steady pipe flow experiments
usually occurs at this value of Reynolds number.

Then, for fixed values of Reynolds number and oscillation
amplitude, if v > 0, the oscillations are said to destabilize the
flow. If ¥ < 0, the oscillations are said to stabilize the flow,
The value ¥ = 0 is defined as the threshold of stabilization.
For fixed values of « the graph of the locus of points for
which

v(R,A) =0 23)

is determined. These critical values of R, denoted by R, are
plotted versus A in Fig. 6. The value of the critical Reynolds

Journal of Applied Mechanics

T T L T T T T T T
0 0.5 1.0
Ot
20

Fig. 5 Instantaneous growth rate versus time for least stable center
mode. R = 3000,8 = 5.8

Rx107?

Ax102

Fig. 6 Comparison of experimental results with locus of points for
which y(R, 4) = 0.8 = 5.8, « = 0.5. Rq is the always unstable quasi-
steady bound.

number R is a measure of the stabilization of disturbances
with respect to a level which prevails in the steady flow on the
verge of transition to turbulence. These values of R are
compared to Sarpkaya’s critical values of Reynolds number
for transition to turbulence in Fig. 6. The curve labeled R,
denotes the quai-steady always unstable definition of critical
Reynolds number proposed by Davis [22]. Davis’ definition
of R, is

1
R"—R"(I—A) 24)
The value of R, defines the value of A at which the smallest
value of the instantaneous Reynolds number is equal to R, =
2200. The value of R, is an upper bound of the values of the
critical Reynolds number of transition for low frequency
oscillations.

Figure 6 compares the critical Reynolds numbers R,, R,
and Sarpkaya’s experimental results. It is evident that,
although linear stability theory does correctly predict
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qualitatively an initial enhancement of stability of the
oscillatory base flow with increasing oscillation amplitude, it
does not seem to contain anything of quantitative significance
concerning the mechanics of transition. In particular, the
sudden break and diminishing stabilization as oscillation
amplitude is increased which is exhibited by the experiments is
not at all reflected by linear stability theory. Sarpkaya [7]
speculates that this break in transition behavior is associated
with occurrences of momentary reverse flow in the Stokes
layer and the duration of the inflectional period of the
velocity profiles. But this is definitely not the case, at least for
axisymmetric disturbances, as shown by Figs. 4 and 5.
However, Sarpkaya’s surmise may in fact be true on the basis
of nonaxisymmetric disturbances which may be much more
unstable. It is important to note that disturbances introduced
into experimental flows are three-dimensional.

5 Concluding Remarks

This study has shown that low frequency oscillatory Hagen-
Poiseuille flow is slightly more stable to axisymmetric
disturbances than the steady flow. More importantly, the
highly inflectional instantaneous velocity profiles do not lead
to instantaneous instability. Thus reasoning developed for
steady flows must be applied with great caution to oscillatory
flows. This lesson was learned earlier by von Kerczek and
Davis [9] but on the basis of zero-mean oscillatory flows.
Davis [22] argued that careful scale analysis must be per-
formed before attempting to apply the stability results for
steady flows to unsteady flows. However, in this case, even a
scaling argument would lead to erroneous conjectures con-
cerning the possible momentary instabilty of the flow. It is
emphasized though that an instantaneous instability
mechanism has not been completely precluded by the
axisymmetric calculations presented here. There is evidence
(Salwen and Grosch [1]) that nonaxisymmetric disturbances
may play a much more important instability role in
axisymmetric base flows. This problem ought to be in-
vestigated in the future.
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Introduction

The drop-on-demand ink jet printer is emerging as an
inexpensive device for the production of high-resolution
computer-graphics hard copy. The controlled production of
single ink drops is achieved through the action of a sudden
pressure pulse produced by a piezoelectric device. In order to
enhance our fundamental understanding of the drop-
development phenomenon, numerical solutions of the ap-
propriate conservation equations together with stroboscopic
flow-visualization studies have been pursued.

This paper proposes a one-dimensional model of the drop
development based on a finite difference solution of the
governing equations in Lagrangian coordinates. Although
many studies of drop formation in continuous jets have been
published (see the review of Bogy, 1979), the investigation of
drop-on-demand jets has been limited to the semiempirical
modeling of Kyser et al. (1981) and the axisymmetric Navier-
Stokes analysis of Fromm (1982). The one-dimensional model
proposed here offers an alternative approach of lesser
complexity than Fromm’s and of higher accuracy than
Kyser’s. Since the fluid domain is surrounded by a free
surface, the Lagrangian approach also offers a direct
simultaneous way to solve the governing equations and to
define the fluid geometry. It is expected that an approach
based upon the Eulerian frame would be more cumbersome
because of the necessity to update the coordinate grid after
each time step. Such calculations are done either with marked
particles (marker-and-cell) that define the free surface in an
Eulerian frame or with moving grids (see Hirt, 1971). Fromm
(1982, 1984) uses a vorticity-stream function formulation of
the Navier-Stokes equations in axisymmetric form together
with the marker-and-cell approach in his calculations. The
accuracy of the one-dimensional approach will be established
by comparing the results with Fromm’s calculations.
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calculation is done in Lagrangian coordinates, and the results are compared with
calculations reported in which an axisymmetric marker-and-cell algorithm is used.
The comparison indicates that, although drop velocities differ in the two cases,
good qualitative results can be obtained with the less complex one-dimensional

- . = |Z= iy —»*9
(0 ) (a,), .

Geometry of the liquid column emerging from an orifice

Fig. 1

Analysis

Figure 1 shows a liquid column emerging without wetting
from a nozzle to form a single drop. Following Lee’s in-
vestigation of continuous jets (1974), one can develop a one-
dimensional model of the motion and geometry of the liquid
jet from conservation of mass and Newton’s second law of
motion. Bogy (1979) and Bogy et al. (1980), however, obtain
different results by incorporating radial-inertia effects
through a one-dimensional Cosserat theory. According to the
simpler model by Lee (1974), the radius R and velocity V of an
element of fluid in the column are governed by

1 dR?> oV

— 4+ — =0 1

R? ar az M
1

dV___ d 0 )

dat  p 0z Ozt
where o, is the total normal stress acting on the liquid
element. Note that the time derivatives are expressed in
Lagrangian form while the Eulerian form of the spatial
derivatives is retained.

The normal stress includes viscous as well as hydrostatic
contributions and is influenced by surface tension. The
pressure of the liquid is related to the surrounding air pressure
through

11 au
= air+T(—+——>+2 ’ 3
p=P Ry R/ Far @
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Fig.2 Principal radii of curvature of the liquid column

where Ry and R are the principal radii of curvature of the
column as shown in Fig. 2 and are given by

RN=RJ1+<%I—;>2 @)
()T

R;= (%)
da’R
322
According to equation (1)
_dR_ RV
UG & ©
thus
. @
or 2 0z

producing the total normal stress
= +2 w_ T( ! + ! >+3 oV ®)
Uzz - p M 32 - palr RN RT 3 az

When fluid properties and air pressure are constant along the
column, equation (2) can be written as

av 1 3,1 1 2y
A —T—(—+~)+3 —]:o 9
a [ 2z \Ry ' Rp/ Moz ®

Following Fromm (1982), one can cast (1) and (9) in non-
dimensional form using the characteristic velocity

Vo=af —
oa

(10)
where a is the radius of the orifice, to produce
1_dR* avr an
R+2 drt ozt
dvt 3 (1 . 1) We &V' oy
dtt 9zt \R}Y ' RF Re az+2 ~

In equation (12), the Weber to Reynolds number ratio,
We/Reis u/pVya.

The Eulerian form of equations (11) and (12) is a system of )

hyperbolic differential equations with the dynamic wavespeed
dependent upon ¥, and the radii of curvature of the drop.
Thus it seems appropriate to use a numerical algorithm of the
Lax-Wendroff type in order to obtain a numerical solution,
and MacCormack’s method (see e.g., Roache, 1982) was
selected because of its superior performance and wide use in

gas dynamic calculations. Also, the method is second-order

accurate in both space and time.
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Fig.3 Drive pressure for Fromm’s calculations and with Re/We = &5

For the numerical analysis, (11) and (12) are expressed as
the vector equation

daut JF*
=0 13
dt* dz* (13)
where
InR*2
U+ = (14)
V+
and
V+
Fr= <1+1)3We6V+ (15)
Ry RF Re az™

Then the solution of (13) is accomplished using Mac-
Cormack’s algorithm (Roache, 1982) in the form

F— f’l
® n i i—
Ul =U7 — At P (16)
1 kan+1 .-F!H“l
U'-Hl - (U’{1+U3k:1+1 — Agt il ! ) 17
= ; o (17)

where the superscript denotes the time step number, the
subscript is associated with the ith element of the liquid
column and F* is to be evaluated in terms of U*. The position
coordinates of the elements z;", are held fixed until the
calculation is completed for a given time step, then updated
once new velocities are obtained using the trapezoidal ap-
proximation

( Vi+'l + V,~+"+1)At+
2

The time step At* for the integration of equations (15-17) is
based upon the capillary wavespeed of the smallest resolvable
wavelength, as proposed by Foote (1973). For the present
case, this wavelength is twice the minimum distance between
nodes, and the resulting velocity is

(18)

| Q-
zi+”+ _Zi+n+

. 3 T
= — 4[ —— 19
¢ 2 |Z,+ _Z[tl lmin ( )
so that the time step is determined from
Att 1
= (20

+ + =t
Iz —zF hin €
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From equation (20), At* <0.0266 for 1z —z% | in =0.1.
Numerical experiments indicate that At <0.01 is necessary
for stability.

As the calculation proceeds, elements of the column may
spread or contract along the direction of motion and lead to
nonuniform spacing. Spreading results in a loss of resolution
of the radius and velocity, while contraction necessitates a
diminishing time step to maintain stability. To avoid these
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Fig.4 Drop formation sequence for the drive pressure of Fig. 3

 e—r 1Y
- [ =205 i:<>
e  —

N O

i
ll

1.00 500 10,00 15.00 000 500 1000 1500
z A

Fromm’s Calculation One-dimensional Model
Fig.5 Continuation of Fig. 4

j@
:ﬁ)—%. I t=4.52
-@Ql '=4.67

) @.' t+=5.03
00 5.00

1000

2 —y
Fromm’s Calcutation One-dimensional Model
Fig.6 Continuation of Fig. 4

+=4.18

UL

1 15.00 0.00 5.00

N‘,

o\.\
O e,

problems, elements are added or deleted so that element
spacing remains nearly uniform. When nodes are to be added,
numerical inaccuracies in the radius calculation are avoided
by using a cubic spline fit following Daly (1969). This
procedure results in a tridiagonal system for the second
derivative of the radius in the form

” ”

i R
(z;~zi1) ’6 + (21 —2i-1) 5'
rf Fig1 =7 ri—ri_
+(Zi+1‘"2i)“iil= i+1 [ ‘I i—1 (21)
6 Ziv1 % Zi—Zi-
where r” =09°R/dz% and the following boundary conditions

are used
r” =0 at the orifice

and r” =const at the head or tail of the drop.

Once r;is obtained from equation (21), the radius of added
nodes is calculated from

. (zi—z)? , (2—2iy)
r(z)=ri", i
6(z; —2i-1) 6(z; —z;,-1)
ri i — X
(o ) )
Zi—Zi1 6
ri_ Zi—Zi-
F (T BTEE ) (5, —) (2)
Zi—2Zi- 6

The regularity with which nodes are added to or subtracted
from the fluid column varies during the course of drop
formation and is dependent on the drive pressure shape.
Typically, nodes are added once every ten time steps.

Comparison With Axisymmetric Calculations

Fromm (1982) uses an axisymmetric marker-and-cell
algorithm to simulate drop formation from a nozzle with
specified driving pressure. The calculation neglects the effect
of orifice wetting, and the lack of drive-pressure data caused
him to assume the distribution, with time, to be as shown in
Fig. 3. The results of Fromm’s calculation will be used to
assess the accuracy of the one-dimensional approach.

For the one-dimensional analysis, according to the ap-
proach just described, the necessary outflow boundary
condition at the orifice exit is established from a linear
analysis of the transient viscous flow within the nozzle.
Taking the flow to be one dimensional, the local velocity is
governed by

dut

ot

(0t (1)) + 1 (62u+ 1 dut
dz+ P Re \ or'2 ar
with % (r*,0)=0 (initial condition)
and u* (1,7)=0 (noslip condition)

) e
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Fig. 7 Tip velocity and orifice exit velocity for the drive pressure of

Fig.3and Re/We = 5
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Fig. 11 Drop profile for the drive pressure of Fig. 3 and Re/We = « at
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The solution of equation (23) for a step change in pressure
gradient is given in White (1974). This result can be
generalized through the use of the superposition integral to
obtain the centerline velocity and the spatially averaged

velocity

ut(o,tt)

2 o . [ o exp[—)\f,(t+_s+)/Re]} .

“gvl, X WA s
(24)

Ughet™)
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exp[—kf,(f;—ﬁ)/Re]}ds+
)\Il
(25)
1 + 1 )
Rﬁ R-}' orifice
and A, represents the zeros of Jy. Furthermore, the meniscus

is assumed to be a frustrum of a sphere until its positive
displacement becomes equal to the nozzle radius. Thus

Ap*t =pive — (

1
Ri=Ri= —

2 (26)

1
(z++z—+—>, for — 1<zt <1
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Fig. 12 Drop formation sequence for the drive pressure of Fig. 3

Equations (24) and (26) are used to describe the positive and
negative meniscus shape until the positive radius of the
spherical cap meniscus becomes equal to the nozzle radius. At
this point, the hemisphere is divided into ten elements and the
integration of equations (16) and (18) commences with
equation (25) providing the boundary conditions at the orifice
exit. Additional elements are added at the nozzle exit when the
node adjacent to the nozzle has displaced a distance equal to
the initial node spacing (0.10 in this case). The leading and
second nodes are assumed to move at the same velocity, and
this proceudre is used for the trailing element of a drop once
break-off occurs. Break-off is taken to be the first time step at
which the local radius drops below 0.05a, as assumed by
Fromm.

The results of the one-dimensional calculation are shown in
sequence along with Fromm’s calculations for Re/We=5 in
Figs. 4-6. Shown is the geometry of the liquid column at
several positions from the orifice. Comparison of the two
results indicates that good agreement is obtained up to the
point of break-off, although the one-dimensional model
predicts break-off earlier than the full Navier-Stokes
calculation. Beyond break-off, the one-dimensional results
indicate higher velocities of the drop so that, by the end of the
sequence, the head positions differ by about 40 percent.
Events leading to satellite formation are also more rapid for
the one-dimensional model. It seems that although the one-
dimensional model produces higher velocities than the full
Navier-Stokes calculation, it does reveal the essential
qualitative features of the main and satellite drops that are
formed. The velocity at the tip of the liquid column and the
average velocity at the orifice exit are plotted for this case in
Fig. 7.

Drop formation sequences for the inviscid case
(Re/We =) and two viscous cases (Re/We=2.5 and 5) are
shown in Figs. 8-12. In the inviscid calculations (Figs. 8-11)
and the two viscous cases (Fig. 12), only the coefficient of
viscosity of the fluid was changed. Therefore, the comparison
of these three cases illustrates the action of viscosity in
retarding the liquid column. Also note that the numerical

Journal of Applied Mechanics

algorithm used in these calculations was developed for
hyperbolic partial differential equations so that the procedure
works well over the range of Re/We.

Summary

A one-dimensional model of the motion of a liquid jet has
been used to simulate drop formation from a drop-on-
demand ink jet. The surface-tension effect results in a
hyperbolic system of partial-differential equations, which has
been solved numerically using MacCormack’s predictor-
corrector algorithm. Results of calculations using the model
compare qualitatively with calculations using the marker-and-
cell Navier-Stokes code by Fromm (1982).
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The Effect of the Earth’s Rotation
on Channel Flow

The influence that the rotation of the earth has on laminar channel flow is in-
vestigated theoretically. The full nonlinear Navier-Stokes equations relative to a
reference frame rotating with the earth are solved numerically for laminar flow in a
rectangular channel whose axis is aligned east-west: the orientation which yields the
most drastic effect. It is demonstrated that for channels of moderate width (less
than 1 ft for the flow of most liquids), the rotation of the earth can give rise to a roll
instability which has a severe distortional effect on the classical parabolic velocity
profile. Consequently, the usual assumption made of neglecting the effect of the
earth’s rotation in the calculation of channel flow can lead to serious errors unless
the channel is substantially smaller than this size. It is briefly shown that similar ef-
Sfects would be expected for turbulent channel flow when the channel width is ap-
proximately an order of magnitude larger.

o

C. G. Speziale’

Stevens Institute of Technology,
Hoboken, N.J. 07030

1 Introduction

Approximately thirty years ago, Benton [1956] conducted
an interesting study which suggested that the rotation of the
earth gives rise to a secondary motion in laminar pipe flow

which could have a significant distortional effect on the usual Y,
parabolic velocity profile in pipes of moderate size (e.g., a
pipe with a radius of 1 in.). This secondary flow, which causes -1

a lateral transport of momentum, yields an asymmetric axial
velocity profile in contrast to the classical parabolic velocity
profile obtained for this viscous flow in an inertial framing.
While it had been known by geophysicists that the rotation of
the earth cannot be neglected in the study of fluid flow in
estuaries, rivers, and oceans (cf, Pedlosky 1979), it was, never-
theless, quite surprising that it could have a non-negligible ef-
fect on a standard laboratory pipe flow of significantly smaller
dimensions. Although it would appear that these results pro- H
vided a strong motivation for examining the effect of the
earth’s rotation on other analogous laboratory flow con-
figurations, few studies, if any, along these lines have been
subsequently reported.

The purpose of the present paper is to examine the effect
that the rotation of the earth has on the pressure-driven flow
of a viscous fluid in a rectangular channel with a large aspect

0
>

@
AN

. . . . . \
ratio—the experimental configuration used to simulate Secondary
Poiseuille flow. Here, the axis of the channel will be aligned Flow
east-west with the side walls of the channel aligned parallel to uyv

the axis of rotation of the earth (the orientation that yields the
most drastic effect from the earth’s rotation). The full
nonlinear Navier-Stokes equations relative to a reference
frame rotating with the earth will be solved numerically by the

7}—0—& x

Fig. 1 Secondary flow in a laminar channel flow subjected to a span-

same finite difference code that was developed by Speziale and
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Thangam [1983] for rotating channel flow (the present paper
represents an application of that more general study). Pro-
vided that the channel is sufficiently small, the rotation of the
earth merely gives rise to a weak double-vortex secondary flow
(see Fig. 1), which has very little effect on the axial velocity
profiles in the interior of the channel which are parabolic in a
strong approximate sense. However, it will be shown that for
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Fig. 2 Roll instability in a laminar Poiseuille flow subjected to a span-
wise rotation

channels of moderate size (i.e., for channel widths greater
than a few inches), the rotation of the earth can give rise to a
roll instability which has a severe distortional effect on the
classical parabolic velocity profile by making it noticeably
asymmetric. Consequently, for this case, the usual assumption
made of neglecting the effect of the earth’s rotation in the
calculation of a laboratory channel flow can lead to serious er-
ror. This rather surprising result, which is analogous to that
found by Benton [1956], will be validated by making com-
parisons with previously conducted stability analyses and ex-
perimental investigations on rotating channel flow (see Hart
1971 and Lezius and Johnston 1976). Extensions of these
results to the turbulent regime will also be discussed briefly
along with the prospects for future research.

2 Channel Flow in the Rotating Framework of the
Earth

The effect of the earth’s rotation on the fully-developed
laminar flow of an incompressible viscous fluid in a rec-
tangular channel with a large aspect ratio H/D (the ex-
perimental configuration used to simulate plane Poiseuille
flow) will be considered as illustrated in Fig. 1. The flow is
driven by a constant axial pressure gradient

oP

0z G o
and all flow properties are assumed to be independent of the
axial coordinate z. For simplicity, the sides of the channel are
taligned parallel to the axis of rotation of the earth and the ax-
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Fig. 3 Stability boundaries for laminar channe! flow subjected to a
spanwise rotation
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ial flow is oriented east-west. This orientation gives rise to the
most drastic effect since it constitutes a pure spanwise rota-
tion; axial rotations are of little consequence since, relative to
an observer moving with the channel, they leave the flowfield
unaffected. The velocity field V takes the form

V=u(x»)i+v(x,y)j+wlxyk 2

(where w is the axial velocity and u and v are the secondary
flow velocities) since for non-zero rotation rates it no longer
is possible to maintain a unidirectional flowfield (cf, Benton
1956 and Hart 1971). Of course, in an inertial framework (i.e.,
for 2 =0), the velocity field is of the unidirectional form

V=w(x, k. (3)

The axial velocity profile w in (3) is, in a strong approximate
sense, parabolic along the horizontal centerline y = H/2 of the
channel, provided that H/D is large (it becomes exactly
parabolic for plane Poiseuille flow which is approached as
H/D— ), The flow properties in the region of interest near
the horizontal centerline of the channel depend weakly on
H/D provided that this parameter is greater than 6 or 7. The
equations of motion for rotating channel flow can be written
in a modified vorticity-stream function formulation (see
Speziale and Thangam 1983) which takes the dimensionless
form

ow aw 1 1
+ =CH+—Viw+— 4
”ax vay Rve Rou “)
tile a¢ 1 1 aw
U—t o=V 5
ox v ¥ Re £ Ro dy )
vi=¢ ®)
] i)
W -
ay 0x
where ¢ is the secondary flow stream function,

¢=0dv/0x—du/dy is the axial vorticity, and the flow variables
are nondimensionalized with respect to the integrated average
axial velocity W, and the channel width D. In equations (4)
and (5),
Re= W"D, Ro:ﬁ, C=~GB—
v 20D o W3
are, respectively, the Reynolds number, Rossby number, and
dimeénsionless pressure gradient where p is the density of the
fluid and » is the kinematic viscosity. Equations (4)-(7) must
be solved subject to the boundary conditions

u=0, v=0, w=0, y=0 &)
on the walls of the channel.

®
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Fig. 4 Fully-developed secondary flow streamiines in a laminar chan-
nel flow subjected to a spanwise rotation: Re = 485, Ro = 35.7

The equations of motion (4)-(7) will be solved using the ex-
plicit finite difference code that was developed by Speziale
[1982] and Speziale and Thangam [1983]. In this approach,
the convective terms are formulated using Arakawa’s scheme;
the viscous diffusion terms are formulated using the DuFort-
Frankel scheme; and the Poisson equation for the stream
function is solved using cyclic reduction. This explicit scheme,
which is second-order accurate, has excellent numerical
stability characteristics (see Speziale 1982 for more details on
this numerical method). Furthermore, unlike in the linear
stability analyses presented by Hart [1971] and Lezius and
Johnston [1976], it is possible to precisely determine the
distortional effect that the secondary flow has on the axial
velocity since the full nonlinear Navier-Stokes equations are
solved. Numerical results will be presented in the next section

200/ Vol. 53, MARCH 1986
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Fig. 5 Fully-developed axial velocity profile along the horizontal
centerline of a channel subjected to a spanwise rotation: Re =485,
Ro=35.7

for several Reynolds numbers and Rossby numbers in the
range

100 <Re <2000, 10<Ro<1000 10)

for which roll instabilities can occur. Calculations will be con-
ducted in a channel with an aspect ratio /D=8, which is
close in size to that used by Hart [1971] and Lezius and
Johnston [1976] in their experimental studies.? The channel
will be discretized into a 16 X 128 finite difference mesh —the
same mesh used by Speziale and Thangam [1983].

3 Numerical Results

Before presenting the specific numerical results obtained in
this study, it would be advantageous to briefly review the
nature of the results obtained in previous theoretical and ex-
perimental studies on rotating channel flow. The results of
these previous studies (see Hart 1971, Lezius and Johnston
1976, and Speziale and Thangam 1983) indicated that there
were three flow regimes in channel flow subjected to a span-
wise rotation: a weak double vortex secondary flow at slow
rotation rates; a roll instability at intermediate rotation rates
(see Fig. 2); and a restabilized Taylor-Proudman regime at
rapid rotation rates. The critical disturbance mode for roll in-
stabilities occurs at a Reynolds number Re = 100 and a Rossby
number Ro=1 (no such instabilities will occur at significantly
smaller Reynolds numbers). In Fig. 3, the stability boundaries
for the onset of roll instabilities in rotating channel flow ob-
tained by Hart [1971], Lezius and Johnston [1976] and
Speziale and Thangam [1983] are shown in terms of the
Reynolds number and rotation number (i.e., the dimensionless
quantity 1/2 R '). Since these results, which were obtained by
completely different procedures, are in a close range of one
another, there is strong reason to have confidence in them. It
is clear from Fig. 3 that a roll instability can occur at relatively
large Rossby numbers. For instance, at a Reynolds number
Re =400, a roll instability would occur for a Rossby number
Ro=50. Furthermore, it will be shown that for Re= 1860, a
roll instability can occur when Ro =667 which is a rather large
Rossby number- (this result, whose validity would be expected

2The specific value of H/D=8 was chosen since it is a power of 2. In this
fashion, a uniform mesh size in x and y could be used and the requirement of the
cyclic reduction scheme that the number of subintervals te a power of 2 would
be satisfied identically (see Speziale [1982}).
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Fig. 6 Fully-developed secondary flow streamlines in a laminar chan-

nel flow subjected to a spanwise rotation: Re = 1860, Ro =667

by a simple extrapolation of the stability boundary given in
Fig. 3, will be demonstrated numerically in the latter part of
this section). It is thus quite clear that a roll instability can oc-
cur for Rossby numbers Ro > 100. For this range of Reynolds
numbers, such a Rossby number can be induced by the rota-
tion of the earth for the flow of most common liquids (e.g.,
water) in a channel whose width D is less than 1 ft.

Now, specific numerical calculations will be presented to
clearly demonstrate that for Re > 100, there is sufficient inertia
so that a roll instability which is induced by the rotation of the
earth can have a significant distortional effect on the axial
velocity profiles in the interior of the channel. The computed
streamlines of the secondary flow for rotating channel flow
are shown in Fig. 4 for Re =485 and Ro=35.7. It is clear that
there is a roll instability at this particular Reynolds and Rossby
number in agreement with previous studies (see Fig. 3). The

Journal of Applied Mechanics
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Fig. 7 Fully-developed axia! velocity profile along the horizontal
centerline of a channel subjected to a spanwise rotation: Re = 1860,
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Fig. 8 Fully-developed mean axial velocity profile in a turbulent chan-
nel flow subjected to a spanwise rotation (after Lezius and Johnston
1976)

corresponding axial velocity profile along the horizontal
centerline of the channel y=H/2 is shown in Fig. 5. It is ob-
vious from this graph that the secondary flow has a severe
distortional effect on the axial velocity profile, making it
asymmetric with the maximum velocity shifted toward the
high-pressure side of the channel (i.e., the side of the channel
which is farthest from the axis of rotation). From equation

(8), it follows that
D ( Re v ) Ve
22 Ro

and hence, given that we are considering the earth’s rotation
for which

an

0=7.292x 10~ rad/sec, (12)

it is possible to explicitly calculate the width D of the channel
corresponding to a particular choice of Re and Ro once the
kinematic viscosity v of the fluid is specified. The following
results are obtained (at room temperature) for this case of
Re=485 and Ro=35.7:

D=46.3 in. (for air)
D=12.1 in. (for water)
D= 3.84 in. (for mercury).

It is thus clear that for most common liquids, the classical
parabolic velocity profile obtained for laminar channel flow
(if the effect of the earth’s rotation is neglected) can be in
serious error if the channel has a width greater than a few
inches.
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Now, the computed solution for a substantially higher
Reynolds number will be presented for which the results are
even more dramatic. In Fig. 6, the computer generated secon-
dary flow streamlines are shown for rotating channel flow at a
Reynolds number Re=1860 and Rossby number Ro =667.
There is a roll instability present as would be expected on
physical grounds from a simple extrapolation of the linear
stability analyses presented in Fig. 3. This roll instability has a
severe distortional effort on the axial velocity profile along the
horizontal centerline of the channel which shows a .dramatic
departure from the classical parabolic profile as can be seen in
Fig. 7. To be more specific, this axial velocity profile is highly
asymmetric with the maximum velocity shifted toward the
high pressure side of the channel. By utilizing equations
(11)-(12), it is possible to calculate the width of the channel
(for a given fluid) that corresponds to these flow parameters.
For Re=1860 and Ro =667, we have the following results at
room temperature:

D=20.99 in. (for air)
D= 5.50 in. (for water)
D= 1.74 in. (for mercury).

These results are rather dramatic and surprising in that they
indicate that the earth’s rotation can induce a roll instability
which has a severe distortional effect on the classical parabolic
velocity profile in a laboratory channel flow with a
characteristic width less than 2 in.?

At this point, some comments should be made as to why the
surprising and striking results presented above have not been
observed in previously conducted laboratory experiments on
channel flow. To begin with, a considerable number of such
laboratory experiments have been conducted with air
(Johnston 1984} in channels with a characteristic width D<2
in., so that the fluid velocity would not have to be extremely
small to maintain laminar flow conditions. The results
presented in this paper clearly demonstrate that this size chan-
nel is an order of magnitude smaller than that required for the
earth’s rotation to cause a roll instability and hence the effects
shown in Fig. 5 and Fig. 7 would not have arisen. A roll in-
stability would not occur in a laminar channel flow with water
if D<5 in. (this value for D can be obtained by an extrapola-
tion of the stability results given in Fig. 3) which constitutes a
channel width that is larger than those considered in previous-
ly published studies. Of course, in the absence of a roll in-
stability, the secondary flow that results from the earth’s rota-
tion will be confined to a region which is far enough removed
from the channel centerline (see Fig. 1) so that it will have a
negligible effect on the axial velocity profile there.

Finally, the extension of these results to the turbulent
regime will be briefly discussed. The experiments on turbulent
channel flow subjected to the spanwise rotation depicted in
Fig. 1 indicate that a roll instability occurs at a Rossby number
Ro=22.7 for Reynolds numbers Re between 6000 and 35,000
(see Johnston, Halleen, and Lezius 1972 and Lezius and
Johnston 1976). These experiments indicated that this roll in-
stability can have a profound distortional effect on the usual
symmetric and flat velocity profile observed in turbulent chan-
nel flow (see Fig. 8). By utilizing equations (11)-(12), it is a
simple matter to show that the earth’s rotation can cause
distortions in the axial velocity profile similar to those shown
in Fig. 8 for the following values of D;

D>17.03 ft. (for air)
D> 4.46 ft. (for water)
D>1.41 ft. (for mercury)

3This channel width D<2 in. corresponds to the flow of mercury and could
have important ramifications in magnetohydrodynamic experiments (e.g., the
Hartmann problem).
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at room temperature, These channel widths are approximately
an order of magnitude larger than those for the corresponding
laminar case. Hence, the earth’s rotation would have a negligi-
ble effect on the overwhelming majority of turbulent channel
flows which could be constructed in the laboratory. Never-
theless, it could play a role in certain special cases (e.g., a large
and low speed wind tunnel or an unusually large cooling duct).

4 Conclusion

Results have been presented in this paper which clearly in-
dicate that the rotation of the earth can induce a roll instability
in the laminar flow of fluids in channels of moderate width
(i.e., for D substantially less than 1 ft for the flow of certain li-
quids). This roll instability was shown to have a severe distor-
tional effect on the axial velocity profiles at the horizontal
centerline y = H/2 of the channel which are obtained when the
effect of the earth’s rotation is neglected. Hence, the usual
assumption of neglecting the effect of the earth’s rotation in
the calculation of a laboratory channel flow in the laminar
regime could lead to serious errors. This surprising result,
which was documented by comparisons with previously con-
ducted stability analyses on rotating channel flow, is similar to
that which was obtained by Benton [1956] several decades
earlier.

Future theoretical research is needed on the effect of the
earth’s rotation on turbulent channel flow. Such a study,
which would be quite difficult because of the lack of reliable
turbulence models for rotating flows, could be of considerable
value. Since the results of this paper indicate that the rotation
of the earth could play an important role in determining the
structure of the turbulent flow of water in channels with a
width D> 5 ft, there could be some important applications in
problems of interest to civil engineers. Future research which
accounts for different orientations of the channel would also
be of value. In this paper, the channel was aligned east-west
(with the sides of the channel parallel to the axis of rotation of
the earth) for simplicity since this is the orientation which
yields the most drastic effect. A study along these lines, which
would incorporate the effects of latitude and variable axial
alignment of the channel, is highly detailed and beyond the
scope of the present study.

Considerable evidence has been presented which suggests
that the rotation of the earth can play a non-negligible role in
the calculation of certain standard laboratory flows. This
rather surprising result, which seems to have gone unnoticed
since the initial work of Benton [1956], warrants substantial
future research from both a theoretical and experimental
standpoint.
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The Mechanisms of Determining
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Shock Locations in One and Two
Dimensional Transonic Flows

The mechanism that locates a shock wave in a transonic flow in one and two dimen-
sions is examined. It is found that in one dimension the shock is located by specify-

ing the downstream pressure whereas in two dimensions the shock is located by the
application of an entropy condition at the sonic line.

Introduction

The discipline of computational fluid dynamics (CFD) has
grown enormously over the last decade. Flows that are quite
complex can now be computed routinely. One such type of
flow is transonic flow with shock waves and it is one aspect of
such a flow that is considered here.

In spite of the progress of CFD some confusion regarding
the nature of transonic flows is apparent, in particular the
mechanism that fixes waves. The present note is concerned
with the mechanisms that determine the shock wave location
in computational solutions of the Euler equations in both one
and two dimensions. It is found that shock locations are deter-
mined by entirely different means in each case so caution is ad-
vised in the use of one dimensional analysis in two dimen-
sional transonic flows.

Analysis

a One Dimensional Flow. For one dimensional nozzle
flows the conservation of mass equation can be written as

pPUS=po, U S =A M

where A4 is a constant and S is the area distribution. The densi-
ty is given in terms of the pressure by

1
———AS/Cp

p=p"* @
where the reference values of p and p are assumed unity, AS is
the entropy jump through a shock wave and C, is the specific
heat at constant pressure.
From the usual density/velocity relation

=U, {—3——[1 — p7 lexp(AS/C,)] + 1} v 3)
Uy - 1ML v

Combining equations (1), (2), and (3) then gives
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pUS=SUpp |t 15 7
(- DMZ

172
sexpl — ASQy — 1)/Cp] + 1} prexp(—AS/C)=A )

The only means of entropy production is the shock wave and
hence AS is constant downstream of the shock. Thus if p is
specified at the downstream boundary the conservation of
mass equation gives the entropy and hence the shock strength.
If the shock strength is known then the location can be found.
If p and AS are known at the boundary then U, p can be found
from equations (2) and (3).
If equation (1) is differentiated with respect to x then
U -4 oS
o TS ax &)
X S ox
Ahead of the shock wave the flow is isentropic. For isentropic
flow the density is given in terms of the Mach number M by
-1

p=po{1+”T“M2} v ©

and
-1

-1 i
U=aM=a, {1 +~72—M2} 2 M ™
where a subscript o denotes stagnation conditions.

Combination of equations (1), (6), and (7) thus gives
=(y+1)

-1
aop,,{1+%1vﬁ} 29 A=A/ @)
Differentiation gives
1-3y
! 260-1 M —A aS
1+~—-M2} D (M= (9
apo {1+ R O

and hence equation (9) will give an infinite value of dM/dx at
sonic conditions unless 3S/dx is zero, that is, the sonic point is
at the nozzle throat. Thus, the bounding of dM/dx in the flow
outside the shock wave simply requires that the sonic point oc-
curs at the nozzle throat; it does not control the shock loca-
tion. In this paper the bounding of dM/dx is called the entropy
condition for convenience since for an accelerating flow an in-
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finite value of AM/dx denotes an expansion shock which per-
mits a non-physical decrease in entropy.

b Two Dimensional Flow. In potential theory a very effec-
tive way to examine the characteristics of the equation is to
write it in integral form; a detailed discussion of this pro-
cedure is given in Nixon (1976). In the next section this pro-
cedure is performed for the Euler equations. Thin airfoil
boundary conditions are assumed. The analysis glven here is
for nonlifting airfoils.

Let a stream function ¥ be defined as

V,=pU¥, =~pV (10)
Now let a perturbation stream function ¢ be defined as
¥=p,Uny+y
Y, =pU—-p, U, 11)
wx =—p V
The governing equation is
U—V,=w (12)

where w is the vorticity; from Crocco’s theorem it is a function
of entropy. This equation can be rewritten as

(7”°°U°°+‘p’) +(ﬁ> —o (13)
o ¥ o /=
or
V2 =pw+Up,~ Vo, =f (14)
The tangency boundary condition is
Ve (X, £0)= = Y{()p(x, £ 0}, (15)

where y/(x, +£0) is the airfoil slope. On the wake
v (x, £0)=0

This can be written in integral form using Green’s identity
to give

¥=l., Kygr —Kr¥)dC,

o (16)
+ jg (KAY, — K, Ap)dE + (5[KfdS

where the kernel function K is the solution of the equation
V2K =5(R)
and is given by

K:——l—ln[(x_ 5)2 + 0,_,,7)2]1/2
27

and A denotes a jump across the x axis; (£, ) are coordinates
in the x and y directions, respectively; the domain S is shown
in Fig. 1. It is required that the first integral be bounded as R
= oo which gives

1
Y —0 faster than 3
Note that the integral around the shock vanishes (Nixon,

1976).
For a symmetric airfoil the integral equation becomes

y=—|" K,Aydt +s|KfdS (17
Differentation of equation (17) with respect to y gives
¥y =pU=po Uy, =~ K, Abds +[5]K,fdS
or, integrating the first integral by parts to give
PU—poUa =, Ky AV d +[5IK, fdS (18)

The upper limit in the first integral is unity since Ay, = 0

downstream of the airfoil. The first integral is known from the

tangency boundary condition. The field integral can be in-
tegrated by parts to give

204/ Vol. 53, MARCH 1986

Airfoil

Fig. 1 Domain of integration S

1 =& —F(£,+0)
ikas=o (], S apre
= F(,+0)y
_L+g P2+ (x—£)? %

£ FE, -0y

It g} S SKy,,FdS (19)

where
F(&my={"f&,n" )dn’
If y # 0 the first part of equation (19) becomes
_{_Sw [F(E, — 0) = F, +0)ly
21 J - Y-y
which is zero for a symmetric F(£, n)

If y — O the integral only has a value for ¢ close to x and
hence

0

d @n

1
S SKJdS— —Ilim lim lm —

y—0 A—0 e—0 2T

X {—F(x,+0) [tan‘l (——%) —tan~! (—;—A—>

+F(x, ~0)tan (—i‘)]}

- SS SK,,deS 22)
" Taking the limits gives
Is§K,fdS= —{sK, FdS 23)
Hence for a symmetric airfoil
PU=po Uy =, K; AYdf = [s]K,, FdS (24)

This is the integral form of the two dimensional Euler equa-
tions. The right-hand side is continuous through a normal
shock (Nixon, 1976). Although a much more detailed analysis
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is given in the quoted reference it is easy to justify this state-
ment by noting that pU is continuous through a normal shock
and hence the right-hand side of equation (24) must also be
continuous.

Consider now the case where x — oo in equation (24). Let
the far field boundary condition be

oF

—6;‘—’0 as x— oo A (25)
Now
and
- SS SKEXFdS= — S [KX 4K, F(X,n)] dn
o — X+e
27

= '"il?S: [?;%;)T]F(Wd"

As e — O this integral only has a value when (y — ) is small and
hence

y+é

l —_—
—S SKEXFdS 2F(e,lim lim —— tan =1 Y

6—0 e~0 €

y—4&

(28)
=—Fx.»)
Since the line integral in equation (24) approaches zero as x —
o, equation (24) becomes, as x — oo,
pU—=pe,Us = F(x,3) = P (0w —p,U—p, V)dy
when equation (14) is used.

Now if the boundary condition as x — oo is that all x
derivatives are zero, then equation (29) becomes

PU= 0o Us =F(pw+p,U)dn (30)
Where w is specified by the entropy production at the shock

and Crocco’s theorem.
Differentiation of equation (30) gives

U, =pw (31)
and w is a function of entropy. Equation (31) is valid for any
shock strength.

If the pressure is specified at the downstream boundary and
the reference values of p, p are assumed to be unity then

1
p=p 7 exp(~AS/C,) (32)
Using the above relation the energy equation can be written as
-1
p 7 exp(AS/C, )+ U2 =
Y- 1 v - 1
Note that since the flow is nonhftmg V is assumed to be zero
as x — oo, Differentiation with respect to y at constant
pressure gives

29

+— (/2

(33)

1 p7! dAS
where R is the gas constant.
From Crocco’s theorem the vorticity is given by
L ot AS/C)) oAS (35)
=——— X ——
R U PAASES

and hence if the pressure is specified downstream then equa-
tion (31) is consistent. If a similar analysis is performed with
the density fixed downstream then

¥ v-1 0A
U,= X | exp(AS/Cv)-é— (36)

ale
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which is not consistent with the result of equation (31). Conse-
quently if a zero gradient boundary condition is imposed the
pressure must be specified.

It can be seen from the above analysis that the boundary
condition for a specified downstream pressure is satisfied by
any shock strength or entropy and, hence, the shock strength
is not fixed by the downstream conditions. An alternative pro-
cedure must therefore be found.

The integral formulation of the two-dimensional Euler
equations, given by equation (24) can be written as

pU=po Uy =G (37

where G is the right-hand side of the integral equation and is
continuous except across an oblique shock; G can be thought
of as the change in area of the streamlines. It has been noted
earlier, in connection with equation (24) that G is continuous
through a normal shock since pU is continuous there. If,
however, the shock is oblique, pU (and hence G) is discon-
tinuous. Ahead of the shock the flow is isentropic and hence,
if freestream values of p and p are unity,
y+1

pU=yp * M (38)

where M is the local Mach number. This can be written using
the isentropic density relation as

-1 —(y+1) v+ 1
pU:@{<1+7—2—~ 1\/12> Hr=1) M}pg 2 =G+, U, (39
Differentiation with respect to x gives

el 1-2 ? 3G
VYo, = (40)
3y—1 J ax
[1 4 y—1 ] 20y-1)
2
Hence, if M — 1, dM/3x is infinite unless
G
limit -0 (41)
M-1 X

At an accelerating sonic point dM/dx — oo implies that an
expansion shock would exist unless the condition of equation
(41) is satisfied. Such an expansion shock would give rise to a
physically unacceptable entropy decrease. In addition, at the |
sonic line

vl I

+1
G= \F<7 ) B /A

The physical implication of equations (41) and (42) is that ex-
pansion shocks must be eliminated from the solution, that is,
no entropy decrease is allowed at the sonic line. There is only
one choice to alter G and that is the shock location. Hence
equations (41) and (42) give the shock location; the second
unknown is the sonic line location.

(42)

Conclusions

An analysis to determine the mechanism to locate shock
waves in transonic flow has been performed. It is found that
the mechanism for locating the shock wave in two dimensions
is different from that in one dimension. In two dimensions the
shock location is fixed by the behavior at the sonic line
whereas in one dimension it is fixed by the downstream boun-
dary conditions.
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The Response of Elastic and
Viscoelastic Surfaces to a
Turbulent Boundary Layer

The unstable response of elastic and viscoelastic surfaces to a turbulent boundary
layer was experimentally investigated in an 18-m towing tank. The compliant
surface deformation was measured using a remote optical technique. The ‘‘Laser
Displacement Gauge’’ employs a Reticon camera equipped with a linear array of
256 photodiodes spaced 25 microns apart. The device was used to measure the
characteristics of two classes of hydroelastic instability waves that form on elastic
or viscoelastic surfaces as a reuslt of the interaction with a turbulent boundary
layer. The instability waves developing on an elastic surface are symmetric and have
a relatively high phase speed and a small wavelength, as compared to the slow and
highly nonlinear ‘‘static-divergence’’ waves observed on the viscoelastic surface.
The experimentally determined wave characteristics are compared to existing
theories on compliant surface instabilities.

Mohamed Gad-el-Hak

Senior Research Scientist,
Flow Research Company,
Kent, Wash. 98032
Mem. ASME

1 Introduction

The motion of a fluid over a surface that complies to the
flow offers the potential for a rich variety of fluid/surface
interactions. Compliant surfaces are currently finding many
engineering applications, such as sound absorption in aero-
engines, vibration reduction in Naval vessels, and noise
shielding in sonar arrays. Moreover, intensive research is
currently being conducted to find compliant surfaces that will
reduce the skin-friction drag on moving vehicles.

The design of a compliant coating to achieve a particular
objective is a complex task requiring the determination of the
surface response to a specific flow disturbance. This response
is excited by the hydrodynamic forces and results in a surface
motion that in turn acts on the flow field near the interface.
Waves that form on the compliant surface can be stable,
unstable, or neutral.

There exists a need for the development of reliable
techniques to measure the compliant surface response under a
variety of flow conditions. Bushnell, Hefner and Ash (1977),
in their excellent review article, state that ‘‘extensive wall
motion measurements must be made before any theoretical
approach to the problem can be reasonably validated.’” The
device needed to measure the surface deformation should be
accurate, have a fast response, and not interfere with the
observed phenomenon. Very few such devices exist today.
Grosskreutz (1971) used a schlieren apparatus to measure the
motion of a homogeneous but nonisotropic compliant surface
made of rubber and subjected to a turbulent boundary layer in
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a water tunnel. He computed the frequency and the
wavenumber dependence of the flexibility of the compliant
wall using the third-octave-spectra of the surface motion. Ash
et al. (1975) used a similar schlieren method to provide flash
photos of a compliant surface deformation in a wind tunnel.
Dinkelacker et al. (1977) placed a 97-mm pressure transducer
containing several hundred membranes under a turbulent
boundary layer. The device served as the mirror-in a
Michelson interferometer. High-speed photographs of the
fringe patterns in the interferometer were used to compute the
dimensions and the speed of convected turbulent pressure
fluctuations. More recently, Rathsam et al. (1983) measured
the ‘‘pre-instability,”’ microscopic surface motion on a PVC
plastisol in a turbulent boundary layer. Their laser/optics
system sensed the instantaneous slope and the frequency of
motion on the compliant surface where a focused laser beam
was reflected. This device is incapable of directly measuring
the amplitude of the surface motion. However, Rathsam et al.
(1983) inferred the amplitude from the measured slope spectra
by assuming a dispersion relation for the compliant surface
response.

Unstable, flow-induced deformations have been observed
experimentally on viscoelastic surfaces (Hansen et al., 1980a;
Gad-el-Hak et al., 1984). No corresponding experimental data
are available for the hydroelastic instability that is
theoretically predicted to exist on an elastic surface (Ben-
jamin, 1963).

In the present investigation, a remote optical technique was
used to measure the flow-induced motion of a compliant
surface. The technique is particularly suited for studying the
two classes of hydroelastic instability waves that are
theoretically predicted to form on an elastic or a viscoelastic
surface as a result of the interaction with a turbulent bound-
ary layer. The wave’s amplitude, wavelength and phase speed
are directly measured with this linear device. Our experiment
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Fig.1 Setup forthe Reticon camera

using viscoelastic coatings have been reported by Gad-el-Hak
et al. (1984). Here, we present new results using elastic
coatings. The two publications provide a data base against
which existing theories on the stability of both kinds of
surfaces can be validated.

2 Experimental Equipment and Procedure

2.1 The Laser Displacement Gauge. The laser displace-
ment gauge (LDG) is a remote optical device used in the
present investigation to measure the vertical displacement of
the compliant surface. The technique was originally
developed by Liu et al. (1982) and Liu and Lin (1982) for
measuring wind waves. Its first use in measuring compliant
surface deformation was reported by Gad-el-Hak et al. (1982;
1984). A schematic of the setup is shown in Fig. 1. The system
employs a Reticon camera (Model LC 600V) driven by a
controller (Reticon Corporation, Model RS605). An optical
interface is created at the surface of the compliant material,
which contains minute amounts of Rhodamine-6G
fluorescent dye,! by projecting a vertical beam of a 5-watt
argon-ion laser (Spectra Physics, Model 164-05) having a
diameter of 1 mm. The displacement of this optical interface
is measured by electronically scanning the photodiode array
housed in the Reticon camera.

The axis of the photodiode array is aligned at a given angle
with respect to the vertical laser beam above the
fluid/compliant coating interface. The optical interface is
imaged onto the photodiode array via a set of lenses and
extension tubes. The linear photodiode array is composed of
256 elements spaced 25 um apart. The aperture width of the
array is also 25 um. The spatial resolution, which is the same
in both the vertical and longitudinal directions, depends on
the field of view. For example, the spatial resolution is 0.01
cm for a field of view of 2.5 cm. In this case, the horizontal
spatial resolution is only about one-tenth the diameter of the
laser beam. The scanning rate of the array ranges from 0.4 to
40 ms. The LDG is a digital device with practically no elec-
tronic drift. The digital output from the controller is a time
series of integers from 1 to 256 updated at a frequency of the
scanning rate. Each integer corresponds to the nth photodiode
on which the optical interface is imaged during each scan. The

T About 0.05 percent by weight.
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digital output is recorded and analyzed on-line with a NOVA
minicomputer system.

Calibration of the LDG is made by displacing the Reticon
camera, which is fixed on an accurate traverse mechanism, to
several vertical positions with predetermined increments. A
second-degree polynomial is best-fitted through the
calibration points to account for nonlinearity resulting from
the aberration of the optical lenses. The ratio of the coef-
ficients of the nonlinear and linear terms was typically 10~4.
For practical purposes, the displacements may be considered
to be linearly proportional to the LDG output.

The Reticon camera is mounted so that it looks down onto
the compliant surface at a nearly horizontal angle (about 15
deg above horizontal). This arrangement minimizes blockage
of the optical interface by the wave crests between the laser
beam and the tank wall on the side where the camera is
mounted. This blockage occurs most often near the troughs of
the waves, where the wave profiles are relatively smooth.
Whenever a blockage occurs, the photodiode array loses its
object (i.e., the optical interface) and the maximum diode
number of 256 is registered by the controller. Therefore,
either a sharp jump or a sharp spike, depending on the
duration of the blockage, appears on the measured wave
profiles. To remove the sharp jumps or spikes, the computer
was programmed to replace them with a straight line that
connects the points before and after each jump or spike.

In the present experiment, the laser displacement gauge was
set to have a frequency response of 1 kHz and to resolve
vertical displacements as low as 0.002 cm.? The surface
deformations were also recorded using a 16-mm movie
camera moving with the plate. For the elastic surface, the
camera was mounted to the side to capture a side view of the
instability waves. For the viscoelastic surface, a top view was
more suitable for observing the instabilities developing on
such a surface.

2.2 Flow Facility. The Flow Research 18-m towing tank
was used in the present experiments. The 1.2-m-wide, 0.9-m-
deep water channel has been described by Gad-el-Hak et al.
(1981). To generate a turbulent boundary layer, a flat plate is
rigidly mounted under a carriage that rides on two tracks
mounted on top of the towing tank. During towing, the
carriage is supported by an oil film to ensure a vibrationless
tow, having an equivalent freestream turbulence of about 0.1
percent. The carriage is towed by two cables driven through a
reduction gear by a 1.5 hp Boston Ratiotrol motor. The
towing speed is regulated within an accuracy of 0.1 percent.
For the present study, the system was able to achieve towing
speeds between 20 and 140 cm/s.

The flat plate used in the present experiment had an
aluminum frame that provided a flat bed for the Plexiglas
working surface. The gaps in the aluminum frame were filled
with lightweight styrofoam, and the frame was painted with
marine enamel to prevent corrosion. The whole structure was
buoyant in water and was flat to within 0.2 mm. Care was
taken to avoid leading-edge separation and premature
transition oy having an elliptic leading edge and an adjustable
lifting flap at the trailing edge. The flap was adjusted so that
the stagnation line near the leading edge was located on the
working surface, which was smooth and was 210 cm long by
106 cm wide. A 45 cm by 95 cm well was built into the
working surface for placing compliant materials of up to 1 cm
in thickness.

Trips were used to generate a fully-developed turbulent
boundary layer. The trips were brass cylinders with 0.32-cm
diameters and 0.25-cm heights placed 20 cm behind the
leading edge and having their axes perpendicular to the flat
plate. During towing, the plate and the movie camera moved

2 The field of view is then about 0.5 cm.
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Fig.2 Side view of the flat plate with the compliant coating insert

at a speed U,,, while the Reticon camera and the vertical laser
beam were fixed in space.

2.3 Compliant Material. A nearly ideal elastic compliant
surface and an incompressible viscoelastic one were used in
the present investigation. The elastic coating was made of
commercially available Knox gelatin. The gelatin powder was
dispersed in boiling water, followed by the addition of an
equal amount of water at room-temperature. The con-
centration of the gelatin was varied in the range of 1 to 6 parts
of weight of gelatin per 100 parts of water. The mixture was
poured into the well in the flat plate and allowed to gel for 16
hours before using for a maximum of eight hours, then a new
coating was formed for the next series of runs. Care was taken
to ensure that the compliant surface was smooth and flush
with the rest of the Plexiglas working surface. Figure 2 is a
side view of the flat plate containing the compliant surface
submersed in the water tank.

Whenever a new coating was poured, a 0.6 cm X 10 cm X
10 ¢m sample was produced from the same mixture to
measure the modulus of rigidity, G. The shear modulus of
rigidity was measured with an automated strain gauge/LVDT
device that subjected the sample to a prescribed shear force
and then measured the displacement. The force-versus-
displacement curve was always linear in spite of the fact that
displacements as high as 50 percent of the thickness were
used. The modulus value was quite sensitive to small dif-
ferences in the mixing process and ranged in value from 400
dyne/cm? at the lowest concentration used to 25,000
dyne/cm? at the highest concentration.

The viscoelastic coating used in the present investigation
was a plastisol gel made by heating to 160°C a mixture of
polyvinyl chloride resin (PVC), dioctyl-phthalate (plasticizer),
and dibutyl tin maleate (stabilizer). The mixture was poured
in a heated aluminum pan and allowed to cool gradually to
complete the gelation process. The pan was then placed inside
the well in the working surface of the flat plate, and its height
was adjusted from the bottom to ensure a flush, smooth
surface. Unlike the gelatin, the PVC plastisol solidified rather
quickly, particularly when the percentage of PVC in the mix
was increased.

Several recent studies have used similar PVC plastisols to
study their interactions with laminar and turbulent flows
[Hansen and Hunston (1974a; 1974b; 1976; 1983), Hansen et

al. (1980a; 1980b); Hoyt (1981)]. In the present experiments,

the modulus of rigidity of the PVC plastisol was varied in the
range of 50 to 125,000 dyne/cm? by changing the percentage
of PVC from 3 to 25 percent in the mixture. The stabilizer was
always 10 percent of the PVC by weight. To check the
viscoelasticity of the plastisol, a dynamic test was conducted

on a sample using the strain gauge/LVDT device. A shear-

stress was applied until the system came into equilibrium, and
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then the stress was suddenly released. The value of the sub-
sequent strain was observd using the LVDT and a Nicolet
digital oscilloscope (Model 4094). The observed time history
indicated that the plastisol could be modeled as a viscoelastic
solid of the generalized Kelvin type (Jaeger and Cook, 1976).
The time constant of the plastisol decreased as the percentage
of PVC in the mix increased. For the three-percent plastisol,
the relaxation time was about 1 second, indicating a relatively
strong damping. Since the mechanical properties of the
material change considerably during gelling, the compliant
surface and the sample were allowed to sit in air for 16 hours
before testing and using in the tank. Typically, a coating was
used for eight hours before a new one was formed for the next
series of tests.

3 Results

The slowest traveling free wave speed on the surface of
either an elastic or a viscoelastic solid is given approximately
by the transverse wave speed ¢, =V G/p,; where G is the shear
modulus of rigidity® and p, is the density of the solid, which
was very close to that of water for all the coatings used in the
present investigation. Whenever the freestream velocity, U,
becomes sufficiently large compared to c,, unstable waves
appear on the solid surface. The onset speed of the two classes
of hydroelastic instability was determined from the Reticon
camera records and from visual observation of the elastic and
viscoelastic surfaces. The results for different moduli of
rigidity and different thicknesses are shown in Fig. 3. For a
particular coating thickness, the onset of instabilities on the

3 For an elastic solid, the shear modulus is real, whereas for a viscoelastic
solid it is complex and frequency-dependent; the real part is the shear storage
modulus G and the imaginary part is the shear loss modulus G,

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



d = 0.32¢cm N 8
0.20— [ A
Ug = 80 cmisec 1 1 ! \
Elastic Coating ,' ' " \
——— Visco-Elastic | (l |
0.15 [— Coating [ i !
[ P
P il
\
I !
o by
- \ :
0.10 | \ | \
£ | 1 | }
£ | \ [ i
£ | \\ | i
E 0051 | \ | \
§ : \ I \\
g ! 4 ] \
VAN \
0.00 fo—- I A \>/ .
| \\ / \\\
————— / \ // N
\\ I N S
-0.05 [— N/ -
"/
~0.10 1 | 1 | i I 1 I L
0.00 0.02 0.04 0.06 0.08 0.10
Time {sec)

Fig.5 Typical surface displacement

viscoelastic coating is generally observed at higher ratios of
the onset speed to the transverse wave speed than for the
elastic coating. For both coatings, U, /¢, decreases as the
thickness, d, increases. In other words, thick surfaces are
more susceptible to hydroelastic instability than thin ones.

To visualize the instability waves on the elastic surface, a
vertical sheet of laser light parallel to the towing direction was
projected onto the flat plate. The laser excited the fluorescent
dye mixed with the gelatin, and a bright, horizontal line
formed at the undisturbed compliant/fluid interface., When a
wave is propagated on the elastic surface, the bright line
deformed correspondingly. A 16-mm movie camera, outside
the tank but moving with the flat plate, recorded the motion
of the bright line, as shown in the side view depicted in Fig. 4.
A sketch of the undisturbed compliant slab is included in the
figure for reference. In this run, the towing speed was U, =70
cm/s, the modulus of rigidity was G=1571 dyne/cm?, and
the coating thickness was d=1.05 cm. The highly asymmetric
waves forming on the viscoelastic surface were more readily
visualized from the top, using conventional flood lights for
illumination (Fig. 5 of Gad-el-Hak et al., 1984).

Typical examples of the instability waves on the elastic and
the viscoelastic coatings, as recorded by the Reticon camera,
are shown in Fig. 5. Both coatings have a thickness of d=0.32
cm, and the freestream speed was U,, =80 ¢m/s. The modulus
of rigidity for the elastic coating was G =740 dyne/cm? and
for the viscoelastic coating, G =50 dyne/cm?. A well-defined
average wavelength and amplitude are apparent. The elastic
waves have smaller wavelength and amplitude as compared to
the waves excited on the viscoelastic surface. The peaks of the
waves on the viscoelastic coating are sharp and the valleys are
shallow and broad, while the elastic waves are more or less
symmetric. The waveform on the viscoelastic surface appears
to be nonsinusoidal, with higher harmonics phase-locked with
the fundamental wave.

In the viscoelastic coating case, small-amplitude waves
always grew very rapidly to large amplitude waves; con-
sequently, a wave train of small amplitude could never be
recorded. With the elastic coating at low flow velocities,
small-amplitude waves existed. The growth mechanism for
the two kinds of instabilities appears to be different.

The average wavelength was measured from the cine films.
By averaging over several frames, the statistical scatter of this
random phenomenon was reduced to a standard deviation of
less than 20 percent. For both the elastic surface and the
viscoelastic surface, the wavelength has a strong dependence
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Fig. 6 Wavelength dependence on thickness and flow speed

upon the depth of the coating and upon the flow speed. The
results for the viscoelastic surface were reported by Gad-el-
Hak et al. (1982; 1984). Here, we primarily present the results
for the elastic surface. Figure 6(a) is a dimensional plot of the
wavelength for five gelatin coatings. The elastic waves have
about half the wavelength of that of the viscoelastic waves for
comparable moduli and thicknesses, indicative of the two
different types of instability. The wavelength increases as the
flow speed and the coating thickness increase for both
coatings. However, a maximum wavelength is observed for
each of the five viscoelastic coatings (see Fig. 13 of Gad-el-
Hak et al., 1984). The flow speed at which this maximum is
observed coincided with the appearance of a three-
dimensional wave structure superimposed on the normally
two-dimensional viscoelastic waves. As the velocity continued
to increase, small irregularities along the wave crests seemed
to spawn new crescent-shaped waves downstream. As these
additional waves appeared over the viscoelastic surface, the
average wavelength decreased. No similar phenomenon was
observed for the elastic coating at the speeds achieved in the
present experiments.

The data of Fig. 6(a) are normalized with the thickness, d,
and the transverse wave speed, c¢,, and are replotted in Fig.
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0.40 6(b). Scaling the wavelength with the thickness reduces the

range of the elastic coating data but does not appear to
collapse the data, suggesting that another length scale may be
* relevant to the problem. For the viscoelastic coatings, the data
collapse reasonably well for the two-dimensional waves, while
the three-dimensional wave data do not collapse (Fig. 12 of
Gad-el-Hak et al., 1984). )

The average peak-to-trough amplitude, 2A, was computed
Q- from the Reticon camera’s output. The results are shown in
L Figs. 7(a) and 7(b) for the elastic coating’s dimensional and
normalized data, respectively. The peak-to-trough amplitude
- for the waves on both the elastic and viscoelastic surfaces
T increases monotonically with both the thickness and the flow
e speed. The elastic wave data do not collapse when the am-
o . plitude is normalized with the coating thickness, while the
0.04 |— Cg)@’ _ ﬂq%_/v/' viscoelastic waves do scale with the thickness indicating,

perhaps, that the maximum amplitude is limited by the
prs 0 e "lm ; 1|20 E— thickness (Fig. 15 of Gad-el-Hak et al., 1984). However,
confidence in the latter result should be tempered by the
Voo fomisec) limited amount of data in the figure.
Fig.7(a) Dimensional piots As mentioned before, very few small-amplitude waves were
ever observed on the viscoelastic coating, No measurable
dlom G (dynelcm?) o b surface deformation was observed as long as the velocity was
04 | T2 W i below the onset speed; immediately above the threshold
—r - 040 T 7 s velocity, waves with amplitudes of typically 24/d=0.5 ap-
S S s peared. With the elastic coating at velocities near onset, small-
—k— s e gy ‘ .”| amplitude waves existed. The growth rate for the two waves is
03~ ;8 : evidently diff
. p yZ y different.
e e 7 One of the greatest differences between waves on the elastic
i ,EO /@ 7 and the viscoelastic coatings is the phase speed. The phase
speed, c,, was determined from the record of the Reticon and
the movie cameras using the relation:

g .
i PN A=P(U., —c,),

/
0.1 — 4 '_grﬂ // where X is the wavelength measured from the ciné films, P is
/6 b the period measured from the Reticon camera’s record, and
SFo .~ U, is the flow speed. As shown in Fig. 8, the phase speed for
I L 1 . |, ] the elastic waves is between 25 and 50 percent of U,. As
5 noted by the error bars, there is some uncertainty in the data.
Nevertheless, it appears that the phase speed for elastic waves
Ucol \/GTay is a constant percentage of U, independent of U, /c,. On the
other hand, the viscoelastic waves have an extremely low
phase speed compared to other characteristic velocities in the
Fig.7 Wave-amplitude dependence on thickness and flow speed fluid. The maximum value of ¢, for these waves was five
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percent of U, (Fig. 14 of Gad-el-Hak et al., 1984). For the
waves on the viscoelastic surface, the phase speed increases as
the flow speed or the thickness increases. The dependence on
flow speed for .these coatings appears to be given ap-
proximately by a power law:

2.6
e, ~Ug

4 Discussion

A solid in a vacuum can sustain free surface waves that may
be modeled as a linear combination of waves having
displacements perpendicular to or parallel to the propagation
direction. These are called transverse and longitudinal
displacement waves, respectively. For a linear-elastic solid,
the propagation velocity of the transverse waves is ¢, =
NG/ p,, and that of the longitudinal waves is ¢, =V (A +2G)/p,
where G and \ are elastic constants and p, is the density of the
solid. For a nearly-incompressible solid, A> >G and ¢;— .
The free surface wave dispersion relationship for a finite
thickness solid has been reported by Gad-el-Hak et al. (1984).

To determine the effects of the fluid motion on the com-
pliant surface, the analysis should be extended to include the
surface stresses induced by the fluid moving over the com-
pliant coating. Some general aspects of this case have been
addressed by, among others, Benjamin (1960; 1963), Landahl
(1962), and Kaplan (1964). Benjamin and Landahl have
conducted stability analyses and have established that three
types of instability waves may exist. The first type, labeled
Class A, is a wave that is destabilized by the addition of
dissipation or damping in the system. Duncan et al. (1982)
have suggested that pressure phase lags transfer energy from
the flow to the interfacial wave system, thus stabilizing these
waves. Static-divergence waves, commonly observed on
viscoelastic surfaces excited with a turbulent boundary layer
of sufficient strength, appear to be members of this class. The
second type, Class B waves, is stabilized by damping and
destabilized by pressure effects, as for example in the case of
wind waves. The third type, Class C, corresponds to a Kelvin-
Helmholtz type of instability, where the waves grow or decay
primarily through reversible processes. Kaplan (1964) has
computed solutions for specific cases.

Experimentally, conditions have been identified in which
flow-induced deformations occur on a viscoelastic surface.
Boggs and Hahn (1962) were probably the first to point to the
existence of a large-amplitude, spanwise wave structure on a
compliant surface/fluid interface due to the fluid motion.
These ‘‘static-divergence’’ waves (Class A instability) ap-
peared after the freestream speed exceeded an onset velocity
threshold. The term ‘‘static divergence’’ is derived from the
analogous static instabilities that precede flutter on a flat plate
exposed to a high-speed flow (Weaver and Unny, 1970; 1973).
In a series of experiments, Hansen & Hunston (1974a; 1974b;
1976; 1983) and Hansen et al. (1980a; 1980b) established
several quantitative characteristics of the static-divergence
waves, such as the conditions for their initiation, their
propagation speed and their influence on hydrodynamic drag.
Gad-el-Hak et al. (1982; 1984) presented definitive data on the
instabilities of a viscoelastic coating.

No corresponding experimental data are available for Class
B instabilities. It is anticipated from the theoretical work of
Benjamin (1963) and others that these instabilities may appear
on compliant surfaces having little or no damping. Hence, the
use of elastic coatings in the present investigation was in-
tended to provide a data base for existing theories on the
stability of elastic coatings.

The complexity of the problem of fluid/solid interaction
necessitates several restrictive assumptions in formulating a
theory. Assuming that the surface stress of primary im-
portance due to the fluid is pressure, the effect of the fluid
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motion on the compliant surface can be simply modeled by
considering the basic flow over the coating as inviscid and
unsheared, and, hence, using potential flow theory to
determine the surface pressure in terms of the surface
displacement. Duncan et al. (1985) have recently explored the
dispersion relation for a one-layer, viscoelastic solid. Duncan
and Hsu (1984) extended the one-layer analysis to determine
the response of a two-layer coating to pressure disturbances
from a turbulent boundary layer. The model of Duncan et al.
(1985) couples a homogeneous, isotropic Voigt material of
uniform thickness and infinite horizontal extent with a
modified potential flow. The actual mean pressure
distribution in a turbulent or laminar boundary layer flow is
represented by modulating a potential flow pressure equation
to allow for a reduced magnitude and phase change. Although
this may be a reasonable assumption in view of the ex-
perimental data of Kendall (1970) and the theoretical work of
Benjamin (1959), the results obtained numerically by Duncan
et al. (1985) are only in qualitative agreement with the present
experimental data and those obtained by Gad-el-Hak et al.
(1984).

By selecting ‘‘appropriate’” values for the model’s
parameters, Duncan et al. (1985) give detailed comparison
between their calculations and existing experimental data. In
the case of a viscoelastic coating with high damping, they find
that the first instability occurring with increasing flow speed is
a damping instability (Class A), which has phase speeds of a
few percent of U,. When the damping is reduced sufficiently
to approximate an elastic coating, the first instability found
with increasing flow speed is a phase-lag instability (Class B),
which has a much larger phase speed. Their model gives
reasonable predictions in both magnitude and trend for the
onset flow velocity and phase speed of the waves under
turbulent conditions; however, predictions of wavelength
were not as satisfactory. Duncan et al. attributed the dif-
ferences between theory and experiment to the extremely
complex viscoleastic properites of the compliant materials
used in the experiments and to the difference between pressure
fluctuations in an actual boundary layer flow and those
represented by their modified potential flow. They concluded
that more accurate predictions may be obtained by increasing
the complexity of the flow and solid models without changing
the basic physics of the coupling between the two.

5 Conclusions

The flow-induced motion of a compliant surface was
measured using a remote optical technique. Two different
classes of hydroelastic instabilities were observed on the
elastic surface and on the viscoelastic surface. The onset speed
for these instabilities depends upon the coating’s geometrical
and mechanical properties. The elastic surface instability has
a relatively high phase speed and a small wavelength, and its
wave profile is symmetric as compared to the slow and highly
nonlinear ‘‘static-divergence’’ waves observed on the
viscoelastic surface. Thus, it appears that the addition of
viscous damping to a compliant material can produce a
dramatic difference in the characteristics of the waves on the
solid/fluid interface when subjected to the perturbation of a
turbulent boundary layer. The experimentally determined
wave characteristics compare qualitatively to existing theories
on fluid/compliant surface interactions.

The experimental results presented in Section 3 agree
qualitatively with the theory by Duncan et al. (1985). The
onset speed and the slow phase speed observed for the waves
on the viscoelastic surface are the same as that predicted for
Class A instability (static-divergence waves). On the other
hand, the theory predicts a much higher phase speed for Class
B instability occuring on surfaces with little or no damping.
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The phase speed of the elastic waves is an order of magnitude
larger than that for the viscoelastic waves as seen in Fig. 8 of
the present paper and Fig. 14 of Gad-el-Hak et al. (1984).
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Stresses and Displacements on the Boundaries of
Circular Rings Diametrically Loaded

A.J. Durelli"? and Y. H. Lin®

The paper deals with stresses and displacements in circular
rings of rectangular cross-section, loaded in the plane and
perpendicular to the boundary. Values are given for all points
at the inside and outside boundaries, are presented
parametrically for rings for which the ratio of diameters
ID/OD varies from 0 to very close to 1, and have been ob-
tained from several sources, mainly Nelson’s equations.
References to some previous contributions are included. The
information presented in the paper was not available in a
complete manner and will be useful in numerous structural
applications. The analysis corresponding to loads applied
tangentially to the boundary could be approached in a similar
manner.

Introduction

The circular ring of rectangular cross-section with a con-
centric hole is probably the most commonly treated geometry
in the stress analysis literature, and the most commonly
considered loading condition of that geometry is the pair of
loads diametrically applied to the outside boundary. Ap-
plications are numerous because this type of ring is the
transverse cross-section of tubes widely used in many kinds of
construction. Many contibutions to the solution of this
problem can be found in the literature. Several of these are
referred to in treatises like the ones by Timoshenko [1], Roark
[2], and Peterson {3], and they include some basic theoretical
work like Filon’s [4] as well as experimental results [5].
Among other important contributions the work of Billevicz
[6], Horger [7], Bell [8], and Ripperger and David [9] may be
mentioned. Probably the most thorough treatment of the
subject has been conducted by Nelson [10] in his thesis. Some
of the other contributions, by one of the authors, to this
subject can be found in [11].

For many applications, in particular the use of rings as
dynamometers, the necessary information from the many

'Fellow ASME.

2University of Maryland, College Park, Md. 20742.

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME
Applied Mechanics Division, July, 1984; final revision, April, 1985.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject(t:cg)gglulgncens

papers mentioned is limited to the maximum and minimum
stress on the inside boundary of the ring when the ring is
loaded by a pair of opposite forces. There are other ap-
plications, however, like the use of rings as dynamometers for
the simultaneous measurements of several pairs of opposite
loads, which require the knowledge of stresses at all points of
the inside boundary, and the possession of this knowledge
parametrically for many ratios ID/OD of the inside to the
outside boundary. '

The authors are proposing in another publication the use of
coefficients of influence to evaluate the multiple loads applied
to the rings. The object of this note is to present
parametrically in a manner that permits a direct use of the
data the values of stresses and displacements on the inside and
outside boundaries for ratios ID/OD from 0 to 0.92.

The results presented are drawn from both theoretical and
experimental contributions. Advantage has been gained by
the cross plotting of curves to increase precision. Advantage
has also been gained by the use of the two limiting cases, the
small circular hole in an infinite plate (Kirsch solution) and
the curved beam formulae for the very thin ring. Both give
highly accurate results. It is believed that this is the first time
parametrical information has been presented covering
practically the whole field. The scope of the paper is limited
however to the elastic behavior of materials, and small
deformations of the rings. Considerable information for the
case of finite deformations can be found in another
publication [12].

Stresses on the Inside and Outside Boundaries

Only the stresses at four points of the boundaries for some
typical o = ID/OD were calculated by Nelson [10]. The
complete analysis was conducted here using his equations:

P P

= =M, —— + —— (—M, cos20* + M, cos4f*

(@) ° wR,t  wR,t ( 2 4
— M, cos68* + . . )
and
M'P P P

=— —-M,’ — + —— (M,’cos26* — M, ' cost*

(@) wR,t ° TRt 7rRDt( 2 ¢

+ M 'cos66* . . .)

3
where M’ =1when@*=x/2 or%r

T ir
M’ =0when 6* # 5l or;
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diametrically loaded (0 < « < 0.7; « as parameter)

2 20
— M, =
1-a?) (1-a?)
4na”2(1 - o?)(1 — o)
" Qn
, 4(1 - a2)2 n2a2n
Mn = T

o On

0=

forn=2,4,6, . ..

forn=24,6, ...

and
Q" =(1 . 012")2 _n2a2n—2(1 ——012)2

The meaning of other symbols is explained in Fig. 1.

There is good agreement between the more extensive
computations conducted here (Figs. 2-11), and those shown
by Nelson. It should be pointed out, however, that as a
consequence of the series nature of the solution, a jump was
found for the values of the stresses in the neighborhood of the
point of load application for the low values of «. For the
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Fig. 4 Stress factors along the inner boundary of circular rings
diametrically loaded (0 < « < 0.7; ~ 40 deg < 0 < 90 deg; 0 as
parameter)

computations reported here, sixty terms were used in the
series. A larger number of terms may decrease the amount of
the jump (see for instance Fig. 9). It was also observed that
Nelson’s values for the inside boundary at the vertical axis are
slightly higher than some of the ones reported here.

Displacements on the Inside and Outside Boundaries

Nelson also gives the displacements for the four
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aforementioned points (Fig. 1). The values for all points on
the boundries, given in Figs. 12-21, were calculated using the
following equations for («,); and (¢,) , '°.

’ ’

. P ,
(u€)0=(u)R,~=0,Ro ""Nol 7—T_E'+ 7r_E‘(N2 cos26*

— N, cos40* + N, cos66* . . .)
where
N,=2a/1—a?

4

Ny = o (1~ a?)(1
n*-1

+a2) + (1 + )1 - a?)1/0,
forn=2,4,6 ...
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On the Singularities in Reissner’s Theory
for the Bending of Elastic Plates

W. S. Burton! and G. B. Sinclair!

Wedge-shaped elastic plates under bending, with the edges
Jorming the wedge vertex being either siress-free, clamped or
simply supported, are characterized as to possible singular
behavior within the context of Reissner’s plate theory.

Introduction

Probably the first singularity analysis of an angular elastic
plate under bending is William’s treatment using the classical
theory [1]. In the classical theory it is possible to satisfy stress-
free conditions at an edge solely in an approximate way, since
only two boundary conditions can be enforced and there are
three stress resultants. As the boundary conditions play an im-
portant role in governing singular behavior at the vertex of
any corner in a plate it is to be expected that Reissner’s theory
[2], which admits three, physically-natural, boundary condi-
tions on an edge, may offer an improved, albeit singular,
representation in these instances. This is the expectation that
possibly motivated other analysts (e.g., Wang [3]) to perform
analyses of complete, individual, crack problems using
Reissner’s theory rather than the classical, and indeed more
physically sensible results are derived in these analyses.
Specifically, for the crack-tip on the tensile face of the plate
the same hydrostatic singular field ahead of the crack as oc-
curs in the extensional case of a cracked plate under tension is
found; this is in contrast to the classical bending theory in
which the principal stresses ahead of the crack differ in sign
and magnitude. As a result it would seem reasonable to at-
tempt the analogue of Williams’ study for the classical theory
[1] and explore the singularities in Reissner’s plate theory for a
wider range of geometries than that investigated elsewhere and
for a full range of boundary conditions; this is the intent of the
present note.

We begin by formulating a class of problems for a wedge-

lDepartmem of Mechanical Engineering, Carnegie-Mellon University,
Pittsburgh, PA 15213.
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Fig. 1 Geometry and coordinates for the plate

shaped elastic plate under bending within the context of
Reissner’s theory. Next we establish suitable solution forms
for the dominant asymptotic response near the wedge vertex
and set down conditions for the existence of these fields. The
conditions basically involve the analysis of an eigenequation
for each pair of edge conditions considered. The note con-
cludes by displaying these eigenequations and discussing the
eigenvalues satisfying them which give rise to singularities.

Formulation
The plate has thickness # and occupies the open wedge
region, R,
R={(n0) l0<r<oo,—a/2<f<a/2}(0<a<2m), (1)

where (r,0) are the polar coordinates of a point P in the wedge
with respect to the origin, 0, at the wedge vertex, and « is the
vertex angle (Fig. 1).

The plate is comprised of a homogeneous, isotropic, and
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BRIEF NOTES

Table 1 Eigenequations for Reissner’s plate theory generating
singular moment resultants

Edge Conditions Eigenequation Constants
Stress-free/stress-free sinAa=C| A\ Cy =(~)sina
Clamped/clamped sinha= C,A Cy=(~1/8)**lsina

Clamped/stress-free

sin?ha = Cy — Cy,A?

Cy=4/x(1+ v)?
Cy=(1/x)sin*a

Stress-free/simply supported sin2ha = Cs\ Cs =sin2a

Clamped/simply supported sin2Aa = CgA Cg={(~1/x)sin2c

Simply supported/simply cosha=C5 Cy=(~)¢cosa
supported

Note: k=1,2 for symmetric or anti-symmetric loading, respectively, and «= (3 - »)/(1 + »).

linear elastic material having Young’s modulus, E, and
Poisson’s ratio, ». For this plate the stress resultants and rota-
tions of Reissner’s plate theory, in the absence of surface
loading, can be expressed in terms of the out of plane deflec-
tion, w(r,f), and a single stress potential, x(r,6). That is,

1oy B ax
2 T P
1 dx 1 3% )

M, =2 (w___—__*
VZYNE 39 aroe

D< Pw N 1 ow N 1 62w>
—D{v — —
ar? roor rr 40/’

/1 9 9% d 3?
Mr:2ry__<_ _X) _D<__W_._+__If__ __.._145_4__.1._ _...._M_}_>,

ar\r 46 or? r o or 2 30%
1 3%y d 1 ox
ot (22 z
7 =Y\GT a2 rar roor @
| Da ( 1 6W>
B "R TR
2y ax 1 aw
By = D(—-») o r 89’
2 1 0 aw
B =—L X

D(1-») r 080 or’

on R, where V,, V,, the shear resultants, M,, M,, M,,, the mo-
ment resultants and 34, 3,, the rotations, are functions of r, 6,
defined in the usual manner, with y=h%/10, D=Eh*/
12(1 —»?), the last being the flexural rigidity. Then the field
equations of Reissner’s theory are reduced to the Cauchy-
Riemann equations for the functions x —yV?y and DV 2w,
ie.,

a 1 d
—(x =y Vi) =— —— (DV W),
ar(x YVx) P ( w)

1 4 ad ®
[ — v2 :.._._—_ szw ,

50 (x—vv?x) 9 ( )

on R. Here v? is the Laplacian operator in cylindrical polar
coordinates.

On each wedge face three homogeneous boundary condi-
tions are to be satisfied. These three boundary conditions are
combined in sets of edge conditions to model various edges as
follows: .

My=M,=0,V,=0,
B{):ﬁr:OaW:O’ (4)
M,=0,8.=0, w=0,

on = +a/2 (0<r< o). These three cases combine to give six
distinct problems for the wedge. When the same conditions
apply on each face, it is possible to distinguish between sym-

Stress-free
Clamped
Simply supported

Journal of Applied Mechanics

metric and anti-symmetric contributions. Thus, in effect, nine
problems are considered. Ensuring bounded displacements
concludes our formulation and limits the singular behavior
admitted-while this formulation is then still not complete, it
suffices given our objective of characterizing possible singular
fields at the wedge vertex. We next consider the construction
of suitable sets of asymptotic solutions.

Singularity Analysis

From the form of the relations in (2), observe that if
w=0@M1), x=00**1), as r—0 on R, \ a constant, then the
shear resultants and rotations are 0(*), while the moment
resultants are 0(>~!). Accordingly we seek to construct
separable solutions for w, x satisfying the governing equations
(3) which furnish six independent constants multiplying these
dominant contributions as r—0, thereby providing a means of
satisfying the six boundary conditions contained in any pair of
the edge conditions (4). To this end, and noting that x — AV 2x
and DV 2w are harmonic functions and the interrelations in
(3), we therefore take as our asymptotic solution forms for x
and w, the biharmonic functions?

x=rMIE(N60) + 002 3),
w=p MG\ 0) +0(r3), %)
as r—0 on R, where
F(A0) =(bicos(A+ 1)0 + b,sin(A+ 1)8
+ bycos(A— 1) + bysin(A — 1)6),
G(NO)=(bssin(A+ 1)8+ bgcos(A+ 1)0
—yb;sin(A — 1) + vb,cos(h— 1)0)/D.

The stress and moment resultants and the rotations in (2) may
then be written as

V, =P \F' +0(P+2), Vy=—(\+ DrF+0(+2),

My == 29yNF' = D((A + 1)(1 + NG + G”)] +0(>*1),
M, =P =1[29NF’ = D( (A + DA+ )G + vG )]+ 00 1),
M,y =y (F" =+ DA — DF) — D1 — p)AG ']+ 0(+Y),

_ —2y / +
Bg—rx[m()\-i—l)F—G ]+0(r)‘ 2), ©6)

_ 2y y ] A2
B,=r [D(I—V)F A+1G [ +0(™*),
as r—0 on R, where the primes denote differentiation with
respect to 6.

With this set of separable functions for w and x the
singularity analysis proceeds in a manner similar to that
developed by Williams [4] for power singularities and by
Dempsey and Sinclair [5] for logarithmic singularities. Impos-
ing the displacement regularity requirements on (6) and con-

ZNote that one cannot use Reissner’s solution [2] and have a sufficient
number of independent constants available for the asymptotic analysis.
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BRIEF NOTES

fining attention to singular solutions, the resulting conditions
may be summarized by

M =0(r*-!) for real A satisfying D=0, 0<A <1,

sin(ninr) .
M=O<r*“ ) for complex A=£ +in

cos(ylnr)

satisfying D=0, 0< AReN< 1, ©)

M = 0@~ !inr) for real A satisfying

dII*IHD
— =0, m<n, O<A=<]1,
dn\n—m
sin(yinr)
M=0(r"inr ) for complex A=£+ iy
cos(ninr)
satisfying W:O, m<n, 0<Rer=1,

as r—0 on R, where M=(M,, M,, M) is the vector of mo-
ment resultants. In (7), D is the determinant of the coefficient
matrix stemming from the substitution of (6) into a set of edge
conditions drawn from (4) and # is the order of this matrix, m
its rank. For any particular combination of the edge condi-
tions (4) for a wedge angle «a, the values of \ in the ranges
given in (7) may be regarded as the singular eigenvalues of the
eigenequation, D=0. We now investigate the eigenequations
resulting from such expansions.

Eigenequations

For the particular problem of the symmetric bending of a
stress-free/stress-free wedge, substituting (6) with
b, =b; =bs =0 therein into the first of (4) and expanding the
determinant of the resulting 3 x 3 coefficient matrix leads to

sin(A + 1)a/2(\sine + sin\er) = 0(0 < ¢ < 277). ®)

Equation (8) factors into two equations; however, the first of
these, while not generating a completely trivial solution, does
not give rise to any moment resultants and therefore con-
tributes no singular fields. Consequently, it may be discarded
leaving as our eigenequation for this case only the second fac-
tor. The eigenequations for the remaining combinations of the
edge conditions each possess similar, non-singular,
multiplicative factors. In Table 1, we suppress these and list
only those parts of each eigenequation that have attendant
singular fields.

Comparison of the first three cases in Table 1 with the cor-
responding extensional cases given in Williams [4] shows the
eigenequations to be identical. Examining the fourth and fifth
cases in Table 1 and noting that the conditions for the simply
supported edge in (4) are the same as anti-symmetry re-
quirements, we see these eigenequations are equivalent to the
anti-symmetric parts of the first and second eigenequations,
respectively, for a wedge of angle 2. It follows that these two
cases are also effectively contained in Williams’> extensional
analysis [4]. Finally, taking as the physical analogue of the
simply supported/simply supported edge condition, the exten-
sional anti-symmetry conditions, u, =0, g, =0 where u, is the
radial displacement and g, is the tangential normal stress, we
find that the last case too has a corresponding extensional
eigenequation. The significance of this correspondence is that
discussions in the literature on the extensional eigenequations
are directly applicable to elastic wedges generated by
Reissner’s bending theory.

Solutions for the dominant singular real part of \ are given
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for the first three cases in Table 1 by Williams [4] and are
decomposed in effect into symmetric and anti-symmetric parts
by Kalandiia [6], thus accounting for the first five cases. The
roots for the last case, simply supported/simply supported,
can be determined by inspection. Some of the eigenvalues
given in [4, 6] are actually the real parts of complex solutions;
however, no truly comprehensive search for complex roots ap-
pears to be available in the literature. Such a parameter study
is outside the scope of the present work. Nonetheless, for any
given application the determination of complex eigenvalues
proceeds routinely on separating the pertinent eigenequation
for the specific a-value into real and imaginary parts and solv-
ing the resulting, simple, simultaneous pair of transcendental
equations. Likewise, logarithmic singularities have not been
exhaustively searched for, but are straight forward to check
for in any specific instance.

In conclusion we remark that the correspondence between
the singular fields in Reissner’s theory and those in extensional
plate theory is not restricted merely to the singular eigen-
values, but carries over to the actual eigenfunctions which
share the same r and 0 dependences, as can be deduced from
the solution (6) and its counterpart in Williams [4].
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Dynamic Behavior of Beam Structures
Carrying Moving Masses

S. Saigal’

Introduction

The dynamic response of structures carrying moving masses
is a problem of widespread practical significance. A detailed
survey of research efforts in this field was given by StaniSic et
al. [2]. The original problem is nonlinear in both local and
convective derivatives [3] and is complicated by the presence
of a Dirac-Delta function as a coefficient in the differential
equation of motion. Previous methods [2] applied for the
solution of this problem are approximate in nature and
tedious in their hierarchy of mathematical operation. Recent-
ly, Stanisic [3] expressed the solution in terms of eigenfunc-
tions satisfying the boundary, initial and transient conditions,
for a heavy mass moving over a simply supported beam.
However, in engineering practice there are problems that in-

-volve more complex boundary conditions and, therefore, it is

of phenomenological interest to look into the physics of the
dynamical behavior of a clamped and a cantilever beam under
the action of heavy moving masses. The present study extends
Stanisic’s theory [3] to study the dynamic behavior of a
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fining attention to singular solutions, the resulting conditions
may be summarized by

M =0(r*-!) for real A satisfying D=0, 0<A <1,

sin(ninr) .
M=O<r*“ ) for complex A=£ +in

cos(ylnr)

satisfying D=0, 0< AReN< 1, ©)

M = 0@~ !inr) for real A satisfying

dII*IHD
— =0, m<n, O<A=<]1,
dn\n—m
sin(yinr)
M=0(r"inr ) for complex A=£+ iy
cos(ninr)
satisfying W:O, m<n, 0<Rer=1,

as r—0 on R, where M=(M,, M,, M) is the vector of mo-
ment resultants. In (7), D is the determinant of the coefficient
matrix stemming from the substitution of (6) into a set of edge
conditions drawn from (4) and # is the order of this matrix, m
its rank. For any particular combination of the edge condi-
tions (4) for a wedge angle «a, the values of \ in the ranges
given in (7) may be regarded as the singular eigenvalues of the
eigenequation, D=0. We now investigate the eigenequations
resulting from such expansions.

Eigenequations

For the particular problem of the symmetric bending of a
stress-free/stress-free wedge, substituting (6) with
b, =b; =bs =0 therein into the first of (4) and expanding the
determinant of the resulting 3 x 3 coefficient matrix leads to

sin(A + 1)a/2(\sine + sin\er) = 0(0 < ¢ < 277). ®)

Equation (8) factors into two equations; however, the first of
these, while not generating a completely trivial solution, does
not give rise to any moment resultants and therefore con-
tributes no singular fields. Consequently, it may be discarded
leaving as our eigenequation for this case only the second fac-
tor. The eigenequations for the remaining combinations of the
edge conditions each possess similar, non-singular,
multiplicative factors. In Table 1, we suppress these and list
only those parts of each eigenequation that have attendant
singular fields.

Comparison of the first three cases in Table 1 with the cor-
responding extensional cases given in Williams [4] shows the
eigenequations to be identical. Examining the fourth and fifth
cases in Table 1 and noting that the conditions for the simply
supported edge in (4) are the same as anti-symmetry re-
quirements, we see these eigenequations are equivalent to the
anti-symmetric parts of the first and second eigenequations,
respectively, for a wedge of angle 2. It follows that these two
cases are also effectively contained in Williams’> extensional
analysis [4]. Finally, taking as the physical analogue of the
simply supported/simply supported edge condition, the exten-
sional anti-symmetry conditions, u, =0, g, =0 where u, is the
radial displacement and g, is the tangential normal stress, we
find that the last case too has a corresponding extensional
eigenequation. The significance of this correspondence is that
discussions in the literature on the extensional eigenequations
are directly applicable to elastic wedges generated by
Reissner’s bending theory.

Solutions for the dominant singular real part of \ are given
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for the first three cases in Table 1 by Williams [4] and are
decomposed in effect into symmetric and anti-symmetric parts
by Kalandiia [6], thus accounting for the first five cases. The
roots for the last case, simply supported/simply supported,
can be determined by inspection. Some of the eigenvalues
given in [4, 6] are actually the real parts of complex solutions;
however, no truly comprehensive search for complex roots ap-
pears to be available in the literature. Such a parameter study
is outside the scope of the present work. Nonetheless, for any
given application the determination of complex eigenvalues
proceeds routinely on separating the pertinent eigenequation
for the specific a-value into real and imaginary parts and solv-
ing the resulting, simple, simultaneous pair of transcendental
equations. Likewise, logarithmic singularities have not been
exhaustively searched for, but are straight forward to check
for in any specific instance.

In conclusion we remark that the correspondence between
the singular fields in Reissner’s theory and those in extensional
plate theory is not restricted merely to the singular eigen-
values, but carries over to the actual eigenfunctions which
share the same r and 0 dependences, as can be deduced from
the solution (6) and its counterpart in Williams [4].
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Introduction

The dynamic response of structures carrying moving masses
is a problem of widespread practical significance. A detailed
survey of research efforts in this field was given by StaniSic et
al. [2]. The original problem is nonlinear in both local and
convective derivatives [3] and is complicated by the presence
of a Dirac-Delta function as a coefficient in the differential
equation of motion. Previous methods [2] applied for the
solution of this problem are approximate in nature and
tedious in their hierarchy of mathematical operation. Recent-
ly, Stanisic [3] expressed the solution in terms of eigenfunc-
tions satisfying the boundary, initial and transient conditions,
for a heavy mass moving over a simply supported beam.
However, in engineering practice there are problems that in-

-volve more complex boundary conditions and, therefore, it is

of phenomenological interest to look into the physics of the
dynamical behavior of a clamped and a cantilever beam under
the action of heavy moving masses. The present study extends
Stanisic’s theory [3] to study the dynamic behavior of a
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clamped and a cantilever beam under moving masses. The ef-
fects on response of the beam of magnitude and location of
the moving mass on the structure and the convergence of
amplitude coefficients of the series are studied.

Equation of Motion

The equation of motion of a beam on an elastic foundation
subject to a moving mass M can be written in the non-
dimensional form, neglecting the convective part of accelera-
tion, as [3]

3*Y(z,7) 32Y(z,7)
—.——+ —_— e

P [1+eb(z—2,)] 372

+xY(2,7)=P8(z2—2,) H

where

x x, (1) M !

=— 1) = ; =— =—
= R 0= S A T

4 4 2

ALY KLY Mgl y(o0)

C TR “TTEI g YW=

ET=flexural rigidity of the beam; p =density of the material
of the beam; A = area of cross-section of the beam; L =length
of the beam; k = coefficient of elastic foundation; g = accelera-
tion due to gravity; y(x,¢) = deflection of the beam at location
x at time #; 8( )= Dirac-Delta function; x, (#) = position of the
mass at time ¢, Also, we have,

a) Boundary conditions: Y(0,7)=Y'(0,7)=Y(l,7)=
Y  (1l,7)=0 for clamped beam and
YO0,n=Y0,n=Y"(1,n)=Y"(1,7)=0 for cantilever beam.

b) Initial Conditions: Y(z,0)= Y(z,0) =0, where primes (')
and dots () denote the derivatives with respect to z and 7,
respectively.

Eigenfunctions
Assuming Y(z,7)=Z(z)e™, where Q is the dimensionless
frequency, the homogeneous part of (1) leads to
d*Z(z)
dz*

The eigenfunctions are of the form of Green’s function [3] and
in the following two domains the homogeneous part of (2),

i.e.,

~ (@ =0Z(2) =R Z(@)d(z2,) @

d*Z(z)

o — (2 -K)Z(z)=0
is considered
a 0sz<z,, Z(0)=Z'(0)=0

by z,<z=1, Z(1)=Z'(1)=0 for clamped beam, and
Z"(1)=2Z2(1)=0 for cantilever beam. The solutions can be
written as:

a) For Clamped Beam
(cosAz — coshAz) + a,(z,)(sinAz — sinh\z),

0=z<z,
Z=A(z,)
a,(2,)[cosh(z—1) —coshA (z—1)] + a3(z,)
[sinA(z — 1) —sinhA (z — 1)1,
b) For Cantilever Beam

(coshz —coshAz) + b, (z,)(sin\z — sinh\z),

z,<z=1 3)

0=z<z,

b,(z,)[cosN(z — 1)+ coshA (z — DI + b5(z,)

Z=B(z,)
[sink(z— 1)+ sinhA (z—1)], Z,<z=1 @
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Fig.2 Displacement of the cantilever beam under the moving mass for
various values of the mass ratio ¢

The constants a,, a,, and a; for the clamped beam and the
constants b,, b,, and b; for the cantilever beam are deter-
mined from the conditions of continuity:

W  dZ(z2,) |50 dZ(2,2,) |%
5 dz 5 d? 2

Z(z,2,)

=0 (5

Integrating (2) and using the accompanying boundary condi-
tions, the transient condition representing the jump of the
shearing force at z =z, is obtained as

dZ(2.2,) |+
————d(;;—zo_)_ -~ =€QZZ(Z0"Z0) (6)

where 9% =\* —«. This condition is used in determining the
dimensionless frequency Q. Finally, the unknowns A4 (z,) and
B(z,) for the clamped and cantilever beam, respectively, are
determined by imposing the condition of orthonormality with
the weight function 1+ €6(z—2z,) [3] as

z

zZ, 1
goo ZXz,z,)dz + S Z2(2,20)d7+ €Z%(2,,2,) =1 )
© 29
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Fig.3 Comparison of amplitude coefficients a; and a, for the first and
second mode, respectively, at various times for mass ratio ¢=0.4
(magnify vertical scale by 10 for the cantilever beam resulits)

Response of the Beam
The solution of (1) can be expressed as a series

Y(2D)= Y, @y (1,20) 70 (2:2,)

m=1
where Z,, (z,z,) are the orthonormal eigenfunctions described
in the preceding section; a,, (7, z,) are the amplitude coeffi-
cients. Substituting in (1) and making the assumptions sug-
gested by StaniSic based on numerical evidence [3] that
8Z,,(2,2,)/ 9z, and da,,(7,2,)/0z, together with their second
order derivatives are very small so that their products can be
neglected compared with 8%a,, (7,z,)/97%Z,, (2,2,), the equa-
tion for coefficients a,, is obtained in the differential form as

d%a,, (1,2,
'_-:;T(—ZT_—')' + Q,Z;I (Zo )am (leo) = PZm (za 7Zo)
with

am(ovzo) = d”l (O’ZO) = O
giving
an(r2)= | 8 (TOPZ,, (202,00 ®
a

where g(7,6) is the Green’s function such that
g (7,0
_%(02_l+% (2,)8(r:0)=8(7—6)
and
dg(r;7y) _
a0

7= 1/0; tp=time taken by the moving mass to cross the en-
tire beam. In addition, the Green’s function has to satisfy the
transient conditions

g(r77)= 0.

+ +
’ dg(7;0) |

N = —_— :1,
g(7;0) - 0 and % -

The amplitude coefficients a,, can then be determined using

®8).

Numerical Results and Discussions

The formulations described above were used to determine
the dynamic behavior of beams with o=2.17, v=6.096 m/s
(20 ft/s), L=6.096 m (20 ft). The integrations in (7) and (8)
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were carried out numerically using Gauss integration of the
tenth order [1]. The knowledge of the deflection of the struc-
ture under the moving mass as the mass travels across the
structure is of interest to the structural engineer in highway
and bridge construction. Such deflections are plotted in Figs. 1
and 2 for the clamped and the cantilever beam, respectively.
The nonlinear nature of the dynamic response with increase in
mass ratio is evident from these curves. The plots of the
amplitude coefficients ¢, and a, corresponding to the first two
modes in the series expansion for the clamped and the can-
tilever beam are given in Fig. 3. The drop of magnitude of g,
compared to that of ¢, suggests a fast convergence of the
series. In performing the above calculations, it was observed
that the magnitude of the frequency measure £ was affected
largely by the position of the mass on the beam and changed
only slightly with the magnitude of the mass.
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A More Direct and General Analysis of Mov-
ing Strong Discontinuity Surfaces in Quasi-
Statically Deforming Elastic-Plastic Solids

W. J. Drugan’!

1 Introduction

In a recent study, Drugan and Rice (1984) investigated what
restrictions are placed on the possible existence of quasi-
statically moving surfaces of strong discontinuity (across
which components of stress, strain or velocity jump) by stan-
dard weak continuum mechanical assumptions coupled with
skeletal constitutive assumptions believed to describe
realistically a large class of elastic-plastic materials. Using a
small displacement-gradient formulation, they proved that the
standard set of assumptions examined requires all components
of stress to be continuous across such propagating surfaces,
and that only certain components of the plastic part of the
strain tensor may jump provided specific conditions are met.

I develop here a more direct and general version of Drugan
and Rice’s (1984) main proof which lays bare its key features.
This facilitates a demonstration that the severe restrictions
deduced by Drugan and Rice do not hinge on their assumption
of elastic linearity, but rather that the elastic component of
material response can be arbitrary hyperelastic, with the key
restrictions being that the elastic strain energy function is
strictly convex and unaffected by plastic deformation.

2 Formulation

With reference to Fig. 1, let £ denote a hypothesized surface
of strong discontinuity that propagates with velocity ¥V > 0 in
the direction of the normal, x;, through an elastic-plastic solid
under general three-dimensional conditions. The Cartesian
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Response of the Beam
The solution of (1) can be expressed as a series

Y(2D)= Y, @y (1,20) 70 (2:2,)

m=1
where Z,, (z,z,) are the orthonormal eigenfunctions described
in the preceding section; a,, (7, z,) are the amplitude coeffi-
cients. Substituting in (1) and making the assumptions sug-
gested by StaniSic based on numerical evidence [3] that
8Z,,(2,2,)/ 9z, and da,,(7,2,)/0z, together with their second
order derivatives are very small so that their products can be
neglected compared with 8%a,, (7,z,)/97%Z,, (2,2,), the equa-
tion for coefficients a,, is obtained in the differential form as

d%a,, (1,2,
'_-:;T(—ZT_—')' + Q,Z;I (Zo )am (leo) = PZm (za 7Zo)
with

am(ovzo) = d”l (O’ZO) = O
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a

where g(7,6) is the Green’s function such that
g (7,0
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and
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7= 1/0; tp=time taken by the moving mass to cross the en-
tire beam. In addition, the Green’s function has to satisfy the
transient conditions

g(r77)= 0.
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The amplitude coefficients a,, can then be determined using

®8).

Numerical Results and Discussions

The formulations described above were used to determine
the dynamic behavior of beams with o=2.17, v=6.096 m/s
(20 ft/s), L=6.096 m (20 ft). The integrations in (7) and (8)
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were carried out numerically using Gauss integration of the
tenth order [1]. The knowledge of the deflection of the struc-
ture under the moving mass as the mass travels across the
structure is of interest to the structural engineer in highway
and bridge construction. Such deflections are plotted in Figs. 1
and 2 for the clamped and the cantilever beam, respectively.
The nonlinear nature of the dynamic response with increase in
mass ratio is evident from these curves. The plots of the
amplitude coefficients ¢, and a, corresponding to the first two
modes in the series expansion for the clamped and the can-
tilever beam are given in Fig. 3. The drop of magnitude of g,
compared to that of ¢, suggests a fast convergence of the
series. In performing the above calculations, it was observed
that the magnitude of the frequency measure £ was affected
largely by the position of the mass on the beam and changed
only slightly with the magnitude of the mass.
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Statically Deforming Elastic-Plastic Solids
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1 Introduction

In a recent study, Drugan and Rice (1984) investigated what
restrictions are placed on the possible existence of quasi-
statically moving surfaces of strong discontinuity (across
which components of stress, strain or velocity jump) by stan-
dard weak continuum mechanical assumptions coupled with
skeletal constitutive assumptions believed to describe
realistically a large class of elastic-plastic materials. Using a
small displacement-gradient formulation, they proved that the
standard set of assumptions examined requires all components
of stress to be continuous across such propagating surfaces,
and that only certain components of the plastic part of the
strain tensor may jump provided specific conditions are met.

I develop here a more direct and general version of Drugan
and Rice’s (1984) main proof which lays bare its key features.
This facilitates a demonstration that the severe restrictions
deduced by Drugan and Rice do not hinge on their assumption
of elastic linearity, but rather that the elastic component of
material response can be arbitrary hyperelastic, with the key
restrictions being that the elastic strain energy function is
strictly convex and unaffected by plastic deformation.

2 Formulation

With reference to Fig. 1, let £ denote a hypothesized surface
of strong discontinuity that propagates with velocity ¥V > 0 in
the direction of the normal, x;, through an elastic-plastic solid
under general three-dimensional conditions. The Cartesian
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Fig. 1 Quasi-staticaily propagating surface of strong discontinuity

coordinate system x;, X,, X3 moves with the surface £. Values
of a field quantity, say g (x;, x,, X3, t), where ¢ is. time, directly
ahead of and directly behind the moving surface T will be
denoted as g* = Ii}l(;l g(xy, X, X3, t, F p), respectively,

where ¢, is the time at which I arrives at a particular material
point. The jump in such a field quantity across & will be
denoted as [[g]]l = g+ — g~

In the sequel, components of tensors with respect to the
Cartesian coordinate system of Fig. 1 are indicated either by
the Latin indices i, j, &, / which have range 1, 2, 3, or by the
Greek indices «, 8 which have range 2, 3 only and thus refer to
tensor components in planes parallel to planes that are tangent
to X. Both types of index follow the summation convention.

Referring the reader interested in a more detailed and
justified development to Drugan and Rice (1984), I here sum-
marize the jump conditions implied by standard continuum-
mechanical postulates, and the weak constitutive assumptions
to be employed.

Equilibrium requires traction continuity across I, so that

[fo,;l1=0 6]
where 6; = 0j; is the stress tensor. I assume continuity of the

displacement vector across L, [[#;]] = 0. In terms of the small-
strain tensor, e; = (1/2) (0u,;/0x; + du;/dx;), this requires

1
sl == [[8u, /9x;]] @

[[eap]] =0. ©))

The constitutive assumptions to be employed are identical
to those of Drugan and Rice (1984), except that instead of re-
quiring the elastic part of a total strain increment to be /inearly
related to a stress increment, this relationship can be arbitrari-
Iy nonlinear so long as the response is hyperelastic with a
strictly convex elastic strain energy function that is unaffected
by plastic deformation. Thus, I assume that a total strain in-
crement can be additively decomposed into elastic and plastic
parts

de; = de§ + de, @
where the elastic part is related to the stress increment by
3¢ (e
doij =__ib._(.~_)_ deil (5)

0¢§; degy
with ¢(€®) being the positive-definite, single-valued elastic
strain energy function.

The plastic behavior of the materials considered is assumed
to be in accord with the maximum plastic work inequality

Journal of Applied Mechanics
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where o; is the stress state (at yield) corresponding to the
plastic strain increment def}, and of; is any other stress state
that is at or below yield. I note that assumptions (4) through

(6) permit very general elastic and plastic anisotropy.

3 Analysis

A key step in the Drugan and Rice (1984) analysis is the
realization that integration of the maximum plastic work in-
equality (6) at a material point just during the passage of & can
provide an explicit restriction on jumps in components of
stress and strain. Thus, we examine

e?
Se”+ (0;—0})de} =0, @)
which follows from (6) whenever ¢* remains on or inside the
yield surface for all states along the strain path frome* toe.
This will always be true, e.g., for materials whose current yield
locus incorporates all prior yield loci, so (7) clearly permits
isotropic hardening as well as many types of anisotropic
hardening including many cases of yield surface vertex
formation.
Employ (4) to rewrite (7) in the instructive form

€~ €

S€+ (0;—0a) dEij_SEe+ (0;—0y) deg;=0. ®)

The clarity of the present derivation lies in the fact that the
first integral in (8) vanishes identically because I restrict pos-
sible paths from e* to ¢~ to those for which (1) and (3) are
satisfied by all states traversed along the path. The vanishing
of this integral is easily verified by noting that the integrand
simplifies as

(05— o0j)de;= (0,5~ 055)deqg ®
since g,; are continuous across L via (1), and finally that (9)

vanishes identically since (3) requires de,; = 0 across L.
Now, (8) has reduced to the illuminating restriction

e—

€
- S€e+ (Uij_

At this point one realizes that the assumption of hyperelastic
behavior will permit direct evaluation of this integral; employ-
ing (5), we have

B ) —d (e ) —oj(es — ) <. (11

The form of this expression implies immediately that if strict
convexity of ¢ (€°) is required, then

lefll=0. (12)

This is true because strict convexity of ¢(€?) means that it
must satisfy (11) with the inequality sign reversed, the equality
holding only when ¢~ = €% . Given (12), (5) requires
{loyl1=0. (13)
Thus I have proven two of the main results of Drugan and
Rice (1984), namely that all components of stress and elastic
strain must be continuous across a quasi-statically moving sur-
face in an elastic-plastic solid, under the more general condi-
tions that the elastic part of the response may be nonlinear
hyperelastic with a strictly convex elastic strain energy func-
tion. The interested reader is referred to Drugan and Rice
(1984) for derivations of restrictions on jumps in components
of velocity and plastic strain for some important material
models; I observe that all of these additional results remain
valid for the more general constitutive assumptions made
here, given the above proofs of (12) and (13).

of)de§; = 0. (10)

i =

Acknowledgment
Support of this work by the US National Science Founda-

MARGH 1986, Vol. 53 /225

Downloaded 03 May 2010 to 171.66.16.31. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES

tion, Solid Mechanics Program, under Grant MEA-8312348 is
gratefully acknowledged.

References

Drugan, W. J., and Rice, J. R., 1984 “Restrictions on Quasi-Statically Mov-
ing Surfaces of Strong Discontinuity in Elastic-Plastic Solids,”” in Mechanics of
Material Behavior: The Daniel C. Drucker Anniversary Volume, G. J. Dvorak
and R. T. Shield, eds., Elsevier, Amsterdam, pp. 59-73.

A Note on the Obtainment of Instantaneous
Penetration Information From Final
Penetration Data

O. E. R. Heimdahl® and J. C. Schulz!

A simple, practical technique is described for generating in-
Stantaneous penetration depth versus velocity information for
a given projectile-target combination from experimentally ob-
tained final penetration depth versus impact velocity data. The
technique applies to penetrations where the resistive pressure
is a function of velocity only.

Introduction

Final penetration depth versus impact velocity data for a
projectile-target combination are as a rule easily obtained ex-
perimentally, Measurements of instantaneous penetration
depth as a function of instantaneous velocity tend to be more
difficult. (See, however, [1, 2, 3].) This note describes a
technique, applicable to a fairly broad class of penetrations,
whereby final penetration depth versus impact velocity data
can be used to generate instantaneous penetration depth ver-
sus velocity at any desired impact velocity for a projectile-
target combination. To the authors’ knowledge this very sim-
ple technique, which appears to have practical application, has
not been described previously in the literature.

Description of Technique

The equation of motion for a rigid body penetrating a
material stably and without yaw is often assumed to be of the
form

—m dv/dt=—mv dv/ds=A g(v) 6}

where m=projectile mass
A =presented area
s=instantaneous penetration depth
v=velocity
t=time
g(v) =resistive pressure.

The assumption is that the resistive pressure is a function of
velocity only. The Poncelet, Petry and Young equations [4]
are all of this form, differing only in the particular expression
used for the resistive pressure.

Integration of (1) yields

s=m/A[G(V) -G (v)] )
where

V=impact velocity (velocity at s = 0)
G(v)={ v/g(v) dv.

The final penetration depth, P, obtained by setting v = 0 in
(2), is
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P=m/A[G(V)—G(0)]. 3)
Combination of (2) and (3) yields the important result
s(u,Vy=P(V)—P(v). 4)

In words, (4) says that the instantaneous penetration depth
equals the final penetration depth corresponding to the impact
velocity minus the final penetration depth corresponding to
the instantaneous velocity. This result may be arrived at
heuristically by observing that at any time during a penetra-
tion obeying (1) the distance of penetration remaining depends
only on the current velocity.

Interpreted graphically (4) indicates that the s—v curve is a
reflection and translation of the P— V curve. Thus, the instan-
taneous penetration depth as a function of velocity can be read
directly from a plot of final penetration depth versus impact
velocity simply by repositioning the axes. This is illustrated in
Fig. 1 where the P— V axes are shown solid and the s— v axes
are shown dashed. The amount of translation, P(V,),
depends on the particular impact velocity, V,.

The resistive pressure can be determined from numerical or
graphical differentiation of experimental P~V data through
the relation

g(v)y=mv/A/(dP/dv). )

The time corresponding to a given velocity can be estimated
as

t=—m/AS:1/g(v) duv. (6)

Errors associated with numerical or graphical integration limit
accuracy of the time estimate.

- Discussion

A technique has been described which allows determination
of “‘instantaneous’’ penetration information from more easily
obtained ‘‘final’’ penetration results. That is to say, if final
penetration depth versus impact velocity data is available,
then instantaneous penetration depth as a function of velocity
for a given impact velocity can be generated. In addition, the
resistive pressure and the time as functions of velocity can also
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be determined. The technique is amenable to either numerical
or graphical application.

The assuniption is made that the resistive pressure is a func-
tion of velocity only. More generally, this pressure will depend
on time and/or depth in addition to velocity. A material with a
memory (viscoelastic, viscoplastic, etc.) or a material with
properties (density, strength, etc.) that vary in the penétration
direction will violate this assumption. However, for penetra-
tion events for which the assumption applies, this technique
allows extraction of additional useful information from test
data.
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Stability of Short Columns Subjected to
Distributed Axial Loads!

J. Rondal® and R. Maquoi.? The authors are to be con-
gratulated for their valuable contribution to the stability
problem of columns subjected to distributed axial forces.

Though of limited practical interest in civil engineering, the
case of uniformly distributed axial forces is much more en-
countered in connection with offshore activities.

The aim of the present discussion is, on the one hand, to
bring additional theoretical reference values and, on the other
hand, to comment briefly on the limitations of the results at
the light of elastoplastic behavior of steel material. First, the

lBy Shastry, B. P., and Venkateswara Rao, G., and published in the March
1985 issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 229-230.

Associate Professor, Institute of Civil Engineering, University of Liége,
Quai Banning, 6, 4000 Liége, Belgium.

Associate Professor, Institute of Civil Engineering, University of Liege,
Quai Banning, 6, 4000 Li¢ge, Belgium.

last column of Table 1 in the author’s paper can be completed
by means of results published originally in reference [1].

In addition, it must be emphasized that the critical buckling
load is meaningful as long as it does not exceed the compres-
sion yield load {2, 3]. Thus, the range of low slenderness ratios
is no more governed by the critical buckling stress and the
author’s conclusions are, therefore, questionable, The devia-
tion between these values of A and those for slender columns
[1] is expressed in percents as:

A(slender column) —\(L/r)

AN t) = 100 1
(percent) N(slender column) M

and is plotted in Fig. 1. It decreases rapidly with L/r and tends
to zero. Furthermore, for mild steel, which has £, equal to 235
MPa and is commonly used for steel construction in civil
engineering, the transition between the squash load and the
Eulerian critical load occurs for following slenderness ratio

L/r(mild steel) = = v210,000/235=93.91 2

For any kind of boundary conditions, the maximum
discrepancy reaches only 1 percent, and can be disregarded
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(Fig. 1). For higher steel grades, for instance with a yield stress
of 570 MPa, that is commonly used for casing and tubing, the
discrepancy is about 3.5 percent and is still negligible.
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Authors’ Closure

The authors appreciate Professors J. Rondal and R. Ma-
quois’ interest in their paper and additional references cited
and agree that yield criterion is to be considered while dealing
with the stability of very short columns. However, as sug-
gested by the discussers, materials having high yield strength
may represent columns with low L/r. For example, the higher
grade steel quoted in the discussion represents a cantilever
with L/r as low as 30. The theme of the paper was to provide
stability parameters for a wide range of short columns and
hence considered the range of L/r from 10 to 500 for the
numerical results. The authors thank the discussers for the
graphical representation of the numerical results for practical
considerations.

Sufficient Conditions for Small Particles to
Hold Together Because of Adhesion Forces!

J. Reed.? In a recent article Fichman and Pnueli (1985)
presented a particle impact-adhesion model for elastic-plastic
impacts. There are some similarities between this model and
another recent model (Rogers and Reed, 1984). The Fichman
and Pnueli approach appears to be an improvement over
Rogers and Reed since they calculate the limiting elastic veloc-
ity using a pressure distribution including adhesive forces
whereas in Rogers and Reed adhesive forces are neglected. Un-
fortunately there is a serious error in their equations.

Fichman and Pneuli’s equation (7) has been incorrectly
quoted from Johnson, Kendall and Roberts (1971). Conse-
quently, some of their subsequent equations are also incorrect.
Equation (9) in Fichman and Pneuli is

2a? 2 (67r'ya> 172
3R 3 K
where § is the distance of approach of the centre of the two
bodies, a, is the contact radius, R is the geometric radius of the
two bodies in contact, v is the adhesive energy per unit area of
both bodies and

4 [(1—1/]2) N (1_,,22)] -1

3 E, E,
where » is Poisson’s ratio and £ Young’s modulus.

In the limit where the adhesive forces are negligible the

above equation should reduce to the classical Hertz equation
(Timoshenko and Goodier, 1971) which is

o=

)

K=

1By M. Fichman and D. Pnueli, and published in the March 1985 issue of the
ASME JoURNAL OF APPLIED MECHANICS, Vol. 52, pp. 105-108.

2Berkeley Nuclear Laboratories, CEGB, Berkeley, Gloucestershire GL13
9PB, England.
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6= @

Obviously as y — 0 the Fichman and Pnueli equation gives 6
— 2a%/3R which is not the correct limit.

The Fichman and Pnueli equation (9) ought to be (as seen
from Rogers and Reed, 1984, equation (13) or Barquins, 1983
equation (7))

a 2 (P,—Ppy)
b= - 3
R 3 Ka )
2 2P
=& <1 + ") “
3R P,
where P, is the applied load, and P, is given by
P, =P, +3nyR + (67yRP, + (3nyR)?) &)

If the adhesive energy is negligible then P, = P,.
Therefore, equation (4) approaches the Hertz solution as
expected.

The correct equations linking the critical elastic impact
velocity, V,,, and the elastic yield limit, p*, following the
same method as Fichman and Pnueli, are

1
MV

1 Piyy [Py —(6myRP)!*1[6P, — (67yRP )] P
= sgTRT ), X2 Py

1 18
ZW{T Pfﬁ ~6(67r'yR)”2P{éf +9 ™R p%? } 6)

and
1 K23
27 R2/ 3

Equations (6) and (7) above ought to be used to link V,, and
p* rather than equations (12) and (20) of Fichman and Pnueli.

Because their equation (9) was incorrect this also means that
the analysis used to calculate the plastic work in the annulus at
the edge of the contact area ¢, (equations (23) to (32)) is also
incorrect.

Finally, the two energy balance equations ((21) and (22)) are
misleading. We feel equation (22) has a typographical error in
it. It would make better sense if it read

p*= (3P} — (67yR) V2P /%) @)

exinSep, T H(€xn—€01) €,

Unfortunately, it is not clear anywhere in the article how ¢ . is

calculated. The energy balance criterion in equation (21)
serves no purpose other than giving a sticking condition in an
artificial situation (i.e. when the maximum pressure in the cen-
tre of the contact zone just equals the elastic yield limit).
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DISCUSSION

Authors’ Closure

a) As pointed out by Reed, Fichman and Pnueli’s (1985)
work is an improvement’ on Rogers and Reed (1984). In-
deed, in addition to the elastic-plastic deformation at the
center of the circle of contact, we have considered the plastic
deformation at the edge of that circle. This plastic deforma-
tion always exists during impact, unlike plastic dissipation at
the center of the circle, which appears only after the yield
point there has been reached. We do not show how to
calculate €ply s the dissipation work at the center of the circle,
because it is not needed to obtain the condition for the two
particles sticking together. Once the yield point at the center
has been reached —any surplus kinetic energy is dissipated.
Thus, only the energy dissipated at the edge of the circle, €ply >
is required. This result has a very interesting implication: par-
ticles with diameters smaller than some critical values always
stick together, whatever their velocities might be.

b) We regret that there is a type-setting error and the second
term on the right-hand side of our equation (7) has been omit-
ted. This equation (7) should read:

3 P
Po = kéa, ~—2—1 (1)

This equation agrees with Reed’s comments.

c) Another typographical error has caused a 2/3 constant to
appear in the first term of our equation (9), which corrected
should read (the whole equation):

a N 2 [6yr L )
=—ch— J——q,2
R 3V & a @

Unfortunately, this error was made before the paper was sub-
mitted, and influenced other expressions. R in equations (11),
(12), (29) +(32) must be corrected to:
2 RR
R=Z."172 3)
3 R +R,

d) Finally, Rogers and Reed (1984) does not have an equa-
tion (13) in it, and equation (5) in Reed’s Comments should
be:

P =P, +3myR+~V6rRP, + (31yR)*

and not as written; which just shows that mistakes will hap-
pen. In conclusion, we are very grateful to Dr. Reed for his
comments, which did bring about these necessary corrections,

References

Same as in Reed’s Comments.

A New Rate Principle Suitable for Analysis
of Inelastic Deformation of Plates and
Shells?

J. N. Reddy?. Much of the paper is a review of well-known
variational principles of elasticity which can be found in a
number of books (e.g., see Oden and Reddy, 1976). The ‘new
variational principle’ presented in the paper is not new, and
can be found in the monograph by Oden and Reddy (1976).
More specifically, the functional II,, in equation (11) of the
paper is exactly the same as that in equation (4.115) on page
115 of this reference. The monograph also contains a number

TBut do not rely on it. Their paper was submitted long before Rogers and
Reed’s was published. -
sz S. Mukherjee and F. G. Kollmann, and published in September 1985
issue of ASME JOURNAL OF APPLIED MECHANICS, Vol. 52, pp. 533-535.
Clifton C. Garvin Professor of Engineering Science and Mechanics, Virginia
Polytechnic Institute and State University, Blacksburg, VA 24061.
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of related (fourteen in total) functionals for linear elasticity
(on pp. 114-119) (Oden and Reddy, 1974), and variational
principles for viscoelasticity (on pp. 143-169) and nonlinear
elasticity and inelasticity (on pp. 173-189). Also, the title of
the paper is not justified because the authors have not

_presented any analytical discussion of the specialization of the

elasticity principles to plates and shells. Only a qualitative
discussion of a possible extention is presented.

References
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Authors’ Closure

We thank Professor Reddy for his interest in our work [1].
We regret that the work of Oden and Reddy did not come to
our attention prior to publication of our paper and that we
ended up rediscovering their variational principle. The review
of existing variational principles, which occupied half a page
of our paper, was given in order to set the stage for what was
to follow. These, of course, were clearly referenced ([5] and
[6] of our paper). Further, we purposely restricted ourselves,
in this paper, to a qualitative discussion of the application of
our principle to inelastic shells. We have indicated in the paper
that “‘a strictly two-dimensional formulation containing vec-
tor and tensor fields referred to the base vectors of the
undeformed shell midsurface’” would be published elsewhere
([8] of our paper). This paper [2] has just been published. Pro-
fessor Reddy had communicated his concern about our paper,
in a private letter to one of us, soon after it was published last
September. We immediately replied to him and sent him a
preprint of our Acta Mechanica paper. In view of this, we are
really quite surprised to find his continuing concern regarding
an analytical treatment of this variational principle for in-
clastic shells, as voiced in the last two sentences of his
discussion.
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The Problem of Minimizing Stress
Concentration at a Rigid Inclusion’

G. S. Bjorkman, Jr.?2 and R. Richards Jr.> The objective
of this paper, as stated by Professor Wheeler, ‘‘is an op-
timization problem aimed at finding the best shape for a rigid
inclusion imbedded in an elastic matrix of infinite extent, if
the stress concentration is to be minimized.”’ It should be
emphasized that the solution to this problem had already been
obtained earlier by the writers (Bjorkman and Richards, 1979;
Richards and Bjorkman, 1980). In these two works the writers
found that the rigid-inclusion shape which satisfied the
harmonic field condition (i.e., the condition that the first
invariant of the original stress (or strain) field remain un-
perturbed everywhere in the field) in a biaxial field is an
ellipse whose axes are inversely proportional to the principal
normal strains of the original field (i.e., a/b=¢e,/¢)
irrespective of plane stress or plane strain. This is precisely the
result Professor Wheeler obtains in equation (4.1) in less-

1By L. Wheeler and published in the March 1985 issue of the ASME JOURNAL
OF APPLIED MECHANICS, Vol. 52, pp. 83-86.
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Review of Progress in Quantitative Nondestructive Evalua-
tion. Vol. 3A and 3B. Edited by D. O. Thompson and D. E.
Chimenti, Plenum Publishing Corp., New York, 1984, 1489
pages. Price $225.

REVIEWED BY S. K. DATTA!

This volume contains the texts of presentations at the an-
nual Review of Progress in Quantitative NDE held at the
University of California, Santa Cruz, Aug. 7-12, 1983, There
are 142 papers and the transcript of the panel discussion on in-
version and reconstruction. The editors currently noted in the
Preface: ‘“This Review, possibly the most correctly com-
prehensive annual symposium in NDE, emphasizes both basic
research and early engineering applications; it provides a
valuable forum for the transfer of technical information.”” In
this volume the reader will learn about the latest developments
in NDE modeling and applications. Because the emphasis here
is on the current state of the art, the papers tend to be sketchy.
However, overall they provide a valuable source of informa-
tion for those involved in NDE research and applications.

The Volume is organized into 9 chapters dealing with the
following topics: NDE Reliability, Ultrasonics (Section A:
Probability of Detection; Section B: Scattering; Section C:
Sizing; Section D: Transducers; Section E: Signal Processing;
Section F: Imaging and Reconstruction), Eddy Currents (Sec-
tion A: Probability of Detection; Section B: Modeling; Sec-
tion C: Sizing; Section D: Probes), Acoustic Emission, Ther-
mal Wave Imaging, and Optical Methods, Inverse Methods,
Composite Materials, Material Properties, Acoustoelasticity,
and Residual Stress. In addition to these there are two
chapters dealing with new techniques and new NDE Systems.

The reviewer believes that this volume will be a useful addi-
tion to the libraries of the practitioners in NDE,

Handbook of Heat Transfer Fundamentals. Second Edition.
By W. M. Rohsenow, J. P. Hartnett and E. N. Ganic.
McGraw-Hill, New York, 1985. 1440 pages. Price $95.

REVIEWED BY P. D. RICHARDSON?

Heat transfer plays an important role in almost every
technological process. Experiment and analysis in this subject
flourished even in the 19th century. Having personally entered
the subject in the 1950’s, and having prepared very recently a
chapter for another Handbook, I approached this review with
relish.

As subjects grow and develop they go through phases. In
heat transfer the use of dimensional analysis led to simplifying
approaches — parametric representation of differential equa-

1Professor, Department of Mechanical Engineering, University of Colorado,
Boulder, CO 80309. Fellow ASME.

2professor of Engineering, Brown University, Providence, RI 02912. Fellow
ASME.
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tions for theoretical work, and use of dimensionless numbers
for plotting experimental data — which found their summaries
in McAdams’ ““Heat Transmission’’ (1933). This work and its
later editions served as handbooks as well as demonstrations
of the applicability of analytical methods to practical prob-
lems. The period 1945-1965 brought new technological
challenges — supersonic flight, space flight and nuclear reac-
tors prominent among them — and a new tool, the digital com-
puter. This latter was a foil for additional experiments of im-
proved accuracy because comparison with more accurate and
reliable calculations was possible. This applied particularly to
laminar forced convection. (Turbulent forced convection also
benefited from introduction of computational approaches,
but accuracy and broad reliability, while improved, do not
match that for laminar flows.) The 197-page Chapter 8
(Forced Convection, External Flows) illustrates this time
frame in its references: for the 1950’s there are 8 citations per
year, rising in the early 1960’s to about 15 per year and then
falling progressively to 1.5 per year in the 1980’s. By contrast,
the surge in Numerical Methods in Heat Transfer (Chapter 5)
is more recent; citations for the early 1960’s run close to 1 per
year but accelerate in the later 1960’s and run close to 10 per
year in the early 1970’s. A major factor in this was the in-
troduction of finite element methods.

In 1973 the first edition (and single volume) of the Hand-
book of Heat Transfer was published. Research has pro-
gressed since then. The volume under review is nearly 1500
pages long, 2 1/2 inches (63 mm) thick, in English and SI
units, with 14 Chapters, and is the first of two volumes for the
second edition. It has almost 700 illustrations. A fine example
of how well subject matter has been updated is given by War-
ren Rohsenow in his 94-page Chapter 12 on Boiling. The
studies of the 1960’s (which included major advances in
phenomenological understanding of boiling) are represented
by over 10 citations per year, and even in the latter half of the
1970’s the citations run about 8 per year. Chapters not men-
tioned already cover Mathematical Methods, Conduction,
Thermophysical Properties, Natural Convection, Forced Con-
vection (Internal Flows), Rarefied Gases, Electric and
Magnetic Fields, Condensation, Two-Phase Flow (each of the
latter four topics being covered is less than 50 pages), and
Radiation. Chapter authors are all distinguished researchers.

In a volume of this scope and purpose authors need to pro-
vide perspective, physical understanding, analytical represen-
tation, results for important cases or situations (including
equations, graphs, or tables which can be used directly by the

_reader) and an entry to the literature. The authors have done

this well. However, it is a handbook and not an encyclopedia:
There are problems within the scope of the chapters for which
solutions have been published but which are not represented

here. The subject index of roughly 2000 line entries is thin; the

most useful indexes often run to 2-2.5 entries per page of text,
at which level this volume would have 3000 or more line en-

~ tries. There is no author index. A reader-friendly feature is the

almost completely uniform nomenclature throughout.
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The chapter on thermophysical properties, curtailed from
that in the first edition, should be different by giving uniform-
ly the latest internationally-agreed property data and by giving
information for modern materials: e.g., Table 65, reproduced
from the 1950’s, includes in its ‘‘selected nonmetals’’ none of
the polymers in widespread use in the 1980’s. One may
perhaps allow use of outdated material properties in an
elementary text where they will be used only in exercises: but
in a handbook I would hope to find the currently most ac-
curate values. The page of references on Fickian interdiffusion
coefficients could have been saved by citing T. R. Marrero and
E. A. Mason, J. Phys. Chem. Ref. Data, Vol. 1, 1972, pp.
3-118, which reviews them.

Into whose hands would I place this Handbook? Certainly
students and colleagues who might want a direct introduction
to specific topics; also research engineers, consultants and
other technically adept engineers. For some problems it is
enough; for others, it helps provide an entry to the literature,
especially from the 1955-1980 era.

Continuum Theory of the Mechanics of Fibre-Reinforced
Composites. Edited by A. J. M. Spencer. Springer-Verlag,
New York, 1984, 284 pages.

REVIEWED BY Z. HASHIN!

This book contains lectures given by A. H. England, D. F.
Parker, A. C. Pipkin, T. G. Rolgers and A. J. M. Spencer on
various aspects of the title subject matter at the International
Centre for Mechanical Sciences (CISM) in Udine, Italy in
1981. The subject may be appropriately defined as mechanics
of idealized strongly anisotropic materials. A basic assumed
characteristic of such materials is inextensibility, i.e., zero
strain, in one or more directions (fiber directions) (although
Pipkin considers a case where the tensile strain but not the
compressive strain vanishes). Another often assumed
characteristic is incompressibility.

The first two chapters by Spencer, and Rogers are con-
cerned with inextensible and incompressible materials.
Spencer discusses constitutive relations for elasticity and
plasticity and Rogers is concerned with finite deformations
and the intrinsic stress singularities and discontinuities which
arise in these kinds of idealized materials. The third chapter
by England is concerned with plane problems for inextensible
and incompressible linearly elastic strongly anisotropic solids.

lProfessor, Department of Solid Mechanics, Materials and Structures, Tel-
Aviv University, Tel-Aviv, Israel. Fellow ASME.
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BOOK REVIEW/RECEIVED

Pipkin in the fourth chapter discusses stress channelling and
boundary layers in plane linear elastic deformation on the
basis of inextensibility but not incompressibility, demon-
strating that the stress singularities and discontinuities en-
countered in the idealized material are limiting cases of high
stress gradients in strongly anisotropic materials, The fifth
chapter by Rogers is concerned with mechanics of helically
wound fiber reinforced cylinders: when the material is inex-
tensible in fiber directions and incompressible. This is a
subject of engineering significance and it appears that the
incompressibility assumption may introduce significant
inaccuracies for the elastic behavior of actual fiber composites
while the inextensibility assumption would be acceptable only
for high modulus graphite/epoxy composites. In Chapter 6
Pipkin discusses fracture mechanics for inextensible
materials. I believe this to be of particular interest in view of
the relative simplicity of the theory in comparison with usual
fracture mechanics of anisotropic materials. The test of the
theory is of course experimental verification for high modulus
fiber composites.

In Chapter 7 Spencer discusses reinforcement of holes in
plates by fiber reinforced disks and Chapter 8, written by
Parker, is concerned with wave propagation in inextensible
and incompressible materials. Spencer in chapter 9 discusses
dynamics of rigid-plastic beams and plates. He presents a
number of simple solutions to important problems and it
would seen that the simplified theory for idealized materials
should be of particular value for this subject matter. Finally
Pipkin in Chapter 10 generalizes Rivlin’s theory of inex-
tensible networks to the case when the fibers are inextensible
in tension but not in compression thus taking into account in
simple and elegant fashion the microbuckling of stiff fibers
within a soft matrix.

The editor and the authors are to be commended for having
succeeded in joining the various chapters organically together
and they have thus been able to present a coherent and logical
account of this interesting and important area of the
mechanics of solids.

Finally, a semantic comment: The subject presented is
mechanics of idealized strongly anisotropic materials and its
description as mechanics of fiber reinforced materials is not
always appropriate. The assumption of inextensibility would
be quite inaccurate for glass/epoxy and metal matrix fiber
composites and should probably be restricted to high modulus
graphite/epoxy and fiber reinforced rubber. The assumption
of incompressibility would not be adequate for linear elastic
behavior and is much more appropriate for plastic strains and
for fiber reinforced rubber.
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